Science

Publication Search Results

Now showing 1 - 10 of 322
  • (2006) Hitchins, Megan; Suter, C; Wong, Jenny; Cheong, Kay; Hawkins, Nicholas; Leggett, B; Scott, R; Spigelman, Allan; Tomlinson, Ian; Martin, David; Ward, Robyn
    Journal Article

  • (2009) Gao, Steven; Lees, Justin; Wong, Jennifer; Croll, Tristan; George, Peter; Cooper-White, Justin; Tuch, Bernard
    Journal Article
    Human embryonic stem cells (hESCs) have previously been cultured on three dimensional (3D) biodegradable polymer scaffolds. Although complex structures were formed from the hESCs, very little is known about the mechanism of adhesion of these cells to the surfaces of the scaffolds. In this study, we achieved the efficient adhesion of pluripotent hESCs to 3D poly(lactic-co-glycolic acid) (PLGA) scaffolds based on our data from a novel two dimensional (2D) model that imitates the surface properties of the scaffolds. In the 2D model, single cell preparations of pluripotent hESCs adhered efficiently and predominantly to PLGA surfaces coated with laminin in comparison to collagen I, collagen IV, or fibronectin-coated surfaces. Flow cytometry analysis revealed that almost all of the pluripotent single cells expressed the integrin 6, with a small percentage also expressing 3ß1, which facilitates adhesion to laminin. This data was then translated into the 3D environment, with the efficient binding of single pluripotent hESCs to PLGA scaffolds coated with laminin. The utility of this system was shown by the directed differentiation of single hESCs seeded within laminin-coated scaffolds toward the endoderm lineage.

  • (2003) Bain, Michael; Gaeta, Bruno
    Conference Paper

  • (2004) Collins, Andrew; Ikutani, Masashi; Puiu, D; Buck, G; Nadkarni, A; Gaeta, Bruno
    Journal Article
    The accurate partitioning of Ig H chain V(H)DJ(H) junctions and L chain V(L)J(L) junctions is problematic. We have developed a statistical approach for the partitioning of such sequences, by analyzing the distribution of point mutations between a determined V gene segment and putative Ig regions. The establishment of objective criteria for the partitioning of sequences between V(H), D, and J(H) gene segments has allowed us to more carefully analyze intervening putative nontemplated (N) nucleotides. An analysis of 225 IgM H chain sequences, with five or fewer V mutations, led to the alignment of 199 sequences. Only 5.0% of sequences lacked N nucleotides at the V(H)D junction (N1), and 10.6% at the DJ(H) junction (N2). Long N regions (>9 nt) were seen in 20.6% of N1 regions and 17.1% of N2 regions. Using a statistical analysis based upon known features of N addition, and mutation analysis, two of these N regions aligned with D gene segments, and a third aligned with an inverted D gene segment. Nine additional sequences included possible alignments with a second D segment. Four of the remaining 40 long N1 regions included 5` sequences having six or more matches to V gene end motifs, which may be the result of V gene replacement. Such sequences were not seen in long N2 regions. The long N regions frequently seen in the expressed repertoire of human Ig gene rearrangements can therefore only partly be explained by V gene replacement and D-D fusion.

  • (2004) Jackson, Katherine; Gaeta, Bruno; Sewell, William; Collins, Andrew
    Journal Article
    BACKGROUND: Immunoglobulin rearrangement involves random and imprecise processes that act to both create and constrain diversity. Two such processes are the loss of nucleotides through the action of unknown exonuclease(s) and the addition of P nucleotides. The study of such processes has been compromised by difficulties in reliably aligning immunoglobulin genes and in the partitioning of nucleotides between segment ends, and between N and P nucleotides. RESULTS: A dataset of 294 human IgM sequences was created and partitioned with the aid of a probabilistic model. Non-random removal of nucleotides is seen between the three IGH gene types with the IGHV gene averaging removals of 1.2 nucleotides compared to 4.7 for the other gene ends (p < 0.001). Individual IGHV, IGHD and IGHJ gene subgroups also display statistical differences in the level of nucleotide loss. For example, within the IGHJ group, IGHJ3 has average removals of 1.3 nucleotides compared to 6.4 nucleotides for IGHJ6 genes (p < 0.002). Analysis of putative P nucleotides within the IgM and pooled datasets revealed only a single putative P nucleotide motif (GTT at the 3` D-REGION end) to occur at a frequency significantly higher then would be expected from random N nucleotide addition. CONCLUSIONS: The loss of nucleotides due to the action of exonucleases is not random, but is influenced by the nucleotide composition of the genes. P nucleotides do not make a significant contribution to diversity of immunoglobulin sequences. Although palindromic sequences are present in 10% of immunologlobulin rearrangements, most of the `palindromic` nucleotides are likely to have been inserted into the junction during the process of N nucleotide addition. P nucleotides can only be stated with confidence to contribute to diversity of less than 1% of sequences. Any attempt to identify P nucleotides in immunoglobulins is therefore likely to introduce errors into the partitioning of such sequences. [Journal Article; In English;

  • (2006) Lee, Cathryn; Gaeta, Bruno; Malming, H; Bain, Michael; Sewell, William; Collins, Andrew
    Journal Article
    We have used a bioinformatics approach to evaluate the completeness and functionality of the reported human immunoglobulin heavy-chain IGHD gene repertoire. Using the hidden Markov-model-based iHMMune-align program, 1,080 relatively unmutated heavy-chain sequences were aligned against the reported repertoire. These alignments were compared with alignments to 1,639 more highly mutated sequences. Comparisons of the frequencies of gene utilization in the two databases, and analysis of features of aligned IGHD gene segments, including their length, the frequency with which they appear to mutate, and the frequency with which specific mutations were seen, were used to determine the reliability of alignments to the less commonly seen IGHD genes. Analysis demonstrates that IGHD4-23 and IGHD5-24, which have been reported to be open reading frames of uncertain functionality, are represented in the expressed gene repertoire; however, the functionality of IGHD6-25 must be questioned. Sequence similarities make the unequivocal identification of members of the IGHD1 gene family problematic, although all genes except IGHD1-14*01 appear to be functional. On the other hand, reported allelic variants of IGHD2-2 and of the IGHD3 gene family appear to be nonfunctional, very rare, or nonexistent. Analysis also suggests that the reported repertoire is relatively complete, although one new putative polymorphism (IGHD3-10*p03) was identified. This study therefore confirms a surprising lack of diversity in the available IGHD gene repertoire, and restriction of the germline sequence databases to the functional set described here will substantially improve the accuracy of IGHD gene alignments and therefore the accuracy of analysis of the V-D-J junction.

  • (2006) Bain, Michael; Ahsan, Nasir; Potter, John; Gaeta, Bruno; Temple, Mark; Dawes, Ian
    Conference Paper

  • (2007) Jackson, Katherine; Gaeta, Bruno; Collins, Andrew
    Journal Article
    The reliable identification of IGHD genes within human immunoglobulin heavy chains is challenging with up to one third of rearrangements having no identifiable IGHD gene. The short, mutated IGHD genes are generally assumed to be indistinguishable from the N-REGIONS of non-template encoded nucleotides that surround them. In this study we have characterised N-REGIONS, demonstrating the importance of nucleotide composition biases in the addition process, including the formation of homopolymer tracts. We then use a simulation approach to determine the likelihood of misidentification of highly mutated IGHD genes among the JUNCTION nucleotides. These likelihoods provide general rules for the identification of mutated D-REGIONs, and suggest that longer D-REGIONs (>25 nucleotides) with as many as ten mutations can be identified with a low risk of error. Shorter D-REGIONs (> 16 nucleotides) with as many as four mutations are also identifiable. The reliability of different alignments is dependent upon the junction length (combined N-REGIONs and D-REGION). Data is presented that can guide the alignment of sequences with junction lengths from 5 to 50 nucleotides, including explicit selection between two D-REGION possibilities. The use of such a statistically-based approach to the alignment of IGHD genes will improve the reliability of the partitioning of immunoglobulin sequences, and this in turn will facilitate the study of the many processes that contribute to the diversity of the immunoglobulin repertoire. (C) 2007 Elsevier B.V. All rights reserved.

  • (2008) Fei, W; Shui, G; Gaeta, Bruno; Du, Xi; Kuerschner, L; Brown, Andrew; Wenk, M; Parton, R; Yang, Hyuk-Seung; Li, Peng
    Journal Article
    Lipid droplets (LDs) are emerging cellular organelles that are of crucial importance in cell biology and human diseases. In this study, we present our screen of 4,700 Saccharomyces cerevisiae mutants for abnormalities in the number and morphology of LDs; we identify 17 fld (few LDs) and 116 mld (many LDs) mutants. One of the fld mutants (fld1) is caused by the deletion of YLR404W, a previously uncharacterized open reading frame. Cells lacking FLD1 contain strikingly enlarged (supersized) LDs, and LDs from fld1 Delta cells demonstrate significantly enhanced fusion activities both in vivo and in vitro. Interestingly, the expression of human seipin, whose mutant forms are associated with Berardinelli-Seip congenital lipodystrophy and motoneuron disorders, rescues LD-associated defects in fld1 Delta cells. Lipid profiling reveals alterations in acyl chain compositions of major phospholipids in fld1 Delta cells. These results suggest that an evolutionally conserved function of seipin in phospholipid metabolism and LD formation may be functionally important in human adipogenesis.

  • (2008) Mai-Prochnow, A; Lucas-Elio, P; Egan, S; Thomas, Torsten; Webb, JS; Sanchez-Amat, A; Kjelleberg, S
    Journal Article
    The marine bacterium Pseudoalteromonas tunicata produces an antibacterial and autolytic protein, AlpP, which causes death of a subpopulation of cells during biofilm formation and mediates differentiation, dispersal, and phenotypic variation among dispersal cells. The AlpP homologue (LodA) in the marine bacterium Marinomonas mediterranea was recently identified as a lysine oxidase which mediates cell death through the production of hydrogen peroxide. Here we show that AlpP in P. tunicata also acts as a lysine oxidase and that the hydrogen peroxide generated is responsible for cell death within microcolonies during biofilm development in both M. mediterranea and P. tunicata. LodA-mediated biofilm cell death is shown to be linked to the generation of phenotypic variation in growth and biofilm formation among M. mediterranea biofilm dispersal cells. Moreover, AlpP homologues also occur in several other gram-negative bacteria from diverse environments. Our results show that subpopulations of cells in microcolonies also die during biofilm formation in two of these organisms, Chromobacterium violaceum and Caulobacter crescentus. In all organisms, hydrogen peroxide was implicated in biofilm cell death, because it could be detected at the same time as the killing occurred, and the addition of catalase significantly reduced biofilm killing. In C. violaceum the AlpP-homologue was clearly linked to biofilm cell death events since an isogenic mutant (CVMUR1) does not undergo biofilm cell death. We propose that biofilm killing through hydrogen peroxide can be linked to AlpP homologue activity and plays an important role in dispersal and colonization across a range of gram-negative bacteria.