Publication:
Deformation behaviour of diamond-like carbon coatings on silicon substrates

dc.contributor.advisor Munroe, Paul en_US
dc.contributor.advisor Mark, Hoffman en_US
dc.contributor.author Haq, Ayesha Jabeen en_US
dc.date.accessioned 2022-03-22T14:43:50Z
dc.date.available 2022-03-22T14:43:50Z
dc.date.issued 2008 en_US
dc.description.abstract The deformation mechanisms operating in diamond-like carbon (DLC) coatings on (100) and (111) Si, has been investigated. The effect of coating thickness, indenter geometry, substrate orientation and deposition technique on the deformation of DLC coatings and the underlying substrate was studied by undertaking nanoindentation followed by subsurface microstructural characterization. Uncoated (111) Si was also investigated for comparison. The observed microstructural features were correlated to the indentation response of the coatings and compared with simulation studies, as well as observations on uncoated Si. In uncoated (111) Si, phase transformation was found to be responsible for the discontinuities in the load-displacement curves, similar to (100) Si. However, slip was activated on {311} planes instead of on {111} planes. Moreover, the density of defects was also significantly lower and their distribution asymmetric. The coatings were adherent, uniformly thick and completely amorphous. The load-displacement curves displayed several pop-ins and a pop-out, the indentation loads for the first pop-in and the pop-out depending primarily on the thickness of the coating. The coatings exhibited localized compressive deformation in the direction of loading without any through-thickness cracks. The extent of this localized deformation increased with indentation load. Hardness and thickness of the coatings and the geometry of the indenter influenced the magnitude of compressive strains. Harder and thinner coatings and a blunt indenter exhibited the minimum degree of deformation. Densification by rearrangement of molecules has been suggested as the mechanism responsible for plastic compression. At indentation loads corresponding to the first pop-in, (100) and (111) silicon substrates initially deformed by <111> and <311> slip respectively. Higher indentation loads caused phase transformation. Therefore, unlike in uncoated Si, dislocation nucleation in the Si substrate has been proposed as the mode responsible for the first pop-in. Subsequent pop-ins were attributed to further deformation by slip and twinning, phase transformation and extensive cracking (median and secondary cracks) of the substrate. The pop-out, however, was ascribed to phase transformation. Extensive deformation in the substrate, parallel to the interface, is attributed to the wider distribution of the stress brought about by the DLC coating. Good correlation was obtained between the nanoindentation response, microstructural features and simulation studies. en_US
dc.identifier.uri http://hdl.handle.net/1959.4/42692
dc.language English
dc.language.iso EN en_US
dc.publisher UNSW, Sydney en_US
dc.rights CC BY-NC-ND 3.0 en_US
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/au/ en_US
dc.subject.other Silicon en_US
dc.subject.other Diamond-like carbon en_US
dc.subject.other Nanoindentation en_US
dc.subject.other Deformation en_US
dc.subject.other Focussion ion beam microscopy en_US
dc.subject.other Cross-sectional transmission electron microscopy en_US
dc.title Deformation behaviour of diamond-like carbon coatings on silicon substrates en_US
dc.type Thesis en_US
dcterms.accessRights open access
dcterms.rightsHolder Haq, Ayesha Jabeen
dspace.entity.type Publication en_US
unsw.accessRights.uri https://purl.org/coar/access_right/c_abf2
unsw.identifier.doi https://doi.org/10.26190/unsworks/19608
unsw.relation.faculty Science
unsw.relation.originalPublicationAffiliation Haq, Ayesha Jabeen, Materials Science & Engineering, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation Munroe, Paul, Materials Science & Engineering, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation Mark, Hoffman, Materials Science & Engineering, Faculty of Science, UNSW en_US
unsw.relation.school School of Materials Science & Engineering *
unsw.thesis.degreetype PhD Doctorate en_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
whole.pdf
Size:
28.6 MB
Format:
application/pdf
Description:
Resource type