Partitioning of rearranged Ig genes by mutation analysis demonstrates D-D fusion and V gene replacement in the expressed human repertoire

Access & Terms of Use
metadata only access
Altmetric
Abstract
The accurate partitioning of Ig H chain V(H)DJ(H) junctions and L chain V(L)J(L) junctions is problematic. We have developed a statistical approach for the partitioning of such sequences, by analyzing the distribution of point mutations between a determined V gene segment and putative Ig regions. The establishment of objective criteria for the partitioning of sequences between V(H), D, and J(H) gene segments has allowed us to more carefully analyze intervening putative nontemplated (N) nucleotides. An analysis of 225 IgM H chain sequences, with five or fewer V mutations, led to the alignment of 199 sequences. Only 5.0% of sequences lacked N nucleotides at the V(H)D junction (N1), and 10.6% at the DJ(H) junction (N2). Long N regions (>9 nt) were seen in 20.6% of N1 regions and 17.1% of N2 regions. Using a statistical analysis based upon known features of N addition, and mutation analysis, two of these N regions aligned with D gene segments, and a third aligned with an inverted D gene segment. Nine additional sequences included possible alignments with a second D segment. Four of the remaining 40 long N1 regions included 5` sequences having six or more matches to V gene end motifs, which may be the result of V gene replacement. Such sequences were not seen in long N2 regions. The long N regions frequently seen in the expressed repertoire of human Ig gene rearrangements can therefore only partly be explained by V gene replacement and D-D fusion.
Persistent link to this record
DOI
Link to Publisher Version
Link to Open Access Version
Author(s)
Collins, Andrew
Ikutani, Masashi
Puiu, D
Buck, G
Nadkarni, A
Gaeta, Bruno
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2004
Resource Type
Journal Article
Degree Type
UNSW Faculty