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Abstract 

Based on a numerical study, Song & Banner (2002) proposed a generic threshold 
parameter for predicting the onset of breaking within two-dimensional deep water 
gravity waves. This parameter was validated by a subsequent laboratory observa-
tional study carried out by Banner & Peirson (2007). The present study used a 
recently developed three-dimensional model of overturning waves implemented by 
GrilH et al (2006). It proposes preliminary work towards the generalisation of Song 
h Banner's breaking criterion to wave groups having directional effects. 

1 Introduction 

Ocean wind waves are both fascinating and dangerous features of the open ocean. In 
particular, breaking events profoundly influence geophysical processes near the surface as 
well as being a threat to the integrity of coastal structures and maritime operations. 

Despite the numerous theoritical and experimental studies, determining a robust threshold 
variable that determines the onset of breaking for deep water wave groups has remained a 
difficulty  for many years. Various breaking criteria based on kinematical properties such 
as wave steepness or crest acceleration have been proposed. A number of observational 
studies have evidenced that these local properties were not universally applicable (Dold 
& Peregrine [1]). 

However, recent work by Song & Banner [2] and Banner & Peirson [3] have shown that 
breaking of 2D wave groups in deep water may be predicted by considering the spatial 
development of the maximum wave group energy density. 

Song k Banner (henceforth referred as SB) used the two-dimensional model of Dold & 
Peregrine (DP) [4] to investigate numerically the evolution of deep water wave groups. 
Their goal was to determine the difference between group recurrence and breaking ini-
tiation, using a non-dimensional parameter based on energy density convergence. Three 
cases of initial wave groups were used. 

In Case I, a sinusoidal wave train is excited by perturbations of slighly different frequencies. 
The initial surface proñle is given by : 

/7V + 1 \ f N - I 
77(0;, 0) = ao cos(/cox)-f eao cos ———/cqx 4-0 + eao cos ———k^x^ó 

\ N J \ N 

where ao is the wave group amplitude, /cq the wave number, N the number of waves, 
(j) = 7r/4 and e = 0.1. 

For class II waves, two spectral components of same amplitude were superimposed, gen-
erating a stronger modulation. Case III  wave groups were created by a wave maker 
oscillating with decreasing frequency. Energy convergence occurs more rapidly, and thus 
a shorter computational domain is required. 



Local energy density  for  two-dimensional  wave groups is defined  by 

E{x, t) = ^  piu"  + v^)  + ^  pgri" (1) 

in  which  h is the still  water  depth,  u and v the x and y components of the fluid  particle's 
speed, and p the water  density. 

Examples  of Case I  non-linear  wave group evolutions  are presented on Figure  1, taken  from 
2]. Total  energy converges to the surface maximum  when the waves become steep, espe-

cially  for  the breaking  case. These observations  are the basis of SB's breaking  criterion. 
The initial  wave group is characterised  by its  steepness 5o = ao/co 

5o = 0.111 Recurrence 

0.;' 

( 4 

c:-
0 

c ;> a 
0 55 
0.4. 

0./ 
0 

0.6-

04 • 

0? 
Q • 

G.. 

•J 

5o = 0.112 Breaking 
I 

20 

70 

0 -4U 0 

!! S 
D -

40 0 

/O 

0 4i 
w'/ 

0 

~Q2 0 
O.Br" 

2Q 

2: 

1 

•0 

0" 
m 0 2:5 

? 

0 ' 
^  0 t  /D 

! -

OH 
0 

} 
20 

Si-

0 .21 

Q; 

0 

M.Si 

C 

0 
0 

Figure  1: Breaking  and recurrence  cases for  Case I  wave groups with  N — 5 computed in  [2 
with  DP code. Left  hand  panels show surface profiles  r]{x,  t) in  meters  and the associated total 
energy density  E{x,t)  in  10^  J/m^  are on the rigth  hand  panel.  Times for  the recurrence  case 
are ¿/T=0,60,82.7 and 160.5. For  the breaking  case, i/T=:0,60,80.8 

SB sought  a non-dimensional  parameter  which  could predict  breaking  or recurrence  re-
gardless the type of wave group or the number  of waves in  the group.  They monitored 
energy convergence by following  these steps : 

•  Making  total  energy non-dimensional  by defining  the local quantity  : 

E{x,t) 

P9 
k' 



where k{x^t) is the local wave number, calculated from the x derivative of the phase 
function computed from the Hilbert transform of the surface profile. 

Calulating the maximum of this quantity along the wave group at each time step, 
to obtain the diagnostic parameter : 

^{t) = max [5^(0:, t) = s. 

has fast time scale oscillations due to the motion of the individual waves in the 
group (see 3.3.2). By averaging /x over several carrier wave periods and taking the 
temporal derivative, a dimensionless growth rate 6(t) could be defined : 

1 D W 
cj. Dt 

where ujc is the mean initial carrier wave pulsation. 

This quantity provides a measurement of the mean convergence of energy towards 
the maximum of energy density in the group throughout time. 
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Figure 2: Example of ¡i and 6 evolution, taken from [2] obtained for Case III  wave groups, 
with wave maker amplitudes Ap = 0.035 (recurrence) and Ap = 0.036 (breaking). 

Both SB's computations and Banner & Peirson (referred as BP)'s measurements lead to 
the following result : whenever S reaches the threashold value of [1.4 ±0.1] • the 
wave group has an evolution to breaking. In recurrence cases, the maximum of S{t) called 
^max remains lower than this threshold. Consequently, breaking can be anticipated. 
This result was observed for the three cases (I, II, III)  of wave group regardless the number 
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of waves. Hence, the breaking crierion  was successfully applied  to a wide  range of 2D cases. 

However,  the influence of three dimensionality  on energy convergence is unknown.  This 
report  describes numerical  experiments that aim at checking SB's parameter for Case HI 
two-dimensional  wave groups in a three-dimensional  wave tank. Section 2 gives infor-
mation  about the numerical  model used. The definition  and properties of Case HI  wave 
groups, and the different  steps that lead to their  simulation  are presented in section 3. 
The calulation  methods that lead to energy densities are described in section 4, as well  as 
an attempt to check SB's criterion. 

2 Numerical  Models 

The analytical study of the water wave problem began in the 19th century and the first 
numerical  computations were performed  in the 1970's. Since then, the computional  speed 
and the developement of efficient numerical  methods has enabled continual  improvements 
of wave simulation. 

Calculation  in 2D has been extensive. The forefathers of modern numerical  methods are 
Longuet-Higgins  and Cokelet (1976), and DP (1986), who successfully used boundary 
integral  methods to solve Laplace's equation. Banner and Tian [5] initially  investigated 
the breaking criterion  by using DP code which,  was completed by Agnon  and Drimer  code 
(1998) who included  the wave maker that enabled the study of Case HI  wave groups in 
two  dimensions. 

The boundary  element methods for spatial discretisation opened the passage to 3D mod-
elling.  During  the 1990's, the first  3D wave tanks were developed leading to the present 
level of research activity  in this area. One of the most recent codes is presented in Grilli 
et al [6j. In particular,  the simulation  of an overturning  sohtary wave on a curved bottom 
topography  is spectacular (fig 3). Since then the code has been improved  by a number of 
authors and students. Fochesato et al (2007) modified  the spatial solver by implementing 
a fast multip'ole  algorithm.  This reduced considerably the computatial  costs. Recently, a 
simulation  of rogue waves by directional  energy focusing was succesfully performed  [7]. A 
few months later Bonnefoy and Duclozet (2007) developed a 3D model based on a higher 
order spectral solution  of potential  flow  equations. They made the same type of study, 
using a snake paddle. Although  it  did  not simulate overturning,  a larger range of wave 
groups could be generated. 

2.1 General Equations 

The idea behind numerical  wave tanks is to replace laboratory  experiments with  computer 
simulations.  Indeed, numerical  and experimental studies are complementary. Simulations 
give access to the data everywhere in the tank and give geometrical freedom (the length 
of the tank is easily changed). On the other hand, rehable post breaking information  can 



only  by obtained  by real  measurements  as numerical  codes are not  reliable  beyond the 
onset of breaking. 

Most  numerical  tanks  (including  DP and Grilli  et al's) solve potential  flow  equations  for 
an ideal  and incompressible  fluid,  with  a free surface. The velocity  is given by v = V 0 
where 0 is the velocity  potential.  The governing  equation  representing  mass conservation 
in  the computational  domain  is Laplace's equation 

V^cj)  = 0 (2) 

It  is assumed that  the fluid  is bounded below and on the sides by impermeable  surfaces, 
which  gives 

u - n = ~ (3) 

where n  denotes the normal  vector exterior  to the boundary.  Along  fixed  impermeable 
parts  of the tank,  equation  (2) becomes u  n  = 0 : no-flow  condition. 

On the free surface boundary,  the potential  satisfies  the non linear  kinematic  and dynamic 
boundary  conditions, 

^  = (5) 

where R is the position  vector on the free surface, P takes the value  of the surface pressure 
which  for  many  practical  purposes may be taken  as a constant,  p is the water  density  and 
g the acceleration  due to gravity. 

2.2 Dold  and  Peregrine 

This  code [4]  was used successfully  by the authors  to simulate  Case I  and II  wave groups 
1], which  made it  well  adapted for  the Banner  k Song study  of breaking  criterion.  They 

showed that non hnear  wave trains  can develop instability  and visualised  the phenomena 
of breaking  and recurrence.  The model can simulate  the beginning  of breaking,  until  the 
plunging  breaker  is clearly  visible.  Wave trains  of up to 10 waves can be simulated  over 
several hundred  wave periods. It  is based on Cauchy boundary  integral  theorem,  which 
is one type of BEM.  The general  scheme of this  code is similar  to the majority  of wave 
simulating  codes. 

Given  R and 0 at  the time  t  : 

•  Solve Laplace's equation  with  the bottom  condition  (j)n{x,y,-h,t)  = 0 to obtain 
= It  on the free surface. 

•  Calculate  ^  and ^  using  the free surface boundary  conditions  (4) and (5). 



8 

• By using these derivatives and an appropriate approximation, computing R and 0 
on the boundary at time t-{- dt. 

Taking the partial time derivative of (2) and (3), one finds that • • • also satisfy (2) 
and (3). Therefore, it is possible to apply Cauchy's theorem to temporal derivatives of (p. 
By differentiating, Bernouilli's equation in 5, this can lead to ^ and 
In DP's code, second order Taylor series expansion are used to calculate R{t + At) and 
(l){t  -f At). This enables larger time steps than a first order development for a given ac-
curacy, which reduces computational time. Tests carried on with this code showed that 
it was ten times faster than previous methods and less suffered from numerical instabili-
ties. Nevertheless, SB smoothed their profiles before the calculation of their growth rate 
parameter. 

2.3 Grilli et al 

Stephan Grilh and a number of researchers developed a three dimensional numerical model 
which can simulate non linear waves, up to overturning. One of its first succès was the 
breaking of a Tanaka sohtary wave over a sloping bottom (Figure 3). A few similar codes 
were implemented in the 90's, but they required smoothing in all circumstances (saw 
tooth instabilities developed). In particular Xue and Yue (1992) used a BEM to simulate 
non linear wave trains in infinite depth, and Boo et al's (1993) code was able to develop 
overturning. 

Grilh et al's model has several interesting features. The code can simulate deep to shallow 
water waves, over an arbitrary bottom topography. A large range of wave trains can be 
generated, and under suitable conditions, no smoothing of the solution is required thanks 
to an increased accuracy. An adaptative time step enables reduced numerical errors on 
mass and energy conservation. 

2.3.1 BEM 

Laplace's equation is transformed into a boundary integral equation (BIE), by using 
Green's second identity. Further technical explanations can be found in Appendix B. 

It involves the three-dimensional Green's function for the Laplace equation and its normal 
derivative: ^ ^ ^ ^ 

G{x, x') = -— and - ^ ( x , x') = ^ 47rr dn in r^ 
with r = \r\ = \x The position vector x and the reference point are both on the 
boundary r{t)  of the wave tank. 

Appropriate calculations lead to: 

a{x'mx') = - 4,{x)^{x,x')  ̂dV (6) 
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Figure  3: Breaking  of a solitary  wave over a cosh^ bottom,  presented [6 

in  which  a ( x ' ) = 0'/^'k  is a geometrical  coefficient,  with  6' the exterior  solid  angle around 
X. 

The boundary  conditions  are discretized  on the six faces of the tank.  r ( i )  is divided 
into  Â r  nodes on which  Mr  quadrilateral  elements are built.  The sides of the elements 
are not  straight  : another  discretization  occurs inside  the elements,  linked  together  by 
shape functions  (Figure  4). These functions  are polynomials  of the coordinates  (^,77) 
chosen to move inside  the element,  which  coefficients  are obtained  by writing  continuity 
relashionships  on both the position  and the potential  (p. 

Figure  4: Discretisation  of an element  of the boundary  and bidimensional  sphne shape 

functions  (taken  from  [6]) 

Extensive  2D testing  by Grilli  (1996) showed that  the most accurate results  were obtained 
by chosing 'cubic-spline-based  elements'  with  at  least  continuity  in  between elements. 
In  non-linear  cases such as wave simulation,  it  was found  more important  to have a 
continuity  of the derivatives,  than  use of higher  order  polynomials. 
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Orthogonal tangential unit vectors are calculated for each element. The normal vector 
is their cross product, with an assumed outward orientation. A curvilinear change of 
variable is incorporated, and the boundary integral equation (6) is transformed into an 
algebraic system. The solution of the system gives the potential and its normal derivatives 
on the boundary, which are required to pass on to the next time step. 

2.3.2 Time Step 

In numerical modelling, the choice of time step for a given spatial resolution is often 
difficult. A classic method consists of optimizing the conservation of mass and energy. To 
simulate non linear waves which steepness may vary raidly, the authors chose to update 
mesh and time step throughout computations. It was first implemented on the two-
dimensional model by Grilh et al (1996). They showed the existance of a value of the 
Courant number Co for which the errors on energy conservation were minimised. Then 
they selected adaptively the time step as 

A 
At = Co 

where A|r|min is the smallest distance between two nodes of the boundary at time t and 
h a characteristic depth. 

The same work was made in the 3D numerical tank, and the optimum value of CQ found 
by the authors was to be shghtly different. 

Once results at a given time step were available, the passage from i to Ai is obtained by 
second order Taylor series expansion, using total derivatives (mixed Eulerian Lagrangian 
formulation): 

R{t + At) = R{t) + ^{t)At + ^ ^ ( i ) + 0{Atf 

4>{t  + At) = m + ^{t)At + i ^ g ^ ( i ) + 0{At)^ 

• The first order coefficients are expressed as a function of 0 and V(l) using the free 
surface boundary conditions (equations 4 and 5). Then, the resolution of the BIE 
(6) gives (p and dcp/dn on the free surface. 

• The calculation of second order coefficients is made by taking the total derivative of 
equations (5) and (2). By doing so, ^ and can be expressed as functions of 
d(j)ldt and d^cjy/dtdn. Another BIE similar to the previous one is used to calculate 
these derivatives. The advantage of such a method is that the two BIE are solved 
at t time and so the nodes involved are the same : the resolution of the second BIE 
is a lot faster. Another alternative is to use Runge Kutta 4th order method, but it 
may lead to high wave numbers instabilities. 
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2.3.3 Wave  Tank 

A tank  picture  is shown in  Figure  5. A paddle and an absorbing  piston  have been im-

plemented  on left  and right  faces respectively.  The dimensions  of the tank  and resolution 

can be adjusted  to suit  the type of waves studied. 

Figure  5: Solitary  wave in  Grilh  et al's 3D numerical  wave tank.  Length  L = 19/io, depth 

h = ho and width  wq = 8/io, where ho is the reference length. 

Inputs  and outputs  values of numerical  models can be non-dimensionalised,  for  it  focuses 
on mathematical  aspects. To avoid confusion between dimensional  and non-dimensional 
variables  from  the codes, the following  convention  is introduced  : for  a physical  quantity  a, 
the non-dimensional  equivalent  is noted a'.  For  example in  DP and Grilh's  models, p'  = I 

and g' = I-  In  each case, a reference length  needs to be defined.  In  Grilh et al, it  is the 
depth  of the wave tank.  The strength  of this  code is the choice of an arbitrary  topography; 
consequently,  depth  is the key value.  On the contrary,  DP's code is more adequate to 
study  deep water  wave goups, thus  the carrier  wave length  was set the reference length. 

According  to Grilh et al [6],  the passage from  lengths  1' and times  t'  from  the code to 

physical  quantities  I  and t is given by: 

I 

he 
and t = t'  \/ho/g (7) 

where ho is a the reference length. 

When simulating  shallow  water  phenomena [7],  the depth  is set to /IQ  = 1. In  this  study 
of deep water  wave groups, a depth  in  the range [ho, 4/io] was chosen. 

Written  with  the numerical  tank  non-dimensional  quantities,  the dispersion  relation  is 

transformed: 

= gktanh(kh) 

LÜ /2 
/in 

= g—tanh{k'h')  ^  üü'^  = k'is.nh{k'h') 
ho 

(8) 



u 

The latter non-dimensional dispersion relation is used during the testing phase of the 
paddle, in which all the values are directly given from the code. Further explanations 
about the scaling relationhips (7) are given in Appendix A. A concrete application is 
shown in 3.3.2, where some results of the model are directly compared to experimental 
data (timeseries). 



13 

3 Case  III  Wave  Groups 

As discussed earlier,  this  study  was focussed on the Case III  wave groups, generated by 
a paddle. This  part  presents the group generation  and propagation,  as well  as a direct 
comparison  with  experience. 

3.1 Paddle  in  Grilli's  Code 

3.1.1 Numerical  Aspects 

The paddle facility  was previously  implemented  and tested in  Grilli's  two-dimensional  code 
as described in  [8]  and [9].  The paddle motion  Xp and normal  velocity  Up are specified at 
the boundary  and verify  the condition  : 

dd) 
For  X e paddle face ^(x)  = V(/)(x)  •  n = Up{xp{t),  t) •  n (9) 

C// L 

Wave generation  by wave makers  has posed stability  and accuracy problems  in  numerical 
codes using  BEM.  In  the present  study,  explosive instabilities  occurred at  the intersection 
between the free surface and the piston  wavemaker,  requiring  the use of the flap  wavemaker 
which  was found  more stable.  Sharp  instabilities  appeared at  the back of the wave group, 
increasing  with  time  (figures  10 and 12). They were not  observed during  physical  tank 
testing,  indicating  their  numerical  origin.  Griili  and Svedsen [10]  describe this  issue : since 
there  is no damping  in  the model, small  errors  can accumulate  with  time. 

The difficulties  at  the corners are caused by the existence of two different  boundary 
conditions  ( Dirichlet-Neumann  in  the wave maker  case ). To address this  problem  a 
double node representation  was implemented  : the points  at  the intersection  are given 
the same coordinates  and potential,  but  different  normal  vectors. Hence, these double 
points  have different  derivatives  dcp/dn  and d'^(l)/dndt,  which  are in  the boundary  integral 
equations.  Nonetheless,  they  were still  observed under  certain  conditions. 

GriUi  and Horrilo  [8],  insist  that  a small  acceleration  during  the first  time  steps was im-
portant  to reduce both of the starting  and time  growing  instabihties.  To do so a damping 
function  using  the tanh  function  was used by Agnon (SB) and Grilli.  Moreover,  the runs 
realised  showed the very  important  impact  of resolution  as regards  the stability  and the 
sharpness of the profiles. 

3.1.2 Sine  Paddle  Testing 

Grilli  et al's paddle in  the 3D code was able to create solitary  waves or regular  waves with 
the wavemaker.  During  this  study,  the code was up graded for  the Case III  wave group 
generation.  The first  step was the testing  of the wave maker  for  a periodic  (sinusoidal) 
motion. 

The equation  of the paddle motion  in  this  case is given by : 
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where ¡.L  = 2.035/To. Tdamp  = 2To denotes the duration  of the effect of the damping 
function,  and can be chosen in  the input  file  of the code. 

Paddle  notion 

Figure  6: Grilh's  paddle function,  with  amplitude  ^^  = 1, cĵ  = 1.78, T̂ amp  = 12.0. 

Results 

The values in  Table 1 are taken  from  the output  of the code, and are non dimensional. 
The comparison  between a and b aims at  showing  the influence  of piston-type.  In  runs  b 
and c different  values of amplitude  and frequency  are used and effects on the waves have 
been checked. 

Run A' f jp Paddle type t'max stabihty 

a 0.1 0.2 piston 19.4 X 

b 0.1 0.2 flap 30 

c 0.05 0.28 flap 30 7 

Table 1: Input  parameters  for  three  runs.  The length,  width  and depth  of the numerical  tank 
were set to L'  = 19., WQ ^  2, h'  = I,  with  respectively  40, 10 and 4 elements (low resolution). 
The paddle function  envelop is determined  by ==12 

From  the upper  left  panel  of Figure  7, an approximate  wave length  can be estimated  of 
A' 5.3 for  the first  wave crest. The non linear  dispersion  relation  (8) gives {u^y  = 
gk'ta,nh{kh)  = 1.16 = 0.17 which  is in  agreement  with  column  3 in  Table 1 and the 
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amplitudes of the waves are of the same order  of magnitude  as those of the paddle motion. 

The top right  panel  shows the instability  near  the piston.  Explosive  growth  occurs imme-
diately  after  this  time  step. 

The conclusions of this  testing  phase are the following  : 

•  From  the attempts  hsted in  appendix  A, one can deduce the following  ranges for  a 
correct  wave generation  with  a flap  paddle : 
Amplitude  0.01 < < 0.1, frequency  0.1 < fp < 0.3 0.6 < uj'p  < 1.9. 

•  The piston  paddle was found  to be less stable  and was only  cursorily  investigated. 
Subsequent investigations  showed that  < 0.05 and < 0.18 could produce 
plausible  results.  The main  reason for  this  appears to be the difference  of power 
between paddle types (the piston  being more powerful).  For  the depth  chosen {h'  = 
1), the piston  paddle produces shallow  water  waves. 

•  These results  were obtained  at  low resolution  (less than  6 points  per wave length). 
Subsequent testing  showed that  a higher  resolution  leads to a better  stability. 

Run a,  t'  =  16 

surf  ace 

8 5 18 15 

Run b,  t'  = 30 
surface 

Run a,  t'  =  19.4 

surf  ace 

18 15 28 

Run c t'  = 30 

x'  X' 

Figure  7: Examples  of surface profiles  examples for  runs  in  Table 1 
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3.2 Paddle  Motion  in  Case  III 

3.2.1 Conventional  Formulation 

In  SB computations  and BP experiments,  the paddle function  that  generates the Case III 
'chirped'  wave groups is defined  by: 

Xp{t)  = -0.25Aj tanh 
Nn 

+ 1 

*  sm LÜr t -
0.018 

/ 
1 — tanh 

\ 

A(üüpt - 2'kN) 

The sinusoidal  term  creates the waves of the group,  with  a decreasing frequency  governed 
by the t̂ .  This  makes the last  waves of the group faster,  favouring  a fast  energy conver-
gence. The first  part  of the expression determines  the amphtude  of the paddle motion 
(Ap), and the envelop of the group.  The length  of the envelop adjusts  to create N waves. 
The Unear  dispersion  relation  gives an estimate  of the frequency  ujp  from  which  a wave-
length  value  is derived.  SB made their  first  experiments  with  Â  = 5 and A = 2 m, which 
gives Up = 8.16 rad/s. 

Figure  8: Motion  of the paddle (m) used in  SB and BP studies  as a function  of time  (s), 
Ap = 0.05 meters,  ujp  = 8.16 rad/s and N = b. 

3.2.2 Motion  chosen  in  this  Study 

To make implementation  easier, the original  paddle function  (10) was simplified.  We kept 
the damping  envelop used in  Grilh's  code at  the beginning  of the paddle sinusoidal  motion 
(Figure  6, introduced  the f frequency  variation): 
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Then,  to determine  the number  of waves of the group,  Xstart  is multiphed  by the second 
part  of the damping  function  : 

Dend{t)  = 
tanh(//To)  + tanh(^(Tdown  + U - t)) 

1 + tanh(/x(i  - To)) 

Tdown is a new variable,  available  in  the input  file.  When t > Tdown,  this  second part 

of the damping  function  starts  decreasing and reaches zero at  time  t = Tdown  + ^damp  = 

Tdown + 2To as shown in  Figure  9. 

8.86 

e.B<4 

8.82 

8 

-8.02 

-8 .84 

-8 .86 

Figure  9: Left  panel,  plot  of the function  Xp(t)  = —1 *  Xgtartî )  *  T>end(i),  for  cUp = 8.16 Hz, 
Ap = 0.05 m, ^down"^-'^^-  These values were adjusted  to produce 5 waves. Xp is in 

m and time  in  s. The comparison  with  the original  paddle function  is shown in  the right  panel. 

The main  advantage  of this  function  is its  simpler  derivatives.  Another  benefit  is the 
abihty  to control  the steepness of the envelope through  the Tdamp  parameter.  The number 
of waves in  the group is determined  by the value  of Tdown,  d̂amp  and Up.  Even if  Tdown can 
be estimated  by 2t:N/ujp,  it  was found  necessary to check that  the motion  is satisfactory 
by plotting  the function  before incorporating  it  in  the code to ensure that  it  was rehable. 

Comparison  between this  new formulation  with  the conventional  function  (right  hand 

panel  of Figure  9) shows good agreement,  the major  differences  being a slightly  slower 

start  coupled with  a small  phase shift. 

3.3 Evolution  of  the  Wave  Group 

In  this  section, profiles  of the wave group at  fixed  time  (spatial  profile)  or fixed  position 

(time  series) are presented from  the outputs  of the models. Times series are customarily 

obtained  from  experiments,  as it  is hard  to monitor  the surface profile  along a 30 meter 

wave tank. 
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3.3.1 Temporal  Evolution 

After  the correct  implementation  of the paddle function,  the first  Case III  wave groups 
could be generated with  the same resolution  of around  6 points  for  a wave length.  The 
results  were noisy in  general,  and the waves quite  sharp.  It  was not  a problem  during  the 
testing  of the paddle as the runs  were short  in  time.  However,  following  the entire  wave 
group requires  long computations  and these sharp  profiles  can become unstable.  Classic 
solutions  are obtained  by increasing  the spatial  or temporal  resolution,  or decreasing 
amplitude. 

Several aspects prevented  rapid  resolution  of these issues: 

•  Resolution  along the x axis was found  to be difficult  to increase. For  a large  number 
of points  No:, the calculations  stopped after  a few time  steps. The size of the tank 
had an influence  too, as well  as the size of the cube delimiting  the numerical  domain 
and and the position  of its  center.  The authors  of the code recognized that  there 
can be some problems  with  regard  to the model resolution. 

•  The scaling  in  the code was not  well  understood  at  that  stage. 

The results  of two runs  showing  properties  of the non linear  wave group and the influence 
of resolution  are presented below. The reference length  was set to /ZQ = 1 m to give 
dimensional  results  that  responds to experimental  realities. 

Low  resolution 

The pictures  in  figure  10 were obtained  in  a tank  of L  = 35 m length  with 
elements on the x abscissa. The depth  was h = A m and width  wq = 2 m. The paddle 
function  parameters  were {Ap = 0.08 m, tOp  = 5.58 rad/s) and {Ap = 0.08 m, ujp  = 6.26 
rad/s) hence a linear  wave length  of A = 2 m, A = 1.6 m. However  the local wave length 
observed around  the carrier  wave is closer to 4 m. A = 3 m gives an average resolution  of 
8 points  for  a wave length. 

In  spite  of instabilities  and sharp  waves in  the profiles,  the alternance  of crest and troughs 
characteristic  of non linear  wave groups are well  reproduced in  Figure  10. The surface 
maximum  plotted  as a function  of time  (right  hand  panel)  underlines  this  0(2T) oscil-
lation.  In  (b) the frequency  of the paddle (and thus  the steepness of the waves) is too 
high  to get clear results  with  this  level  of resolution.  This  leads to code termination  at 
i/T=16.6.  The noise in  the surface maxima  comes from  the formation  of crests which 
have two peaks as seen on the surface profiles  of (b). The maximum  is alternatively  one 
of the peaks, creating  fast  oscillations.  In  both (a) and (b), the amphtude  of the waves is 
nearly  twice  the paddle's amplitude. 

The smoothed plots  in  Figure  11 show a difference  in  the general  evolution  of the wave 
group.  In  (a), a maximum  is reached at  t/T=17.3,  and then  the average curve starts  going 
down. In  (b), the surface maximum  is growing,  until  the steepness is too high  : surface 
rupture  is initiated.  The runs  can be interpreted  as cases of recurrence  (a) and breaking 
(b). In  the second run,  the initial  steepness is bigger  and the maximum  is reached more 
quickly. 
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Figure 10: (1) Case III  profiles (t/T=17.5, 18.2) and surfacc maxima for Ap = 0.08 m, T = 1.13 
s. The vertical  axis is the free surface elevation // in m. (2) idem as (a) with  Ap  = 0.08 m, 
T — 1.00 s and profiles at t/T =15.6, 16.4 (one time step before explosion). 
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Figure 11: Zoom on the surface maximum  temporal  evolution.  The smoothing was ob-
tained with  options acsphnes for (a) and bezier (b) in gnuplot. 
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Higher  Resolution 

To remove instabilities,  careful  observations  of the first  time  steps were made, near  the 
paddle. By using  a shorter  basin  of L  = 19 m , the resolution  could be increased and 
the profiles  were noticeably  smoothed during  the wave generation.  Hence, the spatial 
resolution  plays a leading  role, as expected. To keep the same resolution  and use a longer 
basin,  both of the length  and the number  of points  on the x axis were multiplied  by two. 
The same was made for  the cube size (the mathematical  domain,  which  must  contain  all 
the nodes) and the position  of its  centre.  The higher  resolution  wave tank  is 38 m long, 
2 m wide and 2 m deep. The number  of points  along the x axis is 200. For  an average 
wave length  of 3, one has 15 points  for  a wave length. 

The profiles  in  Figure  12 are smoother  and are closer to SB's as regards  the general 
aspect which  confirms  that  resolution  has a very  important  role. Panels (3) and (4) show 
the alternating  extrema  between crest and trough.  The resolution  did  not  solve all  the 
stability  problems  as several small  waves gradually  appear at  the back of the group,  and 
dominate  later  the group development.  Panel (5). 
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Figure  12: Higher  resolution  surface profiles,  obtained  with  ujp  = 5.58 rad/s, A G [2,4]  m, 
/i  = 2 m at  t/r=8.75,  9.8,  17.2. 



Surface maximum  (c) 
0.1 r 

a . B 8 

0.06 

0 . 0 4 

3 6 9 1 2 1 3 1 8 2 1 2 4 

tjT 

Surface maximum  (c) 

1 2 1 5 I B  2 1 2 4 

tjT 

21 
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Figure  13: Evolution  of the maximum  of the wave group and its  position  on the x axis. 

Figure  13 confirms  the oscillations  of the surface maximum.  The maxima  of these oscil-
lations  respond to a crest and the minima  to a trough.  Higher  resolution  and smaller 
amphtude  of the paddle (thus  steepness of the waves) enables to remove the noise seen in 
Figure  11. 

The position  of the maximum  also oscillates,  with  the same period  between 2 and 2.5T. 
The comparison  between the maximum  and its  position  shows that  a trough  is associated 
to a jump  back in  the position  of the maximum  : the maximum  goes from  one wave to the 
one just  behind.  Thus,  the 0{2T) period  is the duration  of the transition  of the surface 
maximum  to the next  wave. 

To conclude, a direct  visualisation  is shown in  Figure  14. The maximum  jumps  from  one 
wave to the next  between pictures  (6) and (8), which  show crests. The transition  between 
the two peaks is the trough  (7). Such a rotation  of waves in  the group is caused by the 
difference  between phase velocity  and group velocity.  Time  series visualisations  are the 
best way to check this  process. 
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(6) 
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(8) 

Figure  14: 3D illustrations  of a cycle of the wave group evolution,  obtained  with  the 

software  Paraview.  Values of w^  = 8.16 and Ap=0.08 m have been selected to make the 

waves more visible. 
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3.3.2 Time  Series 

In  real  tanks,  surface profiles  such as Figure  12 are impossible  to obtain  because of the 
length  of the wave group.  The visualisation  software  did  not  allow  the height  of the waves 
to be exaggerated to show the interesting  features.  Consequently,  experimentahsts  usually 
fix  X  instead  of fixing  t.  The free surface elevation  at  x  is measured as a function  of time, 
by using  a wave probe, or a laser  reflection  on the water.  The plots  obtained  are called 
time  series. 

Numerically,  this  method  is straight-forward  even if  the points  of the grid  move at  the 
passage of the wave, making  it  difficult  to fix  x. The error  on x  was found  the same order 
of magnitude  than  the discretisation  step on the x  axis, as shown on the displacement 
profile  example in  Figure  15. It  is similar  to measurements  made with  a floating  buoy. 
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Figure  15: Time  series example at  around  5 metres  from  the paddle, and the associated dis-
placement  of the measurement  point. 

A comparison  with  measurements  made by Tom Shand was made for  a five  wave group. 
The experimental  tank  was L = 30 m long and fihed  with  /i=0.43 m of still  water  depth, 
with  a paddle amplitude  of A^  = 0.05 m and a frequency  Up = 8.2 rad/s (/p=1.3 Hz). 
The paddle used at  WRL  was exponentially  curved,  which  is the best shape to generate 
deep water  groups as the fluid  particules  speeds profile  decrease exponentially  with  depth. 
(Figure  17). 

In  the attempt  to reproduce Song &  Banner  results,  a run  was performed  with  the fol-
lowing  non-dimensional  code parameters  : cĵ  ^  1.78, = 0.08 = 2 and L'  = 30. If 
we set the reference length  ĥ  to 0.46 m in  order  to have the same paddle frequency  as 
Shand's, relation  (7) gives Ap= 0.037 m, L  =13.8 m and h = 0.92 m. 

The two paddle functions  are compared as time  series obtained  from  the physical  and 
numerical  environments  in  Figure  16. 
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Figure  16: Comparison  between two time  series measured at  3 metres  from  the paddle. 
Vertical  axes are in  meters  and horizontal  axes in  second. The paddle functions  used in 
the code and the experiment  help the interpretation. 



25 

In  general,  the results  are quite  encouraging  but  two issues emerge from  this  comparison: 

1. The initial  phase shift  between the paddle functions  is approximatively  0.5 seconds, 
whereas the numerical  wave group seems to be detected 2 seconds after  the real  one. 

2. The highest  wave is in  third  position  on the numerical  series with  a 0.08 amphtude 
and in  fourth  position  with  a 0.06 amplitude  on the real  series. 

Part  of the explanation  of these problems  may lie  in  the differences  between wave makers 
(flap  and exponentially  curved),  and the paddle functions. 

3.3.3 Dispersion 

The comparison  between instantaneous  profiles  and time  series completes the descriptions 
of individual  wave progression  in  the group shown in  figure  14. Between 4 to 6 waves can 
be observed from  the spatial  profiles  (Figure  12) yet 8, 9 waves are detected by the probe, 
illustrating  the difference  between phase velocity  and group velocity. 

The hnear  dispersion  relation  gives Cg ^  c/2 in  deep water,  with  c the phase speed 
(calculation  in  Appendix  A). Consequently,  we should  theoretically  see twice  more waves 
on the timeseries  than  on the pictures,  which  can be observed. This  inherent  behaviour 
makes wave groups an excellent  way to understand  dispersion.  If  you do not  have access 
to a wave tank,  a way to visualise  it  is to carefully  observe the wave groups generated by 
a motor  boat. 

Prom figures  15 and 16 one can estimate  the group velocity  by looking,  for  example, at 
the speed of the first  wave. One finds  ĉ  ^  2m/(5.8 - 3.5)s ^̂  0.85 m/s, while  the linear 
phase speed for  A 2 in  deep water  is 1.77 m/s. This  gives a direct  check on these present 
results. 



26 

4 Recurrence and Breaking 

Song k Banner's breaking criterion is based on the behaviour of total energy density 
E { x , t ) , as detailed in the introduction. This quantity is made non-dimensional by using 
the local wave number /c(x, i), which reflects the geometry of the wave. The final non-
dimensional function used to study breaking and recurrence evolution is: 

( i { t ) = m a x \ E k ' ^ / p g ) 
X 

4.1 Energy Aspects 

4.1.1 Computation of Energy Density 

SB chose a local measurement of the wave energy. This is given by the sum of kinetic and 
potential energy of the fluid particles on the section x=constant at time t, divided by the 
surface area of the section (calculation in Appendix A). 

/

V I I 

(10) 

where u^v^ w are the x, y, z velocity components and h the still water depth. 

Consequently, the extraction of kinetic energy requires the speeds of fluid particles inside 
the domain, which is not trivial as the model used is a BEM. Green's theorem enables to 
calculate the velocity field from the boundary r(t), once the BIE is solved (appendix B) 

v { x i ) = J  ̂ - dV (11) 

Where Xi is the interior point and the function Q and its normal derivative are defined 
by: 

n 1 , d Q 1 /- , r \ 

Interior  speeds 

At each time step, a grid of interior points is generated. As the wave group is two-
dimensional, the grid was limited to the y = 0 section to reduce computational time. A 
sample of grid is plotted on figure 17. The points are set on fixed, equidistant columns. 
The code calculates the z component of the points at each time step in order to have 
equidistant points on the vertical axis. 150 vertical columns (named gauges) were chosen, 
with 10 equidistant points on each. 
To achieve this adapative generation, the code calculates carefully the intersection between 
the columns of points and the free surface cells (defined by the spline shape functions) at 
time t. For a complicated topography, the same work is made at the intersection with the 
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bottom.  In  the present  case, the bot tom  was flat  and the code had difficulties  converging 

to a 2; value  for  this  intersection,  by Newton  Raphson iterations.  Consequently,  this  option 

was deactivated  and these intersections  were set by hand  to (x = ?/ = 0, 2: = —h), where 

Xi  is the column  abscissa and h the still  water  depth. 

Once these points  are defined,  the code evaluates  their  distance  to the surface cells of 

T{t)  which  gives the Q function  and its  normal  derivative.  A loop on the boundary  cells 

calculates  the integral  giving  interior  speeds (equation  11) plotted  on Figure  17. 

The surface values of the speed are important  for  the evaluation  of kinetic  energy, but 

they  were not  given by the latter  method.  They were taken  from  the boundary  values, in 

the output  of the code. As the internal  and external  discretizations  are different,  surface 

speeds for  x = Xi^y  = 0 were linearly  interpolated  from  the two surrounding  surface node 

speeds. 
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Figure  17: Grid  of interior  points  and evolution  of u and w with  respect to depth.  The 

picture  is taken  from  a run  with  Ap = 0.08 m, Wp = 5.58 rad/s at  i / r ^ 8 . 4 1 .  The water 

depth  is 2 metres. 

The evolutions  of the u and w components gives further  information  about  the wave 

motion.  The maximum  speed obtained  is 1.25 m / s at  the top of the x = 7.1 m gauge. 

To give a comparison,  the linear  phase speed is 2.3 m / s around  this  point.  The speeds 

increase from  bot tom  to top exponentially,  which  agrees with  hnear  theory  results.  The 

variations  of ¿̂ with  respect to x is also interesting  : positive  at  crests, negative  in  troughs 
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and approaching zero in between. The rotation of the speeds on the picture confirms that 
on average, fluid particles do not move significantly during the passage of the wave : it is 
energy that is transported. 

Similar plots can be found in Fochesato et al [7 . 

Energy Density Calculat ion 

All  the required data to study energy is available : surface profiles and interior velocities. 
The potential energy density pe  =  ll2pgrf  is easily calculated from the free surface el-
evation; and the integration of v? + v^ uP' on the columns by the trapezoidal method 
leads to kinetic energy density [ke).  Then the total energy density (ie) is given by the sum. 

The difficulty came from the difference between the boundary and the interior as regards 
discretization. This problem has already been raised for the surface speeds estimation.in 
the last paragraph. Indeed, pe  values are available at the surface nodes, which move at 
the passage of the wave. On the contrary, interior points are fixed. As a result, pe  and 
ke are computed, but the sum calculation requires approximations. This was made once 
more with the simplest method possible : a linear interpolation of pe  at the gauges named 
peap.  That enables to caculate te  =  pcap  +  ke  at the interior resolution. Some results are 
shown on Figure 18 and discussed below. 

• The original pe  and its approximation pCap are similar, due to the relatively high 
resolution; and make sense with the surface profiles above. However the linear 
interpolation leads to an underestimation of the maximum. As ¡i is strongly linked 
to the maximum of ie, a correction of the pCap maximum is needed before the 
computation of te.  To do so, choice was made to replace the maximum of pCap by 
the maximum of pe. 

ke profiles are srnoother and wider than pe  profiles. The maximum oi  ke  is always 
smaller than the one of pe  and the position of the maxima are not necessary the 
same for the two kinds of energy. In the following subsection 4.1.2 we show that the 
surface under the ke  curves is bigger than under the pe  ones. 

The total energy density is the fundamental quantity of the SB investigations. It 
summarises the information on both of the boundary and the interior of the domain. 
The profiles aspects and the order of magnitude agree with Song & Banner's study. 
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Surface profiles (m), and potential,  kinetic  and total energy densities examples 
The run parameters are the same as for (figure  17). 
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Figure  19: pcmax as a function  of iCmax  •  Surface maxima  (in  m) are added to show trough 
and crests occurrence. 

PE  to  TE  Ratio 

In  the experimental  work  of Banner  &  Peirson,  the kinetic  energy could not  be measured. 
The maximum  of te necessary to compute ¡JL  was derived  from  the foUowing  property  of 
deep water  wave groups, found  by Song &  Banner  : the te maxima  responds to the pe 
maxima,  with  a 60% ratio  for  crest maxima.  Figure  19 shows that  it  is verified  on average, 
during  crests episodes (around  the local maxima  of the surface maxima  evolution).  This 
result  in  agreement  with  SB is encouraging. 

4.1.2 Energy  Conservation 

Classically,  mass and energy conservation  provide  a global  assessment of numerical  mod-
els accuracy. In  Grilh's  code, the relation  between spatial  and temporal  discretisation 
(Courant  number)  has been chosen in  order  to minimise  errors  on conservation.  Ener-
gies in  the computational  domain  are calculated  from  the boundary,  by the first  Green's 
identity  (Appendix  B) : 

ep{t) = pgf zdQ=l-pg  1 z\e^-n)dT 
Jnit)  ^  ^r(i) 

(12) 

(13) 

In  the present  study  of Case III  wave groups, the wave tank  is not  an isolated  system. 

The wave maker  tranfers  its  energy to the waves and the absorbing  piston  tends to evac-

uate energy. Total  energy gives then  more information  than  an evaluation  of numerical 

accuracy. 
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Integrals  (12) and (13) calculation  are carefully  computed in  Grilli's  code. A Gauss-
Legendre quadrature  method  is used. In  particular,  the shape functions  are considered 
and specific care is taken  at  the corner  elements [6 . 

The integration  of 2D energy densities  presented in  the paragraph  4.1.1 on the compu-
tational  domain  is an other  method  to evaluate  total  energies. This  was made with  the 
trapezoidal  method,  and by considering  that  the profiles  are perfectly  two-dimensional: 

PLO 

Etot{t)  = woh /  E{x, t) dx 
Jo 

(14) 

where the density  E(x,t)  is defined  in  equation  (10). 

Figure  20 shows the time  evolution  of total  energies. The wave maker  input  is clearly 
visible,  until  it  stops (at  i/T==6.66,  theoretically).  Then energies are globally  conserved 
before the activation  of the absorbing  piston.  The plots  also show the difference  of accu-
racy between the numerical  integration  techniques.  The error  is bigger  on kinetic  energy, 
which  can be explained  by the two trapezoidal  integrations  performed,  and the approxi-
mation  of surface speeds in  energy density  calculation.  The noise observed on (b) responds 
to crest phases in  the 0{2T) oscillations.  This  is avoided in  (a) due to the accuracy of 
the method. 

The global  conservation  is satifactory. 

(a) Gauss method (b) Trapezoid  method 
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Figure  20: Total  kinetic  and potential  energies, in  10̂  J 

4.2 Breaking  Case 

4.2.1 Threshold 

The previous  discussion about  energy was made for  group recurrence,  as shown by the 
evolution  of the surface maximum  with  time  on figure  19. The amplitude  of the paddle 
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motion  was then  increased slightly,  from  0.08 to 0.085 metres  and a breaking  case was 
obtained.  The threshold  amplitude  that  separates recurrence  from  breaking  is thus  in  the 
range between the two values. 

Usually  the quantity  used to characterise  wave groups is the initial  non-dimensional  steep-
ness a/co, with  a the amphtude  of the waves, and KO = 2TI/\Q  the initial  wave number. 
Steepness is easy to calculate  for  Case I  and Case II  groups, as the user fixes himself 
the initial  surface profile.  For  Case III,  which  is highly  non linear  from  the beginning, 
both of the amplitude  and wave number  fluctuate,  making  difficult  to determine  an initial 
steepness. 

The Song &  Banner  threshold  was between Ap=0.035 and 0.036m, which  is much smaller. 
This  can be explained  by the difference  of paddle type : their  piston  is more powerful. 
Another  source of potential  difference  lies in  the wave lengths  : even though  A' was indi-
cated as 2 by the dispersion  relashionship  (8), the profiles  on Figure  18 show wavelengths 
closer to 3m around  the main  wave of the group,  for  an unknown  reason. Thus  to have 
the steepness that  enables breaking,  a bigger  amplitude  is required.  Local wave length 
calculations  are presented in  subsection 4.3.1. 

An estimation  of the steepnesses from  the profiles,  just  after  the end of the paddle motion 
for  the marginally  recurrence  cases gives between 5o=0.4 and 0.45. These values are 
very  high  if  we compare to the classic values in  the articles,  which  are closer to 0.2. SB 
reports  akc = 0.27 for  the marginally  recurrence  case. Indeed,  Case III  initial  wave group 
steepness is quite  hard  to estimate  as the waves all  have different  sizes, and the initial 
time  is not  clearly  defined.  Here the amplitude  of the biggest waves of the group,  and 
the average wave length  of the well  defined  waves at  the centre of the group were used to 
characterise  group steepness. 

4.2.2 Peak 

The evolution  to breaking  can be seen on fig  21, with  a convergence of energy density 
towards  the local maximum  of the wave group. 

Figure  22 shows a zoom view of the peak, just  before numerial  instabilities  start  to affect 
the profile  seriously.  The beginning  of a jet  can be seen. The regridding  option  of the 
code should  be activated  to follow  the jet  evolution  further,  as shown in  Figure  3. 
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t/T = 8.76 t/T = 9.25 t/T = 9.79 

X X 

Figure 21: Surface profiles and total energy density for the marginally breaking case 
(^p=0.08 m) 

Figure 22: 3D paraview profile for t/T = 9.79. 
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4.3 /X  and S Development 

As stated  previously,  Song and Banner  proposed  and verified  that  the  mean growth  rate 
of  total  energy  to  the  surface  maximum  determines  breaking  or  recurrence.  When this 
quantity,  called  S in  introduction,  grows  bigger  than  the  threshold  1.5  10"^,  breaking  is 
inevitable. 

4.3.1 Methodology 

To  be independent  of  gravity  wave  scale,  total  energy  must  be made non-dimensional.  SB 
used the  local  wave  length  to  convert  te  into  the  function  s^ = te  ^ ^^¡99  where  s is  the 
steepness.  The  evolution  of  maximum  of  with  time,  called  ¡i(t)  in  introduction,  is  the 
non-dimensional  total  energy  maximum,  made non-dimensional. 

The  0 { 2 T )  oscillations  detailed  in  section  3 need  to  be filtered  prior  to  discuss  breaking 
and recurrence.  The  determining  information  lies  in  the  mean evolution  of  ji^  noted  {fĴ {t)). 
The  growth  rate  of  this  function  is  6,  which  maximum  non-dimensional  value  characterises 
recurrence  or  breaking. 

Consequently,  the  last  two  technical  difficulties  are  :(i)  expressing  the  local  wave  length 
X{x,t),  and the  associated  wave  number  k{x,t)\  (ii)  filtering  the  crest  trougth  oscillations 
to obtain  {/x},  its  temporal  derivative  is  then  obtained  by  centered  differences. 

The  local  wave  length  was  calculated  from  the  zero  crossing  in  the  surface  profiles.  At  a 
fixed  time  for  x  between  two  zeros  of  abscissa  Xi  and X2,  it  was  defined  as X{x,t)  = 
2(0:2  -  ^i)-  For  X outside  the  range  delimited  by  the  extreme  zeros  of  the  profile,  A  was 
set  to  the  length  of  the  basin  to  avoid  any  influence  on A  classic  dichotomy  method 
was used  to  detect  the  zeros. 

An attempt  to  refine  this  calculation  was  made by  using  the  x  derivative  of  the  phase 
function  computed  from  the  Hilbert  transform  of  the  free  surface  (SB's  technique).  As 
can be seen  on Figure  23,  the  results  are  reasonable,  but  a bit  noisy.  Further  processing 
would  have  been  necessary  to  obtain  suitable  wavenumbers  for  the  /x  development.  The 
zero  crossing  technique  was  found  more  rehable,  and accurate  enough  for  our  purposes. 
An example  is  shown  in  Figure  23. 

The  mean trend  of  the  oscillating  signal  fx{t)  is  obtained  as follows: 

1. detecting  the  local  maxima  and minima  of  fi  using  a fortran  program. 

2. fit  splines  for  the  sets  of  maximum  and minimum  points,  by  using  the  spline  function 

of  matlab. 

3. {fi)  is  the  average  of  these  two  signals. 

Figure  24  shows  an example  of  the  application. 
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Figure  23: Wave number  (m example for  a surface profile,  with  the comparison  of the 
two calculation  techniques. 

4.3.2 Results  and  Discussion 

As can be seen in  Figure  24, several difficulties  were encountered  while  trying  to recalculate 
SB's results. 

•  The biggest problem  is a fast  growing  ¡j, : only  two oscillations  separate the stop of 
the paddle and the maximum  of [i  in  the recurrence  case. In  SB's results  (Figure  2), 
they  were not  far  from  10. Besides, ô{t) is beyond the 1.5 10"^  threshold  : according 
to the criterion,  this  wave group should  break. 

•  There is considerable noise observed at  the wave peaks. Further  investigations 
showed that  it  was hnked  to ke. The relatively  low order  accuracy of the trapezoidal 
integration  method  might  be responsible  for  these oscillations  and a higher  order 
integration  method  should  be used. 

•  The initial  behaviour  of ô is significantly  between the breaking  and recurrence  cases. 
This  should  not  be the case and this  inconsistency  remains  to be resolved. 
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Figure  24: ¡2, {¡j) and S for  the recurrence  case and the breaking  case studied  previously, 
obtained  respectiviely  with  Ap = 0.08 m and 0.085 m. 6 is in  10"^.  The vertical  line  on 
both of the plots  refers  to the end of the paddle motion.  The horizontal  line  on the 6 
plots  refers  to SB's breaking  threshold  1.5 10"^. 
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5 Conclusion 

The three-dimensional  numerical  wave tank  was successfully  used to generate approxi-

mate Case III  wave groups. The main  properties  of deep water  non linear  group were 

observed: alternating  crest-trough  maxima  during  propagation,  fast  time  scale oscilla-

tions  and consistent  wave/energy propagation  speeds. The phenomena of breaking  and 

recurrence  could be observed. 

Kinetic  and potential  energy densities  were computed. Their  ratio  is in  agreement  with 
Song &  Banner.  The integration  of these densities  on the computational  domain  gave 
consistent  results,  close to energies directly  computed in  the code. Total  energy density 
was obtained  due to a linear  interpolation  of pe. The convergence of total  energy density 
at  the energy maximum  was observed at  the onset of breaking.  An approximate  wave 
number  was obtained  with  the zero crossing method,  enabling  assessment of ¡i and 6 
behaviour. 

However,  the SB breaking  criterion  could not  be verified  because of the fast  growing 
nature  of these wave groups. The computed ¡jl  values were noisy due to the integrating 
approximations  used to determine  kinetic  energy density. 

The first  task  to continue  this  project  should  be the implementation  of an exact replica 
of the SB paddle function,  ke calculation  should  be refined  by increasing  the interior 
resolution  or refining  the numerical  integral  method  calculation. 

The breaking  criterion  investigations  can then  be pursued,  with  different  classes of groups 
and number  of waves, before starting  considering  three-dimensional  converging  groups. 
The numerical  model can generate such focusing groups using  the snake wave maker  (Fig-
ure 25). A significant  challenge will  be to generalize  the breaking  criterion  by considering 
3D energy fluxes  to the energy maximum.  The present  study  was a start  towards  this 
objective. 

The computational  time,  which  was of 2 days for  the higher  resolution  runs,  including 

interior  speed calculations,  is a potential  limiting  factor. 
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Figure 25: 3D converging wave group, produiced in [7] with a snake wave maker. 
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Appendix A 

Paddle Testing  : all cases investigated 

Run a' (m) (Hz) Paddle type At  (s) ^max Stabihty 

test 1 0 0.16 flap 0.05 10 V 
test 2 0.6 0 flap 0.05 10 x/ 

01 0.6 0.16 flap 0.05 10 y 
02 0.1 0.16 flap 0.05 10 y 
03 0.1 0.02 flap 0.05 10 V 
04 0.1 0.31 flap 0.05 10 v/ 
05 0.1 0.20 flap 0.05 18 y 
06 0.1 0.20 flap 0.2 20 y 

07 (a) 0.1 0.20 piston 0.005 19.4 X 

08 0.1 0.02 piston 0.005 20.2 v/ 
09 0.2 0.16 piston 0.005 7.8 X 

10 0.08 0.16 piston 0.005 21.4 X 

11 0.05 0.18 piston 0.005 0.5 X 

12 (b) 0.1 0.20 flap 0.005 30 V 
13 0.1 0.32 flap 0.005 10.3 X 

14 0.001 0.32 flap 0.005 30 

15 0.01 0.32 flap 0.005 30 y 
16 (c) 0.05 0.28 flap 0.005 30 

Table 2: Lists of all experiments carried out (by trial  and error). The goal was to have 
both stability  and several visible waves on the basin. Letters a ,b ,c refer to the examples 
considered in section 3.L Values are taken from the code, and obey the scaling described 
above. 

Scaling in  Grilli's  Code 

Inputs  and outputs  of Grilli's  code are non-dimensional,  with  the convention that the 
acceleration due to gravity  is The following  paragraph gives a bit more explanations 
about the scaling issue. 

The first  step is to choose the length unit  ho and the dimensions of the tank L', w'  and 

h' so as to reproduce the experimental tank. 

Example : Bill  Peirson's experiments were carried out in a flume of 30m length, 0.43m 
depth, and 0.6m depth. One can choose ho = 1 meter and L'  = 30, w'  = 0.6, h' = 0.43 in 
the input  file. 
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The conversion  from  non-dimensional  time  t'  to  the  physical  time  t in  seconds,  by  using 

p'  = 1 in  the  model  can  be deduced  from  Froude  scaling. 

The Froude  number  is  defined  by  F = 
y/gh 

where  c denotes  the  celerity  of the  flow  (the  phase  speed in  our  case), and  y / ^  is  the 

reference  speed for  gravity  flows.  As this  number  is  non-dimensional,  it  should  have  the 

same value  regardless  of the  unit  system.  This  gives 

^ ^  V W 
c v ^ 

As A = cT,  one can  derive  the  relation  between  t and  t'. 

TL VP A' V^ 

with  h/h'  = A/A'  = ho and  g' = I one finds  t = fy/ho/g  which  was  the  relation  used 

when  time  values  in  seconds  were  needed. 

Group  Velocity 

For  linear  gravity  waves,  the  group  velocity  is  given  by 

1 kh  \ 

2 sini 

In  the  case of this  study,  A 3,  and h = 2 hence  kh/smh{2kh)  ~ 10"®. lî ho = 1 m,  one 

has  c 2.6  m/s.  As a result,  the  relation  Cg = c/2  is  nearly  exact  in  our  case,  according 

to linear  theory. 

Calculation  : the  dispersion  relationship  is 

kh 
w  = gkta,nh{kh)  2ujdL0  = g dk tanh(A;/i)  + 

cosh^(/c/i) 

Using  Cg = dcj/d/c  and  c = w/k  one finds  equation  15. 

Energy  Densities 
The volumetric  kinetic  and  potential  energy  densities  at  x = (x,  y,  z), in  J/m^  are  given 

b y : 
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The total  energy in  section X = XQ is then  (in  J) 

-r]  rwo/2 

-h J wo/2 

which  gives the density  in  J/m^ 

/

r]  nwQ/2 

/  {Ck + ek)dzdy •h  Jwa/2 

Wq dx 2 2 2 

As we study  waves, the energy density  is chosen zero when the surface is fiat  (an energy 

is always  defined  according to a zero reference). This  explains  the suppression  of the h'̂  

term  in  the classical definition  of total  energy density  (equation  10). 



Appendix  B 

This  section gives details  about  Green's identities  and Green function,  in  order  to derive 
the boundary  integral  equation  and the formula  that  gives the interior  speeds. 

Green's  identities 

The mathematical  domain  is the wave tank  ^( i)  G R^.  dfl  = r{t)  is the boundary.  Let  0 
be the potential  (supposed with  a compact support)  and / a function  of The 
first  Green's identity  is an application  of the divergence theorem  to the function  / Acf). 

[ fA(i)dn=  [ 
Jci  Jn 

= [ V •  (/V(/))(¿n - [ V(t)-Vfdn 
Jn  Jn 

in  which  use is made of the property  V - ( / A )  = fV - A + A •  V / 

The divergence theorem  leads to the first  Green's identity 

[ f A ( l ) d n = i f V ^ - n d T - i v f - V ^ d n  (16) 
Jfi{t)  Jr  Jn 

The second Green identity  is needed to derive  the BIE.  It  is obtained  by using  the first 
identity  twice. 

= (17) 

where the normal  derivative  is defined  by df/dn  = V / •  n. 

3D Green's  Function 

By definition,  the Green's function  G{x, x') associated to the three  dimensional  Laplace's 

equation  verifies 
AG(x, x') = -6{x - x') with  (x, x') e R^ 

As is a distribution,  G must  be defined  by a distribution.  In  this  section, the expressions 
of G and its  derivatives  are given and explained.  To do so, the following  brief  reminders 
about  distributions  are required. 



^ 

Distributions 

Let  0 be a function  of having  a compact support,  and / a function  in 
The distribution  Tf  associated with  the / function  is defined  by 

<Tf,(P>=  [ f{x)(l){x)dx 

The Dirac  distribution  ô is defined  by 

It  can also be centered in  an arbitrary  point  x' 

Physicists  often consider 5 as a function  and use T^'  by writing  the relation 

/  6{x - x')(l){x)dx  = (l){x^) 

For  a distribution  T, one calls daT  the distribution  that  verifies  : 

where d"" represents  various  partial  derivatives. 

Expression  of G 

G is derived  from  the following  proposal : 

-A(T,_, - i )=47r(5o  (18) 

Consequently,  the 3D Green's function  for  Laplace's equation  is 

Gix,  x') = in  which  r  = \x  - x^ 
^  Anr 

An example, taken  from  Laurent  Desvilette^'s  course on distributions  : 

To have equation  18, we show the following  result  : 

< - A !,<?!)) > = 47r  < 00,(1) > = 47r0o 

with  (j) a test  function  of with  a compact support. 

2Centre de Mathématiques  et leurs  applications, ENS de Cachan 
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The calculations  are made in  5(0, e)̂  in  order  to avoid the singularity  around  x 
Then the limit  e -> 0 is taken,  x is noted x, to make the expressions lighter.  n{x) = 
denotes the exterior  normal  to 5(0, e)̂ . 

= / \x\-^/\^{x)dx-{-0{e^) 
JBiQ.tY 

= /  V{\x\-^)V(l){x)dx-  [ \x\-''V(l){x)-n{x)da{x)  + 0{€^) 
JBiS),cY  Js{0,e) 

= /  -\x\-^x-V(t){x)dx-  /  \x\-^x-n{x)(/){x)da{x)  + 0{6) 
Js(O.e) 

= 0. 
X 

1̂1 

X 

= € 

da{x) 4 - 0 { e ) 

e-''(l>{ye)da{y)-^0{e) 

JS{0,e) 

2 f ^-2 

5(0,e) 

= 47r0(O) + 0(e) 

Derivatives 

In  the boundary  integral  equations,  use is made of the normal  derivative  of the Green 
function 

dG. .. 1 r  •  n 
\ x , x )  = 

dn 47r  r^ 

Detailed  calculation  : 

dn 
( x , x') = V G - n = - — V f - 1 •  ^ 

47r  \ r / 

\rJ  or \rJ  r 

which  gives the result. 

The interior  speeds integral  expression uses the function  Q and its  normal  derivatives 
with  the expressions : 

= and ^ ^ 
47r  r^ dn Anr^ 

1 / o f 
n — Sr  •  n— 

The detailed  calculation  gives : 

dn 

( V(Q,) - n \ 

gradQ](n)  = ^{Qy)  •  n 
\  V ( 0 , ) •  n y 
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. / 1 - 3xVr2 \ 

\  —Zxzjr^ 

By developping  similar  expressions for Qy and one can find  back the result above. 

BIE and interior  speeds 
The second Green's identity  17 written  with  f = G and (p the potential  gives 

[ {GA(t>-<pAG)dn= [ f c ^ - ^ ^ V r 
Jxen{t) Jr \  on dn J 

In the water wave problem = 0, and we defined the Green function  has 

AG{x-x')  = -5[x-x'). 

This gives the boundary  integral  equation (6), without  the geometrical coefficients a 
(further  work  is required to derive them) : 

4>{x') = ^ ^Gix, x'}^ix)  - 'P{x)^ix,  x')|  dr 

in which  both of x and x^ are on the boundary. 

Once the values on the boundary  are calculated at t time, the speed of the interior  points 
Xi is obtained using the latter equation. 

v{xi) = 

which  gives the final  expression 

vixi)  = - dT 
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