Science

Publication Search Results

Now showing 1 - 3 of 3
  • (1998) Bradley, Peter; Rozenfeld, Anatoly; Lee, Kevin; Jamieson, Dana; Heiser, Gernot; Satoh, S
    Journal Article
    The first results obtained using a SOI device for microdosimetry applications are presented. Microbeam and broadbeam spectroscopy methods are used for determining minority carrier lifetime and radiation damage constants. A spectroscopy model is presented which includes the majority of effects that impact spectral resolution. Charge collection statistics were found to substantially affect spectral resolution. Lateral diffusion effects significantly complicate charge collection

  • (2020) Rowlands, Benjamin
    Thesis
    Sirtuins (SIRTs) comprise a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, capable of affecting health-span and DNA expression. In cell-culture and peripheral-tissue models, researchers have identified that SIRT1 and SIRT2 are also capable of changing enzymatic activity in glycolysis and Krebs cycle. In brain, the impact of SIRT1 and SIRT2 deacetylase activity on metabolism is poorly understood. The aim of this project was to determine if metabolic pathways in brain could be regulated by SIRT1 and SIRT2-mediated deacetylation in mammalian systems. An established ex vivo reductionist model of brain metabolism was used to test the hypothesis that direct inhibition, activation or ablation of SIRT1 or SIRT2 deacetylase activity would result in significant changes in brain metabolism. Alterations in brain metabolism were assessed by examining changes in 13C-enriched substrates, and metabolite pools with 13C and 1H nuclear magnetic resonance spectroscopy. Chapter three provides evidence that approximately 30% of the GABA synthesized from [1,2-13C]acetate was made directly in neurons. Activation of neuronal specific SIRT1 caused an increase in the incorporation of [1,2-13C]acetate into brain, while activation of astrocytes with potassium depolarization caused a decrease in [1,2-13C]acetate incorporation. These results indicate that acetate is not a reliable marker, nor exclusively metabolised in astrocytes. Further, brain metabolism of acetate is modulated through enzyme acetylation regulated by SIRT1 deacetylase activity. Results in chapter four posit that activation of SIRT1 with SRT 1720 directly stimulated incorporation of 13C into Krebs cycle intermediates and reduced incorporation into lactate. Several off-target effects were observed for SIRT1 activator resveratrol and SIRT1 inhibitory EX-527 that questions their suitability for study of SIRT1 activity. Chapter five concludes that inhibition of SIRT deacetylase activity by AGK2 produced an effect consistent with glutamatergic AMPA receptor activation, in keeping with known SIRT2 targets. Potent SIRT2 inhibitor C64 increased 13C label incorporation into GABA from [1-13C]D-glucose in guinea pigs, and glutamine from [1,2-13C]acetate in WT mice, an effect that was also observed in SIRT2 KO mice. These results indicate that SIRT2 deacetylase activity may impact neurotransmitter systems. This thesis supports the theory that SIRT1 and SIRT2 deacetylase activity can influence brain metabolism in mammalian systems.

  • (2023) Ireland, Jake
    Thesis
    Pluripotent stem cell-derived cardiomyocytes (hPSC–CM) have great importance for predicting safety parameters for pharmaceutical compounds and models of healthy versus disease states of the human heart. In recent years, there has been an insistence that all new pharmaceutical products are tested on in vitro models for potential proarrhythmic effects and the increased demand for improved biomimetic hPSC-CM in pharmaceutical safety assays such as the Comprehensive in vitro Proarrhythmic Assay (CiPA). In addition, hPSC-CM are being utilised in cell therapies to treat and reverse the effects of ischaemic heart disease, offering potential cures for cardiovascular diseases instead of treatments for delaying progressive heart failure. In the first part of this thesis, I will examine how purified extracellular matrix proteins (ECMPs) can influence pluripotent stem cell (PSC) behaviour and how we may use this to precondition cardiac progenitor lineage specifications. I use array-based techniques to investigate how protein combinations affect proliferation, pluripotency, germ layer, and cardiac progenitors. This method allows us to visualise how individual proteins can affect cells' behaviour in a larger array whilst highlighting how specific combinations can precondition pluripotent cells towards a cardiomyocyte lineage. This combinatorial approach led to the identification of several unique matrices that promote differentiation, which will aid efforts at producing therapeutically useful cell types with greater efficiency. In the second part of this thesis, I demonstrate a novel bioreactor that attenuates a magnetic field to dynamically modulate the stiffness of magnetoactive hydrogel to look at how biomimetic dynamic stiffening of a substrate can influence cardiomyocyte lineage specification. We investigate how biomimetic in vivo mechanics may influence cell fate by following the expression profiles of cells in different dynamic environments. Non-invasive electromagnetic signals affect substrate stiffness when combined with magnetic particles and magnetic fibres and how this can help direct cell orientation and accompanying lineage specification Finally, I investigate how variability in cell phenotypes and expression patterns are influenced by biomimetic cues and how these variabilities could be utilised in future safety assessment protocols and cell therapy treatments for cardiovascular disease.