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Abstract

Speed-accuracy tradeoffs, velocity profiles, and physiological tremor are fundamen-

tal characteristics of human movement. The principles underlying these phenomena

have long attracted major interest and controversy. Each is well established experi-

mentally but as yet they have no common theoretical basis. It is proposed that these

three phenomena occur as the direct consequence of a movement response planning

system that acts as an intermittent optimal controller operating at discrete intervals

of ∼100 ms. The BUMP model of response planning describes such a system. It

forms the kernel of adaptive model theory which defines, in computational terms, a

basic unit of motor production or BUMP. Each BUMP consists of three processes:

(i) analysing sensory information, (ii) planning a desired optimal response, and

(iii) executing that response. These processes operate in parallel across successive

sequential BUMPs. The response planning process requires a discrete time inter-

val in which to generate a minimum acceleration trajectory of variable duration,

or horizon, to connect the actual response with the predicted future state of the

target and compensate for executional error. BUMP model simulation studies show

that intermittent adaptive optimal control employing two extremes of variable hori-

zon predictive control reproduces almost exactly findings from several authoritative

human experiments. On the one extreme, simulating spatially-constrained move-

ments, a receding horizon strategy results in a logarithmic speed-accuracy tradeoff

and accompanying asymmetrical velocity profiles. On the other extreme, simulat-

ing temporally-constrained movements, a fixed horizon strategy results in a linear

speed-accuracy tradeoff and accompanying symmetrical velocity profiles. Further-

more, simulating ramp movements, a receding horizon strategy closely reproduces
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experimental observations of 10 Hz physiological tremor. A 100 ms planning inter-

val yields waveforms and power spectra equivalent to those of joint-angle, angular

velocity and electromyogram signals recorded for several speeds, directions, and

skill levels of finger movement. While other models of response planning account

for one or other set of experimentally observed features of speed-accuracy tradeoffs,

velocity profiles, and physiological tremor, none accounts for all three. The BUMP

model succeeds in explaining these disparate movement phenomena within a single

framework, strengthening this approach as the foundation for a unified theory of

motor control and planning.
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Chapter 1

Introduction

1.1 Motivation

Computational models are an important tool for investigating human movements.

Movement phenomena such as speed-accuracy tradeoffs, velocity profiles, and phys-

iological tremor may be successfully reproduced by a model, however, in order not

to be a mere line-fitting tool, the model must also be biologically feasible. If not

contradicted by any physiological or anatomical facts or well-established experimen-

tal findings, the model is realistic and constitutes hypotheses of how human motor

control is achieved. Predictions from the model can be compared with data from

existing experiments or spawn the design and undertaking of new experiments. A

match between model predictions and experimental data strengthens the model and

its hypotheses, whereas a mismatch can be equally valuable, as one, or several, of

the hypotheses represented by the model can be rejected.

The principles underlying speed-accuracy tradeoffs in aimed movement have

attracted major interest and controversy both experimentally and theoretically for

over a century. The two most prominent tradeoffs reported are the linear speed-

accuracy tradeoff (Schmidt, Zelaznik, Hawkins, Frank, & Quinns, 1979) and the

logarithmic speed-accuracy tradeoff known as Fitts’ law (Fitts, 1954). While Fitts’

law holds for movements emphasising spatial accuracy, the linear tradeoff occurs

for movements emphasising both spatial and temporal accuracy. Typically, the first

kind of movements produces asymmetrical velocity profiles, whereas the latter kind

produces symmetrical velocity profiles (see Section 3.1 for a review).
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Another fundamental characteristic of motor control is the phenomenon of phys-

iological tremor. Under a variety of conditions, including rest, posture, and mo-

tion, any healthy person exhibits unintentional, small amplitude oscillations of body

parts. While it is commonly accepted that physiological tremor consists of a passive

mechanical-reflex component and an active central-neurogenic component, details

such as topography, mechanism, and functional significance of a centrally originat-

ing network driving the oscillations are still under debate (see Section 4.1 for a

review).

Any comprehensive theoretical model of movement control must be able to

account for these well-established experimental results. The model presented in

this thesis does exactly this. Conducting two simulation studies, one related to

speed-accuracy tradeoffs and velocity profiles, and the other related to physiolog-

ical tremor, it is shown that the BUMP1 model of response planning is able to

successfully reproduce and account for these phenomena. Uniquely, it provides a

unifying theoretical bridge between seemingly disparate phenomena of human mo-

tor control.

1.2 The BUMP model of response planning

The BUMP model is a comprehensive, discrete-time computational model of re-

sponse planning. The model can be considered the kernel of the larger coherent

theoretical framework of adaptive model theory (AMT), a neuroengineering ac-

count of human movement control (Neilson, Neilson, & O’Dwyer, 1992).

Based on a meld of adaptive control theory and neuroscience, AMT addresses

major issues in human movement science, including those of intermittency, redun-

dancy, resources and nonlinear interactions (see Neilson & Neilson, 2005b, for re-

view). The theory sets out a three-stage account of the information processing

required for sensory analysis, response planning, and response execution and pro-

vides explicit biologically-feasible neural network implementations for each stage.

It is therefore readily testable by comparing computational results from simulations

1Basic Unit of Motor Production
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based on these networks with experimental observations from behavioural studies.

In particular it has accounted for a variety of phenomena observed in the continu-

ous movements of human tracking behaviour (Neilson, Neilson, & O’Dwyer, 1995),

from whence the theory emerged. But it would seem to be equally applicable to

discrete movement tasks where error correction and prediction are also known to

be operative.

A key part of AMT is variable horizon predictive control. The theory posits a

basic unit of motor production (BUMP), which is determined by an intermittently

operating response planning system. At fixed intervals of time, sensory information

about the position and velocity of the actual response as well as the predicted

future state of the target is passed to the response planning system, which in turn

generates an optimal response trajectory to reach the predicted future state of the

target and to compensate for executional error. The ability to vary the duration, or

prediction horizon, of each optimal trajectory gives rise to the concept of variable

horizon predictive control. Thus, overall movement is seen as being comprised of

one or several concatenated submovements, or BUMPs, each generated with its own

prediction horizon.

1.3 Aim and hypothesis

The aim of this thesis is to develop and validate, by means of simulation, a response

planning hypothesis that unifies and accurately predicts speed-accuracy tradeoffs,

velocity profiles, and physiological tremor. This hypothesis is the foundation for

the BUMP model.

It is proposed that the combination of signal-dependent noise in the nervous

system and variable horizon predictive control accounts for speed-accuracy tradeoffs

and velocity profiles of aimed movements. Specifically, this thesis examines the

ability of a simulated implementation of the BUMP model to reproduce the well-

known speed-accuracy results from studies of discrete movement along with the

velocity profile findings from similar work. Theoretical accounts of these phenomena

exist and will be discussed but to date there appears to be none that explicitly unifies

3



both sets of results by placing them within a broader account of response planning

and control.

Furthermore, it is hypothesised that physiological tremor occurs as a direct

result of intermittent response planning, where each cycle of tremor corresponds

to a single BUMP. Specifically, this thesis investigates whether the BUMP model

simulator is able to reproduce the 10 Hz physiological tremor observed in studies

of slow finger movements.

1.4 Thesis outline

In addition to Chapter 1 (this chapter), which details motivation, the BUMP model,

aim and hypothesis, and thesis outline, this thesis is divided into four other chap-

ters. Chapter 2 begins by presenting the origin of adaptive model theory and models

of motor control that have influenced the development of the BUMP model. The

chapter proceeds with an overview of the BUMP model, with particular attention

given to the concepts of optimal trajectory generation, variable horizon predictive

control, and noise in the motor system. Chapter 3 and 4 are devoted to the two

simulation studies upon which this thesis is based. Chapter 3 presents a simu-

lation study of speed-accuracy tradeoffs and velocity profiles in aimed movement

whereas Chapter 4 presents a simulation study of 10 Hz physiological tremor dur-

ing ramp movements. Both chapters contain a review of the relevant literature,

experimental method, results, conclusions, and discussion. The thesis is concluded

with Chapter 5, which contains a general discussion including comparison with

other models, challenges from experiment, modelling issues, some implications of

the BUMP model, and concluding remarks.

4



Chapter 2

The BUMP model of response planning

While papers have been published based on the AMT framework for more than 30

years, the first paper that describes the BUMP model of response planning under

that title appeared just recently and presented the results from the study in Chap-

ter 3 (Bye & Neilson, 2008). However, much of the theoretical background material

presented below has appeared in earlier papers that are cited where appropriate.

The remaining material is based on knowledge and hypotheses accumulated over

many years and was most recently summarised in an unpublished manuscript by

Neilson (2000). The aim of this chapter is to clarify, correct, and to a minor degree

extend the material where necessary. The end result is a detailed description of the

BUMP model that represents the most up-to-date view of AMT and its response

planning hypotheses. It should be noted that the theoretical aspects of the BUMP

model most relevant for the studies in this thesis are presented in Chapter 3.2, in

which some mathematical derivations and corresponding predictions of the BUMP

model have been extended.

2.1 The origin of adaptive model theory

The perceptual-motor loop is the major feedback loop involved in the control of

purposive movement. Adaptive model theory (AMT) is a computational theory

about information processing within this loop (e.g., Neilson, 1993; Neilson & Neil-

son, 1999, 2001, 2005b; Neilson, Neilson, & O’Dwyer, 1988a; Neilson et al., 1992,

1995; Neilson, Neilson, & O’Dwyer, 1997). Its purpose is to understand the neural

5



mechanisms of sensory-motor control to the extent that they can be reproduced in

computer simulations and robotic systems. AMT aims to provide a comprehensive

account of the feedforward and feedback control systems employed by the central

nervous system (CNS) during control of movement. The theory was developed pri-

marily to account for the behaviour of subjects performing visual tracking tasks

but has proven equally applicable to discrete movement tasks where error correc-

tion and prediction are also known to be operative. In fact, AMT hypothesises that

the same central processes are involved in the control of all purposive movements,

including self-paced movements.

According to Abernethy & Sparrow (1992), research in motor behaviour has

typically been inspired by one or more of the following four major theoretical po-

sitions: The closed-loop theory (Adams, 1971), motor programming and schema

theories (e.g., Henry & Rogers, 1960; Keele, 1968; Schmidt, 1975), the asymmetric

impulse-variability theory (Schmidt et al., 1979) and its symmetric modification

(Meyer, Smith, & Wright, 1982), all of which belong to the movement systems

approach, and dynamical oscillatory theories (e.g., Kelso, Holt, Rubin, & Kugler,

1981; Kugler, Kelso, & Turvey, 1982; Kugler & Turvey, 1987), which belong to the

action systems approach. In the movement systems approach, movement kinemat-

ics are represented centrally, for example in the form of a motor program, schema,

plan, or any other form. In the action systems approach, however, no such central

representation exists. Rather, movements are an emergent property of the nonlin-

ear dynamics of the motor system. While AMT has its origins in the mathematical

theories of signals and systems, and asserts the existence of central representations

involved in response planning and other information processing strategies, it nev-

ertheless reconciles many aspects of the theories mentioned above. In what follows

next, the reconciliation with each of these four theoretical positions will be pre-

sented.
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2.1.1 Closed-loop theory

While the idea that continuous feedback plays a role during control of movement

was voiced at least as early as the turn of the previous century (Woodworth, 1899),

the first consolidated theory involving feedback in both learning and control was

provided by Adams (1971). Based on engineering principles and consistent with

pre-existing knowledge on the role of feedback in learning and performance (e.g.,

Adams, 1968), the theory proposed that movement was controlled by continuous

comparison between afferent information and a set of “sensory consequences” stored

in memory from previous successful movements. Closed-loop theory explains many

of the characteristics of human movements, with perhaps the best example being

the deterministic iterative-corrections model of Crossman & Goodeve (1983), which

successfully accounts for the logarithmic speed-accuracy tradeoff known as Fitts’

law (Fitts, 1954; Fitts & Peterson, 1964). Despite its success, the closed-loop theory

ultimately lost its position as a motor control paradigm because of its inability to

explain both the control of fast, ballistic movements with a duration less than the

feedback time (e.g., Schmidt, 1976) as well as the control of movements in the

complete absence of afferent information (Taub, 1976).

On the other hand, the notion of preplanning and open-loop control (Henry &

Rogers, 1960) has been challenged by the problems of storage and novelty (Schmidt,

1976) as well as by the difficulties in explaining the ongoing error corrections in

movements with long duration and slow velocity. AMT provides a unifying bridge

between these two opposing approaches by recognising that sensorimotor control

involves both feedback and feedforward control processes encompassing both pe-

ripheral and central processes operating interactively. As described in detail later

in this thesis, feedback control via the perceptual-motor loop is seen as being com-

prised of a sequence of 100 ms preplanned responses executed open-loop. However,

while one submovement is being executed, the next one is being planned. Thus,

within each submovement the control system operates open-loop but execution er-

rors are corrected by intermittent feedback operating with a reaction time delay.
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2.1.2 Motor programming and schema theories

Early open-loop control views argued that control of ballistic movements was per-

formed by the use of a set of pre-planned efferent commands executed open-loop,

that is, without afferent modifications (Abernethy & Sparrow, 1992). Henry &

Rogers (1960) formalised this centralised control model into their memory drum

theory, which later was superseded by the formalisation of the motor program by

Keele (1968) as the backbone of open-loop control. Perhaps most notable of the

anomalies of the motor program concept was the aforementioned storage and nov-

elty problems. According to Keele (1968), specific neural commands were stored in

the motor program. This gave rise to the storage problem, as it seems unrealistic, if

not impossible, for the human brain to be able to store every single neural command

necessary to generate any kind of movement. Moreover, it seems impossible to per-

form a novel movement without some feedback guidance, at least during learning.

This gave rise to the novelty problem. In addition to this pair of problems, the

motor program model as hypothesised by Keele (1968) suffered from a lack of ex-

planation of the continuous error correction observed in long duration, slow velocity

movements, in similar vein as closed-loop theory suffered from a lack of explanation

of short duration, ballistic movements where feedback does not have the time to

affect the response. As a consequence of these problems, motor behaviour research

was driven toward a hybrid model approach. The best know and most persistent

hybrid view is the schema theory of Schmidt (1975) and the parallel development

of the generalised motor program (Schmidt, 1976, 1985). In schema theory, task-

specific experience leads to the abstraction of the relationship between response

specification, sensory consequences, and movement outcome. These relationships

are stored in the control program and retrieved for execution of that particular

movement class. The generalised motor program view extends the schema theory

and argues that only those features of movement that are invariant over a range of

different task conditions are stored centrally.
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AMT incorporates similar ideas to schema theory and the generalised motor

program. The theory proposes (e.g., Neilson et al., 1992, 1995, 1997; Neilson &

Neilson, 2005b) that the nervous system includes distributed neural circuitry, most

likely involving subcortical pathways through parts of the basal ganglia and cere-

bellum, which can function as parallel arrays of self-tuning neural adaptive filter

circuits implementing the well-known least mean squares (LMS) algorithm (Widrow

& Stearns, 1985). This LMS module is repeated hundreds of thousands of times

within the cerebellar structure, with each module operating more or less indepen-

dently in parallel with each other (Neilson & Neilson, 2005b). It is known from

the signal processing literature (e.g., Widrow & Stearns, 1985; Haykin, 2002) that

within a few tenths of a second, say, adaptive filters can automatically tune the

parameters controlling their input-output dynamic relationships to form internal

models of the nonlinear dynamic relationships between signals. Similarly, the neural

adaptive filters hypothesised above can form internal models of the dynamic rela-

tionships between sensory-sensory, motor-motor, and sensory-motor signals. Once

formed, these internal models can be employed for a variety of functions within sen-

sory analysis systems, response execution systems, and even cognitive and response

planning systems.

Importantly, AMT argues that the parameters controlling the input-output

transmission characteristics of the adaptive filter circuits are represented centrally

in the form of patterns of electrical activity within the cortex which modulate the

basal ganglia and cerebellum circuits, probably via the substantia nigra and the

dopaminergic system in the case of the basal ganglia and via the inferior olive

climbing fibre system in the case of the cerebellum. Because of this, multiple slave

copies of each neural adaptive filter can be established in various functional systems.

Furthermore, the patterns of electrical activity can be stored into and retrieved from

long-term memory and, as a result, the nervous system can establish a repertoire

of internal models associated with previously learned skills. By retrieving these
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models from memory, the nervous system can switch quickly from one set of models

to another (Neilson et al., 1997; Neilson, Neilson, & O’Dwyer, 1998).

Moreover, AMT hypothesises that the neural adaptive filters are able to re-

move redundancy from incoming sensory signals and to extrapolate task-dependent

orthogonal sensory feature signals corresponding to the degrees of freedom of the

response being performed (Neilson, 1993; Neilson & Neilson, 2005b). It has been

demonstrated how neural adaptive filter circuits can function as a self-organising

synergy generator, or coordinative structure, able to transform central represen-

tations of motor commands encoded in terms of feature signals associated with

each degree of freedom of the response into the large number of highly intercor-

related motor commands required by individual motor units (Neilson & Neilson,

2005b,a). Furthermore, it is suggested that these neural circuits are able to form

internal models of both the forward and inverse dynamics of the multivariable non-

linear relationships between motor commands, muscle tensions, body movements

and sensory consequences (e.g., Neilson et al., 1992, 1997; Neilson & Neilson, 2001,

2005b). These models can function within a feedforward-feedback adaptive optimal

control system that assures that the responses actually executed match as closely

as possible the goal-oriented desired response trajectories generated centrally. Fi-

nally, AMT, like schema theory and the generalised motor program, has a learning

emphasis and a focus on acquisition of skills and development of motor control.

2.1.3 Impulse-variability theory

The impulse-variability model proposed by Schmidt et al. (1979), later termed the

asymmetric impulse-variability model by Meyer et al. (1982), was largely devel-

oped in an attempt to explain Fitts’ law by means of motor programming ideas.

However, it was the linear speed-accuracy tradeoff the model would end up explain-

ing successfully. The linear speed-accuracy tradeoff is observed in aimed movement

tasks when the subject is instructed not only to minimize endpoint error but also to

make the movement have a pre-specified duration (Schmidt et al., 1979; Meyer et al.,

1982; Wright & Meyer, 1983). By letting subjects perform such time-constrained
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aimed movements, Schmidt et al. (1979) found that their model was not particu-

larly accurate for slower movements of duration 200–500 ms. On the contrary, the

experimental results provided strong support for the model for fast movements with

movement times of less than 200 ms, suggesting that the model was limited to rapid,

preprogrammed movements without feedback error corrections. Thus, the model

complemented closed-loop models (e.g., Crossman & Goodeve, 1983) that success-

fully explained slow movements with ongoing error corrections but failed for rapid,

open-loop movements deprived of feedback. Theoretically, the asymmetric impulse-

variability model posits a direct relationship between the type of errors produced

in error tasks and the variability within the amplitude and duration of the initial

force impulse applied to a limb. It assumes that the standard deviation (variabil-

ity) of the amplitude of the force pulse and the standard deviation of the duration

of the force pulse are proportional to their respective mean values. Criticisms of

the theory are based on its oversimplification of actual movement dynamics as well

as violations of probability theory and misapplication of physical laws (see Meyer

et al., 1982). For example, Schmidt et al. (1979) assumed that the initial force-time

curve is a square wave pulse with variable amplitude and duration, whereas ac-

celerometer recordings show a more complex waveform that indicate that the forces

underlying acceleration and deceleration are closer to being sinusoidal than square

(Meyer et al., 1982). Furthermore, the asymmetric impulse-variability theory does

not take into account the influence of the deceleration phase of the movement on

the final placement error. Consequently, Meyer et al. (1982) developed a more re-

alistic version of the theory, naming it the symmetrical impulse-variability model,

indicating an inclusion of the deceleration phase of movements. This version of the

theory accounted for the linear speed-accuracy tradeoff in time-constrained move-

ments as well as other kinematic properties observed in fast movements (Meyer

et al., 1982; Meyer, Abrams, Kornblum, Wright, & Smith, 1988). Moreover, the

overlapping-impulse model (Meyer et al., 1982), an extension of the symmetrical
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impulse-variability model, hypothesised that aimed movements generated by a se-

ries of miniature overlapping force pulses also would satisfy Fitts’ law. AMT has

much in common with the overlapping-impulse model. Both try to bridge the-

ories concerned with speed-accuracy tradeoff in ballistic movements and theories

concerned with performance of slower or more complex movements, such as those

observed in pursuit or compensatory tracking.

2.1.4 Dynamical oscillatory theories

Whereas the theories discussed above all belong to the movement systems approach,

the dynamical oscillatory theories belong to the action systems approach. This ap-

proach, which is also called the emergent approach or direct approach, arose largely

out of the work of Kelso (1981); Kelso et al. (1981); Reed (1982); Kugler et al.

(1982); Kugler (1986); Kugler & Turvey (1987); Saltzman & Kelso (1987). Move-

ment kinematics are viewed as an emergent property of the underlying nonlinear

dynamics of the motor system rather than being represented centrally in a motor

program, plan, schema, or any other form. Thus, for any particular action, move-

ment kinematics should be understood in terms of the collective physical properties

of the functional muscle groups (Abernethy & Sparrow, 1992). Dynamical oscilla-

tory theories (e.g., Kelso et al., 1981) are based on the idea that the behaviour of the

motor system is that of an ensemble of limit cycle oscillators or periodic attractors.

They attempt to explain the selection of action categories and transitions between

different forms or phases of inter-limb coordination by using purely physical laws

(e.g., Kugler, 1986).

AMT incorporates most of the points of view in the action systems school of mo-

tor control and learning. Specifically, it takes into account the nonlinear dynamics

of the environment, of the body in interaction with the environment, of the biome-

chanical system and the neuromuscular system, and of the interactions between all

of these. The lower levels of control posited in AMT include reflex mechanisms,

postural responses, pattern generators, limit cycle oscillators, mass-spring attrac-

tors, self-organising coordinative structures, and all the emergent behaviour implied
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by these nonlinear processes. However, at higher levels, AMT postulates the ex-

istence of central, possibly distributed, representations of orthogonalised sensory

feature signals and of neural processes modulated by afferent input and memory

that transform basic drives into a hierarchical structure of long-term to short-term

goals. At the level of the most immediate sub-goal, the theory hypothesises cen-

tral mechanisms that generate desired response trajectories and initiate descending

commands that modulate the behaviour of lower level systems. It is exactly these

latter hypotheses about central representation of movement kinematics that cause

a philosophical rift with the protagonists of the action systems view.

2.2 Influential models of response planning

Before presenting the BUMP model of response planning, which lies at the core of

AMT, it is instructive to examine its theoretical origin. Two models with which the

BUMP model has a lot in common, namely the deterministic iterative-corrections

model (Crossman & Goodeve, 1983) and the stochastic optimised-submovements

model (Meyer et al., 1988), will be discussed next, including overviews, how these

models are able to account for speed-accuracy tradeoffs observed in human aimed

movements, and weaknesses of the models.

2.2.1 The deterministic iterative-corrections model

Whereas the logarithmic speed-accuracy tradeoff known as Fitts’ law (see Chap-

ter 3.1 for a review of speed-accuracy tradeoffs) originated in terms of information

theory (Fitts, 1954; Fitts & Peterson, 1964), it is possible to derive this logarithmic

relationship from feedback considerations. One of the most influential theories in

accounting for Fitts’ law by means of feedback has been the deterministic iterative-

corrections model of Crossman & Goodeve (1983) and elaborated subsequently1

by Keele (1968) and others (e.g., Meyer et al., 1982). The model assumes that

movements consist of a sequence of discrete submovements made on the basis of

1The work by Crossman & Goodeve (1983) was first published in 1963.
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sensory feedback. Each submovement travels a constant proportion p of the re-

maining distance to the centre of the target during a constant amount of time ∆T .

The submovement sequence ends when a submovement finishes inside the target

region, that is, for a target with width W , within a distance of
W

2
of the tar-

get centre. Crossman & Goodeve called their model deterministic because it does

not incorporate any variability due to stochastic noise in the neuromuscular sys-

tem. Using a derivation similar to that of Crossman & Goodeve (1983) and Keele

(1968), it can be shown that the aforementioned assumptions lead to a logarithmic

speed-accuracy tradeoff: Let D denote the total distance to the target, T = k∆T

the total movement time after k submovements, dk the distance moved during the

k-th submovement, and Wk the error or distance remaining to the target after k

submovements. Then we obtain

d1 = pD ⇒

W1 = (1 − p)D,

d2 = pW1 = p(1 − p)D ⇒

W2 = W1 − d2 = (1 − p)D − p(1 − p)D

= (1 − p)(1 − p)D = (1 − p)2D,

...

Wk = (1 − p)kD (2.1)

for the error Wk after k submovements. Rearranging, substituting k =
T

∆T
, and

taking logarithms on both sides, the expression for the movement time T after k

submovements becomes

T = ∆T log(1−p)

(

Wk

D

)

(2.2)

For direct correspondence with Fitts’ law, substitute p = 0.5 into Eq. 2.2, let ∆T = b

and the k-th error equal half the target width, that is, Wk =
W

2
, and apply some
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logarithmic properties2 to get

T = b log0.5

(

W/2

D

)

⇔ T = b log2

(

2D

W

)

(2.3)

Assuming that the time for the initial submovement differs from the other corrective

submovements by a constant a, which is a reasonable assumption considering that

the planning time for the first submovement is not part of the movement time, one

may write

T = (k − 1)∆T + (∆T + a) = k∆T + a = b log2

(

2D

W

)

+ a, (2.4)

which is identical to Fitts’ law (Eq. 3.1, p. 62). As noted by Keele (1968), letting

the duration of each submovement ∆T equal 100 ms gives an “information rate” of

10 bits/s, which is close to the estimate of Fitts (1954).

The deterministic iterative-corrections model was eventually rejected because

of empirical evidence against some of its key predictions. Not only can speed-

accuracy tradeoffs be non-logarithmic, for example in the case of temporally con-

strained movements, but in addition, it has been shown that a logarithmic tradeoff

can occur for movements containing only a single submovement and that submove-

ments do not have constant duration and do not travel a constant proportion of the

remaining distance. All of these findings contradict the predictions of the deter-

ministic iterative-corrections model and therefore led to its downfall (Meyer et al.,

1988; Meyer, Smith, Kornblum, Abrams, & Wright, 1990). Addressing these issues,

Meyer et al. (1988) developed the stochastic optimised-submovements model, which

is presented below.

2.2.2 The stochastic optimised-submovements model

The stochastic optimised-submovements model developed by Meyer et al. (1988)

discards the idea that submovements have a fixed duration and move a fixed pro-

2To change the base of a logarithmic function, use the theorem loga(x) = 1
logb(a) logb(x). Com-

bined with the identity loga(
x
y
) = −loga(

y

x
), Eq. 2.3 can be obtained. See Appendix A for proof

of the theorem.
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portion of the remaining distance to the target. It proposes that a movement begins

with a primary submovement programmed to hit the centre of the target region. If

the primary submovement ends within the target region, the movement is successful

and the action terminates. If, on the other hand, the primary submovement over-

shoots or undershoots the target region, a secondary corrective submovement based

on sensory feedback is made. Such an execution error is hypothesised to occur be-

cause of the presence of stochastic noise in the motor system, an idea that Crossman

& Goodeve (1983) rejected. Accepting the hypothesis of stochastic noise, spatial

variability will increase with movement velocity. Specifically, the model assumes

that the distribution of the k-th submovement endpoints have a standard deviation

Sk that is proportional to the average velocity Vk =
Dk

Tk

of the submovement:

Sk = KVk = K
Dk

Tk

, (2.5)

where Dk and Tk are the mean distance and the mean duration of the kth submove-

ment, respectively, and K is a positive constant.

Moreover, Meyer and colleagues suggested that the average velocities of the

submovements are programmed to minimise the average total movement duration

T . For presentation purposes, assume that no more than two submovements are

necessary to reach within the target region, although the model is by no means

limited to this number. The total movement duration then becomes T = T1 + T2,

where T1 and T2 denote the time of the primary and the secondary submovement,

respectively. Selection of T1 and T2 constitutes an optimal control problem: If the

primary submovement takes a long time, variability due to motor noise will be small,

yielding greater spatial accuracy at the expense of increasing the total movement

time. However, if the primary submovement is fast, the motor noise effect will cause

greater execution errors, thus increasing the secondary submovement duration and

hence, the overall movement duration. The stochastic optimised-submovements

model predicts that the average total movement time T can be closely approximated

16



by

T = a + b

√

D

W
, (2.6)

where a and b are constants, D is the distance to the target, and W is the target

width. Although Eq. 2.6 is not logarithmic, it still mimics Fitts’ law because

√

D

W

increases monotonically at a decreasing rate as
D

W
increases, and it even fits some

experimental data better than a logarithmic function does (Kv̊alseth, 1980). Fur-

thermore, the mean duration of the primary submovement T1 is predicted to mimic

Fitts’ law in the same fashion as do the average total movement time:

T1 = a1 + b1

√

D

W
(2.7)

Hence, the secondary submovement is given by the remaining movement time:

T2 = T − T1 = a2 + b2

√

D

W
, (2.8)

where a2 = a−a1 and b2 = b−b1 are positive constants. Assuming that motor noise

influences each submovement in the same fashion as for the primary and secondary

submovements and that the mean durations of submovements are programmed

to minimise the average total movement duration, the model can be extended to

incorporate more than two submovements. According to Meyer et al. (1990), the

average total movement time is then given by a quasi power function of the ratio

D

W
with an exponent of

1

k
:

T = ak + bk

(

D

W

)
1

k

, (2.9)

where k is the maximum number of submovements for a particular movement

task. Thus, the stochastic optimised-submovements model predicts a linear speed-

accuracy tradeoff (see Chapter 3.1.2) for a single submovement, with T increasingly
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approximating a logarithmic function as the number of submovements increases:

T
∣

∣

∣

k=1
= a1 + b1

D

W

T
∣

∣

∣

k=2
= a2 + b2

(

D

W

)
1

2

T
∣

∣

∣

k=3
= a3 + b3

(

D

W

)
1

3

...

lim
k→∞

T = a + b ln

(

D

W

)

In essence, the stochastic optimised-submovements model encompasses one extreme

case that implies Fitts’ law exactly (k → ∞), another extreme case that implies

a linear speed-accuracy tradeoff (k = 1), and intermediate cases that approximate

Fitts’ law to varying degrees (1 < k < ∞, k ∈ N).

Experimental data used to test the stochastic optimised-submovement model

depend on the use of peaks and troughs in the velocity and acceleration profiles to

detect the boundaries of submovements. However, such peaks and troughs do not

necessarily define response boundaries. In handwriting and drawing movements,

for instance, the tangential velocity varies linearly with the radius of curvature of

the movement (Viviani & Terzuolo, 1982; Lui, 1993). This implies that peaks and

troughs in the velocity and radius of curvature waveforms occur with the same

relative spacing regardless of the total drawing time. In other words, the radius

of curvature and velocity waveforms can be time-scaled, suggesting that variations

in velocity and acceleration are related to the geometry of the movement trajec-

tory rather than programming of submovements. Similar conclusions have been

reached from frame-by-frame analysis of video recordings of baby reaching move-

ments (Mathew & Cook, 1990). These observations cast doubt on the validity of

the movement parsing algorithms developed by Meyer et al. (1988) to measure du-

ration and extent of submovements, and consequently, undermine the experimental

basis of the stochastic optimised-submovements model.
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Another issue that is not addressed by the stochastic optimised-submovements

model is the problem of redundancy (Bernstein, 1967). Even if the initial and

final positions and velocities, the distance to the target, and the average velocity

of each response trajectory are specified, there still remains an infinite number of

possible response trajectories that would satisfy these specifications. The stochastic

optimised-submovements model does not make any predictions about how and when

the response trajectories are generated, nor their precise shape. AMT provides a

solution to the redundancy problem by suggesting that the CNS uses task-dependent

synergies to overcome this problem (see Neilson & Neilson, 2005b, for a review).

Finally, for each submovement, the stochastic optimised-submovements model

hypothesises that noise in the motor system causes the deviation from the centre of

the target, that is, the endpoint error, to be proportional to the average velocity of

the submovement. If the error is smaller than half the target width, the movement

has ended within the target region, and no further submovements are made. Oth-

erwise, another error-correcting submovement has to be made. However, the model

does not give any account of the time required by central processes to detect execu-

tion errors and to program and initiate corrective responses. Furthermore, because

no reaction time interval pauses are observed in the position or velocity profiles of

movements at submovement boundaries, it seems that the CNS is able to predict

the error at the end of each submovement based on sensory feedback acquired dur-

ing the early part of each submovement (see von Hofsten, 1980). The stochastic

optimised-submovements model does not suggest that such predictions may be in-

tegrated into the programming of submovements. In the following sections, this

and other issues will be dealt with within the theoretical framework of AMT. It

will be shown that an optimal trajectory generator central to the BUMP model is

capable of accounting for a wide range of experimental findings, including the log-

arithmic and the linear speed-accuracy tradeoffs and their associated asymmetrical

and symmetrical bell-shaped velocity profiles, the relationship between tangential

velocity and radius of curvature in three-dimensional movements, the isochrony
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principle, biphasic and triphasic bursts of electromyography (EMG) records during

fast movements, the psychological refractory period and the information processing

bottleneck, planning in terms of end-point trajectories, task-dependent coordinate

systems, motor synergies, optimisation of reaching movements and input-output

transfer characteristics in visual tracking.

2.3 Overview of the BUMP model

Both common experience and experiments (e.g., Woodworth, 1899) indicate that

human purposive movements can be corrected during the course of the movement.

This is clearly fundamental to the theoretical understanding of speed-accuracy phe-

nomena. This thesis takes a systems-oriented approach that dates back to World

War II and the development of tracking control theory. Craik (1947, 1948) showed

in his now famous papers that the human operator behaves like an error-correcting

servomechanism in tracking tasks. The importance of error correction, and hence

of feedback, was substantiated by Craik’s colleague Vince (1948) in discrete aimed

movements as well as in tracking tasks requiring continuous movement. This work

showed clearly that humans respond intermittently in movement control tasks.

Vince (1948) went on to suggest that there exists a psychological refractory pe-

riod (PRP) during which the CNS is occupied and cannot respond to an incoming

stimulus. This is supported by a wealth of results from discrete response, double

stimulus reaction time experiments (e.g., Telford, 1931; Vince, 1948; Welford, 1967,

1980; Karlin & Kestenbaum, 1968; Kantowitz, 1974; McLeod, 1977; Pashler, 1984,

1992) that identify an information-processing bottleneck that gives rise to the PRP.

It is now well understood from these findings that during a reaction time inter-

val, the CNS can plan an appropriate response to a stimulus while simultaneously

executing a response to a previous stimulus and detecting and storing in memory

a subsequent stimulus. Consequently, there must exist at least three processing

systems within the perceptual-motor loop that are able to operate independently

and in parallel, with interprocess communication via memory buffers. In AMT,

these systems are termed the sensory analysis (SA), response planning (RP), and
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response execution (RE) systems. Whereas detailed descriptions of the SA and RE

systems can be found elsewhere (e.g., Neilson et al., 1992, 1997; Neilson & Neilson,

2005b), this thesis hypothesises that speed-accuracy tradeoff, velocity profiles, and

physiological tremor all are movement phenomena explained by the BUMP model

of response planning. Therefore, this thesis will focus mainly on the RP system and

the processes of generating movement trajectories. Clearly, the planning of human

movement responses involves many levels of processing. Here, the main concern is

with the sensory-motor processes responsible for generating required trajectories as

specified by cognition, motivation, and the like.

In addition to the aforementioned movement phenomena, the BUMP model is

intended to account for behaviour of subjects in continuous-time visual tracking

tasks, and at the same time, be consistent with findings of experiments concerned

with self-paced movements, such as handwriting and reaching, and with findings of

discrete-response experiments, such as double stimulus reaction time studies. The

proposal for response planning put forward in the BUMP model has many elements

in common with the deterministic iterative-corrections model (Crossman & Good-

eve, 1983) and with the stochastic optimised-submovement model (Meyer et al.,

1988) presented in Chapter 2.2. With respect to the systems-oriented literature it

can be thought of as a discrete equivalent of the optimal control model of the hu-

man operator presented by Baron and colleagues (Baron & Kleinman, 1969; Baron,

Kleinman, & Levison, 1970; Kleinman, Baron, & Levison, 1970, 1971), who hy-

pothesised that the CNS acts as an optimal controller performing continuous error

correction. The AMT approach addresses several limitations in that model (Neil-

son & Neilson, 1999), with perhaps the greatest difference being the introduction

of intermittency.

The detailed description of the BUMP model have made the development of a

computer simulator using Matlab and Simulink software possible. For a variety of

visual tracking tasks, the behaviour of the simulator model matches that of human
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subjects. In the following, a qualitative description of the processes involved in

response planning and trajectory generation will be presented.

2.3.1 Planning in terms of sensory consequences

An important question in human movement science is whether response trajecto-

ries are planned with respect to kinematic or dynamic coordinates. Investigating

this question, Wolpert, Ghahramani, & Jordan (1995) conducted an experiment

involving point-to-point human arm movements. Their focus was on the minimum

jerk model (Hogan, 1984; Flash & Hogan, 1985) and the minimum torque change

model (Uno, Kawato, & Suzuki, 1989). Based on optimal control theory, both these

models involve the minimisation of a cost function. For the minimum jerk model,

the cost to be minimised is the first derivative of the Cartesian hand acceleration,

or jerk, and thus, the model is based on kinematics3. For the minimum torque

change model, the cost to be minimised is the first derivative of torque, or torque

change, and thus, the model is based on dynamics4. Both models predict symmetri-

cal bell-shaped velocity profiles, however, whereas the minimum jerk model predicts

straight trajectories, the minimum torque change model predicts trajectories that

vary across the workspace of the arm.

Using an adaptation paradigm, Wolpert et al. (1995) showed that these two

models lead to different predictions about the arm trajectories when subjects are

presented with a visual perturbation of the hand position. By altering the visual

feedback of the hand such that the perturbation is zero at both ends of the move-

ment and maximum at the midpoint, that is, the perceived straight-line trajectory

is curved, adaptation should cause the actual trajectory to curve in the opposite

direction if the trajectory is being planned in terms of kinematic coordinates, while

no adaptation should occur if the trajectory is being planned in terms of dynamic

3By kinematics we mean the properties of motion, involving variables such as the position of
joint angles or Cartesian hand coordinates and its derivatives.

4By dynamics we mean the forces required to produce motion given properties such as mass,
inertia, and stiffness. The variables of interest are for example joint torques, external forces, and
motor commands.
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coordinates. Indeed, increasing the perceived curvature in both sagittal5 and trans-

verse6 self-paced point-to-point arm movements resulted in significant corrective

adaptation in both cases. Furthermore, when reducing the perceived curvature of

transverse movements, which are already naturally curved, there was no significant

adaptation. In this case, adaptation should occur only if the desired trajectory is

curved and planned in kinematic coordinates. These results indicate that arm tra-

jectories are planned in visually based kinematic coordinates and that the desired

trajectory is a straight line in visual space. Wolpert et al. (1995) concluded that

the results are incompatible with models based purely on dynamics such as the

minimum torque change model and that spatial perception, as mediated by vision,

plays a fundamental role in trajectory planning.

The AMT view on trajectory generation is consistent with the conclusions made

by Wolpert et al. (1995). However, according to AMT, the desired trajectory is

planned in the same high level sensory feature code in which the response feedback

is encoded. The SA system is seen as being comprised of arrays of adaptive neural

filters that automatically tune themselves to form internal models of the nonlinear

dynamic relationships between sensory-sensory, sensory-motor, and motor-motor

signals. Thus, the SA system removes redundancy from the millions of highly in-

tercorrelated input signals and extracts a minimal set of orthogonal (independently

varying) sensory and motor feature signals. Mathematically, this process is analo-

gous to principal components analysis in statistics, or QR factorisation in matrix

algebra. The orthogonal feature signals provide a task-dependent coordinate sys-

tem that spans an M-dimensional vector space in which the desired response is

planned. Thus, M is equal to the number of degrees of freedom (DOF) in the

desired response.

5Wolpert et al. (1995) use “sagittal” to refer to movements made horizontally and in parallel
with a vertical plane (the sagittal plane) passing through the standing body from front to back.
Under non-perturbed conditions, this corresponds to moving a computer mouse such that its
cursor on the screen moves along the y-axis.

6Wolpert et al. (1995) use “transverse” to refer to movements made horizontally across the
body, that is, perpendicular to sagittal movements. Under non-perturbed conditions, this corre-
sponds to moving a computer mouse such that its cursor on the screen moves along the x-axis.
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The desired response7 is denoted R∗ and may be described as a vector of coor-

dinates R∗ = [R∗

1 R∗

2 . . . R∗

M ], where each coordinate R∗

i corresponds to a separate

DOF of the response and can be planned independently of, and in parallel with,

the others. A DOF in this context means a control DOF of movement, which is

different from a biomechanical DOF. In an arm movement, there may be 25 biome-

chanical DOFs involved, including movements/rotations of the scapula, shoulder,

elbow, forearm, wrist and fingers. However, by measuring all the 25 biomechanical

DOFs as time signals in a reach and grasp task, it has been shown that this move-

ment task only involve two independent control DOFs (Jeannerod, 1999; Smeets,

Brenner, & Biegstraaten, 2002). That is, the 25 biomechanical DOFs cannot all be

controlled independently (see Neilson & Neilson, 2005b, for details).

In the BUMP model, the coordinate system in which the R∗ trajectory is gen-

erated depends on the sensory consequences of the task. In a point-to-point arm

movement such as that employed in the experiment of Wolpert et al. (1995), the

desired response is being planned in terms of the trajectory of the endpoint of the

hand. However, AMT proposes that the RP system may equally well plan a re-

sponse to control the trajectory of the tip of the elbow, or the end of the nose,

through space and time. Moreover, when an aircraft pilot operates a joystick to

initiate a turn, the response is not planned in terms of the movement of the hand

gripping the joystick per se, but rather, in terms of the attitude of the aircraft

provided from sensory input, such as the the visual angle of the horizon or the

roll-angle display on the instrument panel.

2.3.2 Response execution

During response execution, the R∗ trajectory must be translated into appropriate

motor commands to activate lower level systems. According to AMT, these trans-

formations are achieved within the RE system by adaptive neural filter models

7Throughout this thesis, the desired response is generally denoted in boldface, R
∗. However,

to emphasise cases which involve only a single DOF, the desired response is denoted in nonbold
italics, R∗.
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of the appropriate inverse dynamics of the relationships between the motor com-

mands, muscle tensions, body movements, and other sensory consequences. There

is no more difficulty in translating a task-dependent R∗ trajectory into joint-angle

space, say, than the well-known kinematic problem of translating the trajectory

of the endpoint of the hand into joint-angle space. Indeed, an adaptive filter cir-

cuit able of modelling the input-output relationships of a multivariable nonlinear

dynamic system can also be employed for the simpler problem of modelling the

input-output relationships of a multivariable nonlinear algebraic, or kinematic, sys-

tem. Throughout this thesis it is important to keep in mind that the R∗ trajectory

is computed as an optimally smooth, minimum acceleration trajectory of desired

sensory consequences. Thus, if the load on the muscles is predominantly inertial,

the desired trajectory R∗ will correspond to a minimum force trajectory. However,

in generating the R∗ trajectory, it is not necessary for the RP system to take into

account the actual dynamics of the muscle control systems, biomechanical loads,

and external systems being controlled. Rather, this is a task for the RE system,

which utilises adaptive feedforward and feedback pathways for accurate modelling

of these dynamics. Assuming that the models are accurate, the RE system trans-

lates the R∗ trajectory into the appropriate motor commands required to achieve

it.

2.3.3 Minimum acceleration approach

Although there exist an infinite number of possible hand trajectories in human

aimed movements, studies show that humans tend to make movements along a

straight path with a single-peaked, bell-shaped velocity profile (e.g., Bernstein,

1967; Flash & Hogan, 1985; Uno et al., 1989). Such invariant characteristics in

human movements may be explained by adding extra constraints to the movement

task, thus limiting the number of possible trajectories. In optimal control, a cost

function is used for trajectory selection. The particular trajectory that minimises

some cost is selected, where the cost may be related to parameters such as movement

time, distance, velocity, energy, or acceleration (Nelson, 1983), rate of change of
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acceleration or jerk (Hogan, 1984; Flash & Hogan, 1985), or rate of change of

torque (Uno et al., 1989).

In agreement with Flash & Hogan (1985), AMT proposes that motor responses

are generally planned as optimally smooth trajectories. However, whereas Flash

& Hogan use a minimum jerk approach to generate such trajectories, AMT uses a

minimum acceleration approach. This choice does not dismiss the minimum jerk

approach; indeed, comparisons of minimum jerk and minimum acceleration trajec-

tories in reach-and-grasp and tracking simulations based on the AMT framework

using a stationary target (Gibson & Neilson, 1999; Jiang, Shen, & Neilson, 2002)

show only very small differences in position. Nevertheless, the reason for using min-

imum acceleration instead of minimum jerk is twofold. First, for a predominantly

inertial system like the arm and hand, minimising acceleration is equivalent to min-

imising energy. Proponents of AMT have previously discussed the importance of

minimum energy in motor control (O’Dwyer & Neilson, 2000; Neilson & Neilson,

1999). In line with the extensive review by Sparrow & Newell (1998), who provide

convincing evidence that performance of movement, and not just highly energy-

demanding tasks but everyday motor skills, is constrained by the imperative to

optimise the metabolic economy of movement, AMT suggests that creatures able

to minimise their metabolic energy demands have an evolutionary advantage (Jiang

et al., 2002). Second, AMT simulations of visual pursuit tracking (moving target)

have shown that minimum acceleration trajectories are noticeably smoother than

minimum jerk trajectories (Gibson & Neilson, 1999). This is due to the minimum

jerk trajectories requiring the additional, and more difficult, prediction of accel-

eration in the future state (Neilson, 1993). Finally, it should be noted that when

embedded in an intermittent response planning environment as presented here, min-

imisation of acceleration is not constrained by physics any more than minimisation

of jerk.
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2.3.4 Intermittency in trajectory generation

According to AMT, the processes of sensory analysis and response execution op-

erate continuously, their inputs and outputs streaming in real time. In contrast,

the response planning process operates on “chunks” of information. Via a mem-

ory buffer, the RP system receives the continuous output of the SA system as an

intermittent input of refined afferent and reafferent information. Likewise, via a

similar memory buffer, the RP system intermittently outputs a trajectory specifi-

cation. This concatenates with earlier specifications, overwriting any part not yet

executed, and thus provides continuous input to the RE system. Effectively, the

intermittency introduced by the RP process means that the SA-RP-RE sequence

proceeds in chunks. This leads to the concept of a Basic Unit of Motor Production

or BUMP (Neilson et al., 1992, 1995), hence the BUMP model of response planning.

Specifically, the BUMP model hypothesises that the SA, RP, and RE processing

systems operate independently and in parallel. Each BUMP corresponds to the

discrete operation of the RP system that requires a fixed and finite interval of time

in which to plan the trajectory for a future response. This planning is based on

the information available from the SA buffer at the beginning of that interval, and

the resulting trajectory is provided to the RE buffer at the end of that interval.

The process then repeats. Thus, all purposive movements are seen as comprised of

concatenated sequences of fixed duration submovements, where one submovement

is being executed while the next one is being generated in light of feedback from

the former submovement. A graphic representation of successive BUMPs is given

in Fig. 2.1. Importantly, it is hypothesised that the trajectory that is generated

during the fixed planning interval may have a time length considerably greater than

the planning interval itself. In other words, trajectories may be planned that will

run far into the future unless updated in a subsequent response planning interval.

A crucial part of this response planning hypothesis remains. AMT proposes

that response planning occurs in a sequence of fixed time intervals. How long might
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Figure 2.1: Basic unit of motor production (BUMP). During the response planning
interval RP1 of fixed duration Tp, the RP system generates a desired response tra-
jectory R1∗ based on sensory information available up to the end of the sensory
analysis interval SA1. At the end of RP1, R1∗ is stored in working memory, ready
for execution by the RE system. While the RE system executes R1∗ during the
interval RE1, the RP system plans the next desired response trajectory R2∗ in
parallel during the interval RP2, based on sensory information available up to the
end of SA2. At the end of RP2, the desired response trajectory R2∗ is written into
memory, overwriting the remainder of the desired response R1∗ not yet executed.
The RE system then executes R2∗ during RE2 while the RP system plans yet an-
other desired response trajectory during RP3. This process iterates, thus producing
a sequence of overlapping BUMPs as illustrated.

these intervals be? Since they intentionally introduce refractoriness and intermit-

tency into the AMT account of movement control, the corresponding behavioural

data are relevant, as are estimates of probable time constraints in the nervous sys-

tem. Estimates of time delay for proprioceptive feedback vary between 100 and

200 ms (van Beers, Haggard, & Wolpert, 2004). A similar range for visual feedback

processing in motor tasks is indicated by Schmidt & Lee (1999). According to Stark

(1968), the average refractory period for saccadic eye movements is 200 ms. Consis-

tent with these figures are the intermittency at a frequency around 10 Hz observed

in EMG activity and velocity profiles of slow finger movements (Vallbo & Wessberg,

1993). Recently, there has been shown a strong coherence between discontinuities at

6–9 Hz in finger movements and synchronised activity in cerebello-thalamo-cortical

loops (Gross et al., 2002). In fact, Gross et al. suggest coupling of activity in
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this 6–9 Hz range represents the neural mechanism for the intermittent control of

continuous movements. Moreover, an RP interval in the range of 100–200 ms is

consistent with average PRPs of 50–100 ms typically found in double stimulation

reaction time experiments (e.g., Telford, 1931; Vince, 1948; Welford, 1967, 1980;

Karlin & Kestenbaum, 1968; Kantowitz, 1974; McLeod, 1977; Pashler, 1984, 1992).

The choice of an RP interval in the 100–200 ms range in simulation studies

has yielded good agreement with results of visual tracking experiments (Neilson

et al., 1988a; Neilson, Neilson, & O’Dwyer, 1993; Neilson et al., 1995). It is also

consistent with work by Cathers, O’Dwyer, & Neilson (1996) which shows that the

upper limit of the visual tracking bandwidth is in the range 2.0–4.0 Hz. In light of

the above information, the RP interval Tp in the simulation experiments presented

in Chapter 3 and 4 is set to 100 ms.

2.3.5 Information processing bottleneck

Experiments of Welford (1967, 1980) and subsequently Pashler (1984, 1992) have

demonstrated the existence of an information processing bottleneck associated with

response selection. This phenomenon is related to the PRP observed in double stim-

ulus reaction time experiments. Pashler (1984, 1992) showed that the bottleneck

occurs after perceptual processing; manipulations that increase the time required

for perceptual processing of the second stimulus do not alter the PRP, whereas

manipulations that alter the time required for response selection do. It appears

that the RP system becomes unable, or refractory, to plan a response to a sub-

sequent stimulus until it has completed planning the first. The time the second

stimulus is being held in working memory by the SA system waiting for the RP

system to become available corresponds to the PRP. According to AMT, this in-

formation processing bottleneck is the most important single factor limiting the

performance of the perceptual-motor loop in visual tracking because it introduces

a central time delay that, together with transmission delays and movement times,

limits the bandwidth of visual tracking to 2.0–4.0 Hz. The only means available to

compensate for time delays within this loop is by anticipating the future position
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of the target, that is, by means of prediction. Investigations have shown that the

inherent predictability of stochastic target signals used in visual tracking is essen-

tially zero 300 ms ahead when the bandwidth of the spectrum of the signals exceeds

2.0–4.0 Hz, corresponding to the bandwidth at which subjects cease to be able to

generate coherent tracking responses (Neilson et al., 1993).

2.3.6 Double stimulus reaction time experiments

The relationship between BUMPs and the PRP for double stimulus reaction time

experiments is illustrated in Fig. 2.2. At the beginning of such an experiment, the

subject is alert and waiting for the first stimulus S1. In effect, after S1 arrives there

is only a short interval of transmission time Tt = 10 ms, say, required for perceptual

processing before the RP system begins planning an appropriate response R1 to

S1. The duration of the planning interval RP1 is fixed at Tp = 100 ms, say. If a

second stimulus S2 is presented during the planning interval RP1, the RP system

will be busy generating R1 and will not be available to plan a response R2 to S2.

Consequently, S2 will be held in working memory by the SA system until the RP

system has completed planning R1. The RP system will then commence planning

R2. The amount of time that S2 is held in working memory corresponds to the

PRP described in double stimulation reaction time experiments. This time equals

the increase in reaction time to S2 over the time interval that would be required if

S2 was presented alone. From Fig. 2.2 it is evident that the PRP will be in a range

from 0+ ms (if S2 arrives just before RP1 has finished) to Tp−Tt = 100−10 = 90 ms

(if S2 arrives just after RP1 has started).

Suppose, however, that two stimuli are presented within a single planning inter-

val RP1, as depicted in Fig. 2.3. According to AMT, the RP system can respond in

a single reaction time interval to the two stimuli as if they were one. Pashler (1992)

showed that the RP system is able to generate assemblages of motor behaviour as

a single response without repeatedly employing the bottleneck mechanism. This

grouping phenomenon of responding to two closely time-spaced stimuli (interstim-

ulus interval less than Tp = 100 ms) as if they were one has also been demonstrated
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Figure 2.2: Relationship between basic units of motor production (BUMPs) and
the psychological refractory period (PRP). S1 is the first stimulus, S2 is the second
stimulus, R1 is the response to S1, R2 is the response to S2, Tt is the transmission
time for stimulus signals (illustrated by vertical bars), and PRP is the duration
corresponding to the psychological refractory period. Note that Tt, which typically
is in the range 10–20 ms, has been exaggerated for clarity. After some perceptual
processing of S2 with duration Tt, S2 is being held in working memory for a period
of time PRP, during which the RP system is busy planning a response R1 to S1.
When the RP system has finished planning R1 and passed the information to the
RE system, the RP system becomes available and plans a second response R2 to
S2 during the second response planning interval RP2.

Figure 2.3: Grouping of stimuli. The RP system generates a single response R1,2
to two closely spaced stimuli S1 and S2 presented within one response planning
interval, in this case, RP1.
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by other investigators of double stimulus reaction time (e.g., Craik, 1948; Gielen,

van den Heuvel, & Denier van der Gon, 1984; Kerr & Lockwood, 1995).

2.3.7 Serial reaction time experiments

If a subject is required to respond to a series of discrete stimuli, each stimulus will be

followed by a PRP. A stimulus arriving during such a PRP will be held in working

memory by the SA system until the RP system becomes available. The increase in

reaction time will depend on when in the BUMP cycle the stimulus arrives. As an

example, Fig. 2.4 shows a third stimulus S3 that arrives after S2 at a time interval

TS3 before RP2, where TS3 is greater than the transmission time Tt. The signal

will then have sufficient time to be transmitted before RP2 commences and the

RP system will plan a response to S3 instead of, or grouped with, S2 during RP2,

giving a reaction time for S3 equal to Tr = Tp + TS3.

The minimum reaction time for S3 results when S3 arrives exactly Tt before RP2,

such that the signal just has time to be transmitted to the RP system. Fig. 2.5(a)

shows the resulting grouped response R2,3, with a reaction time for S3 given by

Tr,min = Tp + TS3 = Tp + Tt. This minimum reaction time would also occur if S3

Figure 2.4: Reaction time for the third stimulus S3 in a serial reaction time experi-
ment. S3 arrives a time TS3 > Tt before RP2, thus both S2 and S3 are incorporated
by the RP system during RP2 when planning an appropriate grouped response
R2,3. The reaction time for S3 is given by Tr = Tp + TS3.
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(a)

(b)

Figure 2.5: Minimum reaction time for the third stimulus S3 in a serial reaction
time experiment. S3 arrives TS3 = (Tt)+ before RP2 (a) or RP3 (b), resulting in a
grouped response R2,3 (a) or distinguished responses R2 and R3 (b). The minimum
reaction time for S3 in both cases is given by Tr,min = Tp + Tt.

arrives a time interval Tt before RP3 has commenced, resulting in two distinguished

responses R2 and R3 shown in Fig. 2.5(b).

The maximum reaction time for S3 occurs if S3 arrives a time interval TS3 just

less than the transmission time as illustrated by Fig. 2.6. Because the signal will
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Figure 2.6: Maximum reaction time for the third stimulus S3 in a serial reaction
time experiment. S3 arrives TS3 = (Tt)− before RP2, just too late to be incorporated
in the planning of R2,3 (Fig. 2.4). Instead, S3 is being held in memory by the SA
system during SA3 and used by the RP system during RP3 for the generation of
the response R3. This gives the maximum reaction time Tr,max = 2Tp + Tt.

not be fully transmitted before the RP system commences the RP2 interval, the RP

system will plan a response to S2 during RP2, and only afterwards plan a response to

S3, which has been held in memory by the SA system during RP3. The consequence

is a maximum reaction time for S3 given by Tr,max = 2Tp + TS3 = 2Tp + Tt.

From the discussion of minimum and maximum reaction times above, it is

clear that the possible range of the reaction time Tr for S3 is given by Tr ∈

〈Tp + Tt, 2Tp + Tt〉. As argued above, realistic planning and transmission times

may be given by Tp = 100 ms and Tt = 10 ms, say. The reaction time range for S3

thus becomes Tr ∈ 〈110, 210〉 ms.

Finally, if the interstimulus intervals are such that there is an equiprobability

of a stimulus arriving at any point during a planning interval, the BUMP model

predicts that there should be a rectangular distribution of reaction time intervals.

Indeed, such a rectangular distribution has been demonstrated experimentally in

serial reaction time studies (Telford, 1931).
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2.3.8 Continuous-stimulus tracking experiments

The notion that the RP system can respond to a pair of closely spaced stimuli as if

they were one provides a theoretical bridge between discrete-stimulus reaction time

experiments and continuous-stimulus tracking experiments. Based on the reasoning

above, the RP system can generate a single response to a train of closely spaced

discrete stimuli as shown in Fig. 2.7. Applying a well-known concept in the signal

processing literature, the train of stimuli can be regarded as a continuous-time

signal in the limit as the time interval between the stimuli approaches zero. Thus,

within a planning time interval, the RP system can generate a response, not to a

discrete stimulus, but to a “chunk” of a continuous-time signal. If the continuous-

time target signal stretches over several response planning intervals, such as in a

visual pursuit tracking task, the response generated can be seen as a concatenated

sequence of submovements (cf. the BUMPs of Fig. 2.1), each generated in response

to a chunk of continuously changing sensory input. As discussed in the next section,

the input-output characteristics derived theoretically from this chunking process

exactly match those measured experimentally in human subjects performing visual

tracking tasks.

Figure 2.7: Sensory “chunking.” The RP system generates a single response to a
train of stimuli. As the interstimulus interval approaches zero, the impulse train
can be regarded as a continuous signal. In a tracking task with a continuous target,
the RP system plans a single, continuous response to a chunk of continuous sensory
input at each RP interval.
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2.3.9 Input-output characteristics in visual tracking

Regardless of the dynamics of the tracking system, the relationship between tracking

error e(t) and tracking response r(t) for human subjects can simply be described

by a gain k, a time delay T , and an integrator (McRuer & Krendel, 1974):

r(t) = k

∫ t

0

e(t − T ) dt (2.10)

This is a remarkable finding because it shows that the relationship is independent

of the input-output characteristics of the tracking system itself8. Despite their use

of a variety of tracking systems with different transfer functions involving combina-

tions of gain, integrators, and lag filters, McRuer & Krendel (1974) found that the

relationship remained as simple as that of Eq. 2.10. Implicitly, this means that the

CNS is able to self-organise its input-output characteristics to compensate for those

of the tracking system. Although not stated explicitly by McRuer & Krendel, their

finding provides compelling evidence that the CNS is able to form internal models

of the inverse dynamics of the external systems being controlled. Furthermore, the

measured input-output relationship likely corresponds to the residual dynamics in

the loop that cannot be compensated because they are associated with processes

inherent in the loop itself, such as intermittent response planning.

The relationship between error and response derived theoretically from the in-

termittent chunking process hypothesised by AMT and demonstrated in computer

simulations (Neilson et al., 1988a; Neilson, O’Dwyer, & Neilson, 1988b) is a discrete

equivalent of the continuous relationship measured experimentally by McRuer &

Krendel (1974). Because the RP system is thought to operate intermittently in

the BUMP model, with tracking responses comprised of concatenated sequences of

submovements, the response to error relationship is modelled as a time-delay and

a discrete-time summer rather than a continuous-time integrator. The measured

time-delay is attributed to the time required by the RP system to read sensory

8The input-output characteristics, or dynamics, of the tracking system relates the motor re-
sponse, or input (for example the movement of a joystick), to the actual response, or output (for
example the movement of a response cursor on a computer screen).
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information and to generate a desired response R∗ in addition to afferent and effer-

ent transmission time-delays. The summer (integrator) action is attributed to the

intermittent behaviour of the RP system. At each planning interval the RP system

generates an R∗ to align the response9 with the target. If the executed response

does not reach the target, the RP system simply continues to generate responses at

planning time intervals until the error is corrected. Assuming a stationary target

such as in a step tracking task, the accumulated effect of such a sequence of error-

correcting submovements drives the response into alignment with the target and is

responsible for the integral relationship between response and error.

From control theory (e.g., Nise, 2000) it is well-known that integrator, or in

this case, summmer, action is essential within a feedback loop in order to obtain

zero steady state error with a stationary target. Thus, in the BUMP model, the

summer (integrator) action introduced by intermittent planning of submovements

is vital in assuring steady state accuracy in motor tasks such as tracking and reach-

ing. Furthermore, by slowing down the speed of each submovement, the response

takes a longer time to align with the target, thus reducing the accuracy of the

tracking performance. Intuitively, then, the faster the preplanned error-correcting

submovement, the better the tracking performance, and consequently, best perfor-

mance should be achieved when the error-correcting submovements are preplanned

to be as fast as possible.

2.3.10 The isochrony principle

In a study of the fastest possible voluntary movements of hand and arm muscles,

Freund & Büdingen (1978) showed that the duration of the movements remained

approximately constant no matter what the amplitude of the movement. This

phenomenon is known as the isochrony principle (Viviani & Terzuolo, 1982). Freund

& Büdingen (1978) found that the duration of EMG bursts recorded with surface

electrodes from agonist and antagonist muscles was 80–90 ms in all fast contractions,

9The object that tracks a target is typically a cursor in computer-aided tracking tasks. Note,
however, that “response” may equally well refer to a tip of a stylus, finger, elbow, or whichever
object or body part that is being used to track a target.
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regardless of whether they were isotonic or isometric. Similar duration of non-

overlapping EMG bursts were recorded in agonist and antagonist muscles during

fast alternating movements. The fact that the duration of the EMG burst remains

constant while its amplitude varies has been observed in a variety of movements

(for example ballistic flexion movements of the elbow (Lestienne, 1979; Hallett,

Shahani, & Young, 1975) and the thumb (Hallett & Marsden, 1979) as well as

fast step-tracking arm movements (Brown & Cooke, 1981), and forms the basis of

the pulse height model (Gottlieb, Corcos, & Agarwal, 1989; Corcos, Gottlieb, &

Agarwal, 1989), in which the duration of the EMG burst is held constant while

the amount of excitation is controlled only by varying the height of the burst. It

may be concluded that the fastest movements are not limited by the mechanical

properties of the muscles, otherwise the large amplitude contractions could not

be performed many times faster than the small amplitude ones. The amplitude

dependent variation of the speed of muscle contractions must therefore be achieved

by the neural commands (see Freund, 1983; Berardelli et al., 1996, for reviews).

2.3.11 The quantum of motor control

The EMG burst associated with a fast voluntary muscle contraction results from

the activation of many motor neurons firing asynchronously. According to AMT,

the duration of the EMG burst during a fast movement may be a reflection of

the descending influence from the sensorimotor cortex (Neilson et al., 1992). A

similar hypothesis has been proposed by Berardelli et al. (1996), in which it was

suggested that the excitatory input to motor neurons has a finite minimum duration

of the order of 70 ms, which would explain why EMG bursts also have a minimum

duration of 70–80 ms. In effect, such a limit would cause the amount of activation

in movements of short duration to be controlled only by varying the height of

the pulse. When larger (or longer lasting) force pulses are required, both height

and width could be varied. It is the AMT view that the minimum duration of

the descending pulse of excitatory activity is a reflection of the bursting activity

of neural ensembles, often referred to as cortical columns. As a consequence of
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multiple excitatory and inhibitory feedback interconnections between cells in all six

layers of the cortex, a common response to a discrete stimulus applied to layer IV is

a lightly damped 20 Hz oscillation in a large number of neurons above and below the

site of stimulation (von Seelen, Mallot, Krone, & Dinse, 1986). Such oscillations

have been demonstrated in post-stimulus histograms of recordings from cortical

units in cats and monkeys (von Seelen et al., 1986; Shaw & Silverman, 1988). The

activity consists of bursts of 50 ms duration confined to a vertical column of cells

with a diameter of roughly 500 µm. Shaw & Silverman (1988) argued that the burst

response of 50–100 neurons in each layer of a cortical column defines an appropriate

temporal and spatial separation for recording cortical signals. The bursting of

cortical columns in the sensory cortex might be the source of the 70-80 ms bursts

of lower motor neuron activity recorded during fast voluntary movement.

The change in width of EMG bursts in slower movements (Berardelli, Rothwell,

Day, Kachi, & Marsden, 1984; Brown & Cooke, 1984) may be accounted for by a

sequence of overlapping bursts of cortical column inputs converging onto the motor

neuron pool. Indeed, longer duration EMG bursts recorded during fast movements

usually display multiple peaks consistent with such a sequence of descending ex-

citation pulses. According to this view, the minimum duration of the first EMG

burst recorded during a fast ballistic movement should be an invariant property

of the CNS and not amenable to variation through training. In a study of elbow

movements, EMG bursts from elbow muscles were recorded with surface electrodes

during fast dart-throwing movements about the elbow (Kelly, 1992). Subjects were

challenged to reduce the duration of the initial EMG burst to a minimum by what-

ever means. Although subjects tried all sorts of tricks, including throwing the arm

into a pillow to avoid the need for braking, the minimum duration of EMG bursts

was 40-50 ms and was associated with movements of small amplitude (less than

5 degrees rotation). In another study by Wadman, Denier van der Gon, Geuze,

& Mol (1979), subjects did fast ballistic movements about the elbow joint but on

unpredictable occasions had their arm mechanically constrained. The first agonist
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EMG burst occurred exactly the same in both the free and the constrained case.

Indeed, half of the second antagonist burst happened exactly the same as well, be-

fore a deviation from the usual pattern was detected. Similar observations have

been made by Smeets, Erkelens, & Denier van der Gon (1990) in their study of

fast elbow movements with unexpected inertial loads, and by Hallett & Marsden

(1979), who studied the effect of unexpectedly halting ballistic flexion movements

of the top joint of the thumb. Thus, it is argued in AMT that at least the first

EMG burst in the agonist muscle is preprogrammed and runs open-loop before any

sort of response feedback, either reflex or voluntary, has any influence. This burst

is bell-shaped but has been approximated by a rectangular pulse with a duration

of 50 ms in the simulation studies of this thesis.

AMT proposes that the first EMG burst in a 100 ms fast ballistic movement is

the quantum of control exerted by the cortex over the motor neuron pool. It corre-

sponds to a 50 ms burst of a cortical column dispersed through multiple descending

pathways with different transmission times and mixed with continuous afference

from the periphery. Thus, the theory argues that descending control of muscle

control systems is via a sequence of 50 ms EMG bursts, probably corresponding

to bursts of cortical columns, with varying amplitudes. EMG bursts observed ex-

perimentally of seemingly longer durations are simply concatenated sequences of

50 ms bursts. Such a quantification was observed by Brown & Cooke (1984), who

found that the burst duration in arm movements was not continuously graded but

was either 70 or 140 ms, that is, they observed either a 70 ms single burst or two

bursts concatenated, each of 70 ms duration. In line with this and as discussed in

Chapter 2.3.4, from the organisation of cortical columns (Mountcastle, 1997, 1998),

their bursting activity (Shaw & Silverman, 1988; von Seelen et al., 1986; Sardesai

et al., 2001), and the nature of cortico-cortical and cortico-subcortical connectivity

between cortical columns and subcortical structures (Darian-Smith, Darian-Smith,

& Cheema, 1990; Eccles, 1984; Goldman-Rakic, 1987), AMT argues strongly for the

applicability and validity of discrete-time models of neural information processing
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rather than continuous-time models. Moreover, as is commonly accepted in neu-

rophysiological practice, the output of an ensemble of neurons, such as a pool of

alpha motor neurons driving a muscle, can be appropriately measured by counting

the total number of impulses that occur during a brief period of time, often set to

50 ms (Jiang et al., 2002). Consequently, in the BUMP model, the activity of an

ensemble of neurons is modelled just as it is measured experimentally. That is, a

staircase waveform (zero order hold (ZOH) signal) represents the average level of

activity over each time window. At periodic intervals (50 ms), the level of activity

is adjusted. This is equivalent to approximating the acceleration waveforms asso-

ciated with EMG bursts as rectangular pulses. AMT appreciates that the actual

variation in the instantaneous level of activity is bell-shaped rather than rectangu-

lar. Nevertheless, as argued by Neilson & Neilson (2005b), the use of ZOH signals

is justified by further experimental parallels. In addition, there is great advantage

in the availability and wide acceptance of powerful discrete-time signal processing

algorithms developed for analysis of such signals. Finally, it should be emphasised

that using discrete-time signal processing theory for constructing a human move-

ment simulator does not contradict the CNS being a continuous-time system using

burst code. Afterall, a continuous-time plant driven by ZOH control inputs is still

a continuous-time system.

2.4 Optimal trajectory generation

Central to the BUMP model is the concept of an optimal trajectory generator

(OTG). According to AMT, for each control DOF in the response, there exists in

the RP system a separate OTG neural circuit that generates a one-dimensional

desired response trajectory, which is optimal in the sense that it minimises accel-

eration. Operating in parallel, up to M OTG circuits simultaneously generate an

M-dimensional desired response R∗ = [R∗

1 R∗

2 . . . R∗

M ] as a vector of coordinates,

where each coordinate R∗

i corresponds to a separate DOF and M is the number of

DOFs in the response. We have limited central processing resources (e.g., Wickens,

1984) and from common experience, our central control capability allows only a
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limited number of DOFs to be controlled simultaneously. However, although the

maximum number N of OTG circuits available is unknown, it is certainly at least

two, as is well established experimentally, for example from reach and grasp be-

haviour (e.g., Smeets & Brenner, 1999; Jeannerod, 1999). Furthermore, it has been

shown that subjects are able to perform a two DOFs visual pursuit tracking task

with no greater central time delay than required to perform a one DOF task, indi-

cating parallel operation of OTG circuits (Navon, Gopher, Chillag, & Spitz, 1984;

Oytam, Neilson, & O’Dwyer, 2005). The OTG circuits resemble what is often re-

ferred to as “pattern generators” in the literature and are thought to be located in

the prefrontal cortex.

By combining information about the most recent response feedback available to

the RP system and knowledge of the R∗ planned during the previous RP interval,

the SA system predicts the initial state (position and velocity) of the response at

time ti at the end of the RP interval. Simultaneously, the SA system predicts the

future, or final, state of the target a specified interval of time ahead at time tf .

This information is passed to a memory buffer and read by the RP system. Given

the initial and final states, the OTG generates an optimally smooth, minimum

acceleration trajectory that connects the two states, similar to the smooth trajectory

resulting from a minimum jerk criterion (Nelson, 1983; Flash & Hogan, 1985). It is

hypothesised that at any RP interval, the duration T = tf − ti of the preplanned

trajectory can be varied from a minimum of 100 ms, corresponding to the duration

of an RP interval, to a few seconds, say. Three examples of minimum acceleration

S-shaped response trajectories with different durations preplanned to correct the

error between the position of a target and the position of a response cursor in a

visual pursuit tracking task are shown in Fig. 2.8. If the response does not align

with the target at the next RP interval, the RP system simply generates another

R∗. This process iterates, thus movement is seen as a concatenated sequence of

submovements, or BUMPs, typically of a duration of 100–200 ms.
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Figure 2.8: Three possible S-shaped desired response trajectories with durations
Tk = tf,k − ti, k = 1, 2, 3. Tp = 100 ms is the response planning time, ti is the
time for the initial state, and tf,k is the time for the final state for three possible
trajectories.

Researchers who have developed movement-parsing algorithms to detect bound-

aries of submovements via discontinuities in velocity and acceleration waveforms

(e.g., Meyer et al., 1988) commonly report submovement durations of more than

200 ms, however, it should be emphasised that a sequence of BUMPs due to in-

termittent error correction does not imply the observation of comparable segments

of movement in responses, such as peaks and troughs in velocity or acceleration

profiles. When an actual response trajectory R matches the intended response tra-

jectory R∗, the position and velocity at the beginning of a submovement will exactly

match that at the end of the previous one. Therefore, the two submovements will

be concatenated smoothly with no detectable discontinuities in position, velocity,

or acceleration. Discontinuities will only appear when R deviates from R∗ because

of lack of skill or uncertainties in response execution. As a consequence, disconti-

nuities in velocity and acceleration profiles are found on average more than 200 ms

apart.

Although the duration of R∗ can be varied, the best possible performance in a vi-

sual tracking task is achieved when the positional error between target and response

is eliminated as quickly as possible, or when the OTG generates the fastest possible
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R∗. As discussed previously, the fastest possible voluntary movement corresponds

to a fast ballistic response limited to a duration of about 100 ms.

2.4.1 Ballistic trajectories

Research on the isochrony principle has shown that the fastest possible movement of

a body segment has a duration of approximately 100 ms regardless of the movement

amplitude (Freund & Büdingen, 1978). The duration of such ballistic movements

seems to be limited by the duration of the descending bursts of neural activity

responsible for the triphasic EMG bursts in agonist and antagonist muscles (Freund,

1983). An agonist burst, AG1, is followed by an antagonist burst, ANT, before a

second agonist burst occurs, AG2. The function of AG1 is to accelerate the limb, the

function of ANT is to decelerate the limb, and the function of AG2 is to dampen out

possible oscillations at the end of the movement (Berardelli et al., 1996). Moreover,

muscles act as a low pass filter of EMG activity. According to Berardelli et al.

(1996), in the simplest isometric case with a minimum AG1 duration of 70 ms,

the peak force produced by the muscle occurs occurs only after 100-150 ms, before

another 200 ms are needed for the muscle to relax to its baseline force level. Thus,

the total minimum duration for such a phasic voluntary contraction would be of

the order of 300 ms.

Because of the influence of force-velocity and length-tension relationships, the

force waveform is difficult to determine when muscles are changing their length. The

force required for a fast movement must be the resultant of overlapping agonist and

antagonist force waveforms. In the case of fast movements with a peak amplitude

after only 100 ms, the CNS must start the ANT very shortly after AG1 for its

force to exceed the agonist force early in the movement and reverse the direction

of the limb after 100 ms, before the force resulting from AG2 is used to stabilize

the limb after the reversing movement ends (Berardelli et al., 1996). Despite this

complexity, for a step movement, it is known that the triphasic pattern of muscle

activity produces a smooth movement with a symmetrical velocity profile, that

is, the maximum velocity occurs halfway through the movement. Equivalently, in
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100 ms ballistic movements, the limb has a constant acceleration for the first 50 ms

and a constant deceleration for the last 50 ms. In the following, each acceleration

burst is approximated by a rectangular pulse with a fixed duration of 50 ms. Of

course, the actual measured acceleration waveform is more complex and more closely

resembles a distorted sinewave than a pair of rectangular pulses (see Meyer et al.,

1982, for a discussion). Nevertheless, as long as the waveform of the acceleration

remains constant while only its amplitude is varied, the arguments developed here

for rectangular acceleration pulses still hold. To some extent, the assumption of

a fixed waveform that can be scaled in amplitude is similar to the assumption in

the symmetrical impulse-variability model by Meyer et al. (1982) of a prototypical

waveform that can be scaled in both amplitude and time.

Let xi = [x1(ti) ẋ1(ti)]
T and xf = [x1(tf) ẋ1(tf )]

T denote the initial and final

state vector, respectively, where x1(t) and ẋ1(t) denote the position and velocity,

respectively. For a fast ballistic movement, the OTG generates a desired response

with a duration of 100 ms that connects xi and xf . In this case, the desired trajec-

tory is unidimensional (one DOF) and therefore denoted by R∗ (instead of boldface

notation reserved for multiple DOFs tasks). As already discussed, it is known that

ballistic movements have EMG bursts of amplitude modulation only, that is, the

duration of the EMG bursts is fixed. The integrated EMG activity in the agonist

burst increases almost linearly with the amount of work done by the limb (e.g.,

Bouisset, Lestienne, & Maton, 1977) while the average duration of the burst is

relatively constant (e.g., Lestienne, 1979). Thus, the BUMP model imposes the

constraint that the acceleration waveform is comprised of two 50 ms duration rect-

angular pulses associated with EMG bursts from agonist and antagonist muscles.

Fig. 2.9 shows two trajectories that connect an initial state xi and a final state xf

(arbitrary units). In the first case, Fig. 2.9 (a), the limb is assumed to be at stand-

still, that is, the initial position and velocity are both zero, or xi = [0 0]T . The final

state is at unity position with zero velocity, or xf = [1 0]T . The unique solution

to connect xi and xf is two acceleration pulses with the same magnitude but with
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Figure 2.9: Ballistic movement trajectories of 100 ms duration. For two rectangular
acceleration pulses with fixed duration of 50 ms, the trajectories connecting initial
states (a) xi = [0 0]T and (b) xi = [0 − 20]T with the final state xf = [1 0]T are
unique.

opposite signs, resulting in an S-shaped position trajectory, antisymmetrical about

its midpoint. The corresponding velocity profile (not shown) is symmetrical, with

the maximum velocity halfway through the movement.

In the second case, Fig. 2.9 (b), the limb is initially moving with a velocity

ẋ1 = −20 at zero position, thus xi = [0 − 20]T . The desired final state is still

unity position with zero velocity, or xf = [1 0]T . Again, there is a unique solution,

with the first acceleration pulse braking the already moving limb, thus reducing

the initially negative velocity to zero, turning it around, and accelerating it back in

the positive direction. The second pulse decelerates the movement by just the right

amount to achieve the desired final state. In general, there is only one combination

of two acceleration pulse amplitudes that will achieve the desired trajectory. In fact,
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to move an n-th order discrete-time dynamic system from an arbitrary initial state

to an arbitrary final state requires a minimum of n ZOH rectangular pulses. If the

trajectory cannot be achieved in n samples then it cannot be achieved at all and

the system is said to be uncontrollable (see Ogata, 1995, for proof). This conclusion

can be generalised for two fixed duration acceleration pulses with waveforms more

complex than the rectangular pulses considered here. Given the assumption that

the CNS is constrained to generate acceleration pulses with a minimum duration of

50 ms, there exists only one unique trajectory that can connect a specified initial

state and final state in 100 ms.

The proposal that purposive movements are comprised of a sequence of 100 ms

duration concatenated submovements planned in advance by OTG circuits and

executed open-loop by the RE system has been examined in a study by Lui (1993).

Using an electronic pen and whiteboard, the 2D position of the tip of the pen was

sampled and recorded for a large number of characters, words, and scribbles drawn

by subjects. The x and y components of the signals were segmented into 100 ms

consecutive intervals and the position and velocity were measured at the beginning

and end of each segment. A computer simulation of two OTG circuits operating

in parallel (one OTG for each of the DOFs in such a 2D drawing task) was then

employed to generate a unique continuous-time S-shaped trajectory connecting the

initial state with the final state for each segment. As described above, the computed

trajectories were constrained to have an acceleration waveform consisting of two

50 ms duration rectangular pulses, where only the amplitudes of the pulses were

modulated. For all recordings, the computer-simulated trajectories matched the

actual trajectories extremely well, even around sharp corners. It may be concluded

that even in complex purposive movements such as handwriting, the pen-point

trajectories produced are not inconsistent with concatenated sequences of 100 ms

duration submovements generated independently for each DOF of movement.
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2.4.2 Non-ballistic trajectories

The simple model presented above for fast ballistic movements can be extended

to slower trajectories that are not ballistic and involve more than two acceleration

pulses. For example, consider a 150 ms duration movement with an acceleration

trajectory consisting of three rectangular pulses with a fixed duration of 50 ms and

assume that only the amplitude of the pulses can be controlled. Fig. 2.10 shows two

examples of such three-pulse trajectories connecting the same initial and final states

as in Fig. 2.9(b), that is, xi = [0 − 20]T and xf = [1 0]T (arbitrary units). Unlike

fast two-pulse ballistic movements such as those illustrated in Fig. 2.9, there exists
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Figure 2.10: Non-ballistic movement trajectories of 150 ms duration. For three rect-
angular acceleration pulses with fixed duration of 50 ms, (a) and (b) show two possi-
ble position and acceleration trajectories connecting the initial state xi = [0 − 20]T

with the final state xf = [1 0]T . In general, for three or more acceleration pulses,
there is an infinite number of possible trajectories that can connect an arbitrary
initial state xi with an arbitrary final state xf .
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no unique solution to the generation of a three-pulse trajectory. Indeed, there is an

infinite number of possible three-pulse trajectories that can connect an arbitrary

initial state xi with an arbitrary final state xf . This problem of redundancy, or

trajectory selection, exists for all trajectories involving three or more acceleration

pulses.

2.4.3 Solution to the redundancy problem

The AMT solution to the redundancy problem is the application of optimal control

theory. By choosing minimum acceleration as a control criterion, there exists a

unique solution, or trajectory, that connects an initial and a final state in a specified

time. This trajectory minimises the sum of the squares of the acceleration pulse

amplitudes.

The solution that drives the state from xi to xf in N steps, or samples, with min-

imum demand on acceleration, has been derived previously (Neilson et al., 1995).

The problem can be conceptualised as equivalent to controlling a double integrator

system driven by a ZOH sampled input, as illustrated in Fig. 2.11. The corre-

sponding state equation for the continuous-time double integrator system is given

-
u(k)

ZOH -
u(t)

acceleration

∫

-
ẋ1(t)

velocity

∫

-
x1(t)

position

A-D

?
ẋ1(k)

A-D

?
x1(k)

Figure 2.11: Discrete-time equivalent of double integrator system. The discrete-
time (sampled) input signal u(k) is transformed into a ZOH continuous-time signal
u(t) by the ZOH block. The continuous-time velocity ẋ1(t) and position x1(t) signals
are transformed into discrete-time signals ẋ1(k) and x1(k) by the analog-to-digital
converter (A-D). The vector x(k) = [x1(k) ẋ1(k)]T is the state of the system at
sample k.
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by Eq. 2.11:

ẋ(t) =





ẋ1(t)

ẍ1(t)



 =





0 1

0 0









x1(t)

ẋ1(t)



 +





0

1



u(t) (2.11)

As argued in Chapter 2.3.11, neural activity may be quantified as a staircase

waveform (ZOH signal) that represents the average level of activity over each 50 ms

time window by the level of each step in the waveform. Accordingly, the ZOH

discrete-time equivalent state equation in Eq. 2.12 is obtained by integrating over

a 50 ms sample interval:

x(k + 1) = Gx(k) + Hu(k), (2.12)

where

x(k) =





x1(k)

ẋ1(k)



 , G =





1 0.05

0 1



 , H =





0.00125

0.05



 , u(k) = ẍ1(k)

By choosing the cost function J as the mean square acceleration given by Eq. 2.13,

J =
1

N

N−1
∑

k=0

u2(k) (2.13)

it can be shown by the application of discrete-time optimal control theory (Neilson

et al., 1995) that the optimal solution is given by Eq. 2.14:

x(k) = Gkx(0) + Γ(0, k)Γ−1(0, N)
(

x(N) − GNx(0)
)

, (2.14)

where x(k) = [x1(k) ẋ1(k)] is the dynamic state at sample k, G is the 2×2 discrete-

time equivalent state matrix, H is the 2 × 1 discrete-time equivalent input matrix

for a double integrator system, and Γ(0, k) is the 2 × 2 discrete-time Grammian
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matrix at sample k given by Eq. 2.15:

Γ(0, k) =
k−1
∑

j=0

GjHHTGT (N−k+j) (2.15)

An example of a unidimensional N -step optimal desired response trajectory R∗

for N = 10 acceleration pulses is presented in Fig. 2.12. The initial and final states

are given by xi = x(0) = [0 0]T and xf = x(N) = [1 0]T , respectively.

The importance of Eq. 2.14 is apparent from the observation that every point

in the minimum acceleration discrete-time trajectory can be generated in parallel

with every other point by simple 2 × 2 matrix transformations of the initial state
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Figure 2.12: Optimal N -step desired response trajectory R∗ connecting the initial
and final states xi = x(0) = [0 0]T and xf = x(N) = [1 0]T . As N = 10, the
movement duration is N × 50 ms = 500 ms. The trajectory is unique in the sense
that it minimises the mean square acceleration.
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x(0) and final state x(N). For example, to calculate x(k), there is no need to wait

until x(k − 1) has been calculated. Thus, the entire trajectory can be generated in

one operation by an OTG. This can readily be implemented by means of parallel

processing circuitry comprised of adaptive neural filters. Hence, the above account

of trajectory generation allows all three systems (SA, RP, and RE) to be similar,

consisting of parallel repetitions of a basic, physiologically realistic, neural circuit.

A block diagram of an OTG is given in Fig. 2.13. Each block represents a 2× 2

matrix transformation y = Mx as illustrated in Fig. 2.14, where

x =





x1

x2



 , M =





m11 m12

m21 m22



 , and y =





y1

y2



 . (2.16)

The solution is given by

y1 = m11x1 + m12x2 (2.17)

y2 = m21x1 + m22x2 (2.18)

By applying the initial state x(0) and the final state x(N) as inputs, the parallel

processing circuit can simultaneously compute all N−1 samples in between, namely

x(1), x(2), . . . , x(N − 1), in the discrete-time version of the optimal trajectory

R∗ = [x(0) x(1) . . . x(N − 1) x(N)]T in no more time than it takes for the signals

to flow through the circuit. The maximum duration of the preplanned trajectory,

or equivalently, the maximum number N , is limited only by the number of parallel

processing modules in the OTG circuit. The OTG can only plan a single R∗ at

a time, that is, it does not commence planning a second trajectory until it has

finished the first. It is this iterative operation of the OTG circuit that introduces

intermittency into the control of movement.

2.4.4 Synchronous operation of multiple OTGs

Analogous to the parallel operation within a single OTG circuit, AMT hypothe-

sises that multiple OTG circuits can operate synchronously and in parallel. Con-
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Figure 2.13: The optimal trajectory generator (OTG). Each block represents a 2×2
matrix transformation (see Fig. 2.14). Given x(0) and x(N) as inputs, the circuit
simultaneously computes all N − 1 samples in between to obtain the discrete-time
optimal trajectory R∗ = [x(0) x(1) . . . x(N − 1) x(N)]T .
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Figure 2.14: Three equivalent representations (a), (b), and (c) of the 2 × 2 matrix
transformation y = Mx.
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sequently, a response trajectory R∗ = [R∗

1 . . . R∗

M ] with M control DOFs can be

generated in no more time than is required for a single OTG to generate a single

trajectory with only one DOF, as long as there exists at least one OTG circuit for

every DOF in the response, that is, at least M OTG circuits must be available. The

proposal that the time required to generate a multidimensional response trajectory

is no greater than the time required for a unidimensional trajectory does not con-

tradict the wealth of evidence of increased reaction time with increased complexity

of the planned response. In AMT, the OTG circuits are thought to operate at the

lowest level in a hierarchical structure of cognitive processes involved in response

planning. Whereas the time required for higher cognitive processes may increase

or decrease depending on a number of factors, thereby changing the reaction time,

it is only the lowest levels of the RP system, namely the OTG circuits, that nor-

mally participate in the perceptual-motor loop. Performance of any feedback loop,

including the perceptual-motor loop, is limited by the time delay within the loop.

Therefore, performance can be no better than the ability of the system to compen-

sate for the time delay by predicting future inputs. Thus, it would be biologically

advantageous for the CNS to have evolved an RP system capable of generating

error-correcting responses in the shortest possible time, regardless of their com-

plexity. Experimentally, many results support this view. Pashler (1992) showed

that subjects can generate assemblages of responses to a stimulus with no greater

a reaction time than required for a single response. Similarly, in a variety of visual

tracking experiments (e.g., Oytam, Neilson, & O’Dwyer, 1998; Oytam et al., 2005;

Navon et al., 1984; Wickens, 1984), it has been shown that the time delay between

the target and response signals, as measured by phase lag, is the same for both one

DOF and two DOFs tracking tests. In other words, subject can perform two inde-

pendent visual tracking tasks simultaneously without increasing the response time

delay beyond that measured when performing either task separately. The multiple

trajectories generated by multiple OTGs may be regarded as a vector trajectory

R∗ in a multidimensional vector space, or a single response associated with a single
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BUMP but involving multiple DOFs. For example, in a reaching movement to a

target in 3D space of duration N × 50 ms, separate trajectories R∗

x, R∗

y, and R∗

z for

the x, y, and z components of the movement would be generated simultaneously by

three OTG circuits within one RP interval to form the desired response trajectory

R∗ given by

R∗ =
[

R∗

x R∗

y R∗

z

]

=











x(0) y(0) z(0)

...
...

...

x(N) y(N) z(N)











(2.19)

Equivalently, if the spherical coordinates ρ, φ, and θ were more appropriate, such as

in a rotating task, trajectories R∗

ρ, R∗

φ, and R∗

θ would be generated simultaneously.

2.5 Variable horizon predictive control

The output of the OTG circuits is the preplanned response trajectory R∗. The

duration of R∗ may be termed the prediction horizon Th. To provide continuity of

movement in any task, the RP system must predict the initial state of the movement

at the end of the RP interval and the target state Th = N × 50 ms ahead in time of

the initial state (e.g., initial state x(0), final state x(N), and N = 10 in Fig. 2.12–

2.13). The ability to vary the prediction horizon gives rise to the concept of variable

horizon predictive control. Moreover, the ability of the RP system to plan an R∗

of duration much longer than the RP interval (100 ms), say Th = 1–2 s, is referred

to as planning in accelerated time. After an RP interval, only the first 100 ms of

R∗ is executed by the RE system. At the same time, the RP system plans another

R∗ while the first one is being executed. The new R∗ replaces the previous one in

working memory before the RE system again only executes the first 100 ms. This

process iterates as a series of BUMPs (Fig. 2.1). Thus, although such response

planning is inherently intermittent it will produce optimally smooth trajectories

provided that the prediction is accurate.
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2.5.1 Receding and fixed horizon control

Variable horizon control leads to two main control strategies, receding horizon con-

trol and fixed horizon control. Receding horizon control, also known as model pre-

dictive control, is currently one of the most popular control algorithms employed

in computer-controlled systems, predominantly in the petrochemical industry, but

also increasingly so in electromechanical control problems (Goodwin, Graebe, &

Salgado, 2001). It can be shown that receding horizon controllers can be designed

with guaranteed asymptotic closed-loop stability (Goodwin et al., 2001) and this

remarkable property is perhaps the most important reason for its popularity. Reced-

ing horizon control is implemented in the BUMP model by having the RP system

plan a new R∗ that is predicted a fixed time ahead at every RP interval, that

is, Th remains constant during the entire movement. Consequently, the prediction

horizon, like the earth’s horizon, recedes as it is approached (see Fig. 2.15 for an

example).

Figure 2.15: Example of receding horizon control. At every RP interval, OTG
circuits generate a new R∗ of a fixed duration Th,i. In this particular example, the
duration is equal to three RP intervals. During RP1, the OTG circuits generate
an optimal R1∗ of duration Th,1 = 3Tp = 300 ms. While R1∗ is being executed
during RE1, a new trajectory R2∗ of the same duration Th,2 = 3Tp = 300 ms
is being planned during RP2 and then replaces R1∗ in working memory. Thus,
after executing only the first Tp = 100 ms of R1∗, the RE system commences
execution of R2∗ during RE2. The process repeats, with trajectories planned Th,i =
300 ms ahead in time but only the first 100 ms executed, until the target is reached.
Effectively, the prediction horizon recedes as it is approached.
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In contrast, if a fixed horizon control strategy is implemented, the prediction

horizon decreases as the movement approaches its target. At every RP interval, the

RP system plans a new R∗ connecting the current position and velocity, or initial

state, with a final (target) state at a fixed point ahead in both time and space.

Thus, with the horizon fixed in this way, the prediction horizon must decrease as

the fixed horizon is approached (see Fig. 2.16 for an example).

Figure 2.16: Example of fixed horizon control. At every RP interval, OTG circuits
generate a new R∗ connecting the current state with a fixed final state, or target.
In this particular example, the initial trajectory R1∗ has a duration of Th,1 = 3Tp =
300 ms. While R1∗ is being executed during RE1, a new trajectory R2∗ is being
planned during RP2 to a fixed horizon ahead and replaces R1∗ in working memory.
As the RP system spent Tp = 100 ms to preplan R2∗, the duration of R2∗ is given
by Th,2 = Th,1 − Tp = 200 ms. The process repeats, with only the first 100 ms
executed of every trajectory, which each has a duration planned 100 ms shorter
ahead in time than the previous one, until the target is reached. Effectively, the
prediction horizon stays fixed as it is approached.

It is proposed that whenever the task allows, a subject is likely to adopt a reced-

ing horizon control strategy in aimed movement, since this has the great advantage

of stability. On the other hand, fixed horizon control is exactly the strategy a sub-

ject needs if the goal is to reach the target at a fixed point in time. It makes sense

that a fixed horizon strategy is adopted in time-matching tasks because then both
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the spatial and temporal component of the target is incorporated into the planning

of each submovement. It is therefore proposed that in tasks in which subjects are

required to control the timing as well as the spatial accuracy of the response, they

are likely to adopt a fixed horizon strategy rather than a receding horizon one.

2.6 Noise in the motor system

According to the BUMP model, trajectory planning proceeds smoothly provided

prediction is accurate. However, accurate prediction depends on ability to model

the target trajectory accurately (in the case of a moving target) as well as ability to

model the RE system that gives rise to the actual response. And apart from uncer-

tainties of this nature, the activation of an accurate response is inevitably affected

by disturbances, even when the planned trajectory is accurate. Noise is ubiqui-

tous in the CNS. A number of authors have proposed that inaccuracies in reaching

movements can be attributed to the influence of stochastic noise in the motor sys-

tem (e.g., Fitts, 1954; Schmidt, 1976; Meyer et al., 1988; Chan & Childress, 1990;

Harris & Wolpert, 1998; van Beers, Baraduc, & Wolpert, 2002; van Beers et al.,

2004; Hamilton, Jones, & Wolpert, 2004). Some have argued that the amount of

noise is related to the velocity of the movement, while others maintain that it is

related to the level of force. In studies of speech in normal and athetoid cerebral

palsy adult subjects (Neilson & O’Dwyer, 1984; O’Dwyer & Neilson, 1988), EMG

activity from six speech muscles was recorded and quantified during repetitions

of a test sentence. By measuring the variation about the mean integrated EMG

waveform for each syllable, it was found that the standard deviation increased with

the average level of integrated EMG activity in each muscle in both normal and

cerebral palsy subjects. In another study, O’Dwyer & Neilson (1998) examined

isometric force responses generated about the elbow joint to control the deflection

of a response cursor on a computer monitor in a visual pursuit tracking task. Sub-

jects were required to track a target that was moving in a slow sinusoidal fashion

at 0.3 Hz under two different experimental conditions. In one condition, the re-

quired range of isometric force was 10–20% of maximum, while it was 40–50% of
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maximum in the other condition. Consistent with impulse-variability theory and

findings of Carlton & Newell (1993), tracking performance deteriorated when the

average level of force or muscle activation was increased. All these results support

the view that the nervous system injects stochastic noise into the movement control

signals. Consistent with the proposal of Harris & Wolpert (1998), AMT suggests

that broadband stochastic noise is probably introduced at the level of motor com-

mands to individual muscles and that its standard deviation increases with the size

of the motor command. Accordingly, such noise is introduced in the simulation

experiments that follow.
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Chapter 3

Study I: Speed-accuracy tradeoffs and velocity profiles

3.1 Literature review

One of the most fundamental relationships observed in aimed movements is the

speed-accuracy tradeoff: As the movement speed increases, the spatial accuracy

decreases. Conversely, as the spatial accuracy increases, the movement speed de-

creases. Historically, research on speed-accuracy tradeoffs in human movements can

be traced back to the end of the 19th century. Often credited as the founder of

research on speed-accuracy tradeoffs is one of the pioneers in the behavioural study

of aimed movements, namely Woodworth (1899). He systematically investigated

how accuracy changed with movement speed when certain spatial (distance) and

temporal (duration) goals were attained. Proposing several interesting hypotheses

to interpret results obtained from his experiments, his ideas anticipated subsequent

research on human motor performance (Keele, 1968). According to the review of

Meyer et al. (1990), the seminal work of Woodworth (1899) was followed by a “dor-

mant period” for nearly 50 years, where only sporadic research on speed-accuracy

tradeoff occurred. However, with World War II and the need for good tracking

performance in a number of military applications, development of tracking control

theory was triggered, stimulating considerable scientific interest in the relationship

between movement speed and accuracy. Researchers started to play with the idea

of modelling sensory-motor mechanisms using a systems orientation, viewing the

CNS as the controller of a plant (Craik, 1947, 1948). Based on such ideas, Baron

& Kleinman (1969); Baron et al. (1970); Kleinman et al. (1970, 1971) would later
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hypothesise that the well-trained human operator behaves in an optimal manner

subject to inherent limitations, or in other words, suggesting that the CNS acts

as an optimal controller involving continuous error corrections. However, following

up the influential research of Craik (1947, 1948), experiments showed that tracking

behaviour often consists of small discrete movements. This led to a closer investi-

gation of such movements, extending the study of speed-accuracy tradeoff initiated

by Woodworth (1899). An often-cited worker is Vince (1948), who had her subjects

track discrete step changes as well as continuous targets. Confirming many of the

findings of Woodworth (1899), her results substantiated the importance of feedback

for movement accuracy. Furthermore, Vince (1948) concluded that the human op-

erator responds intermittently in a tracking task. She suggested that there exists

a psychological refractory period (PRP) during which the CNS is occupied and

cannot respond to incoming stimulus.

The BUMP model can be thought of as a discrete equivalent of the optimal

control model hypothesised by Baron & Kleinman (1969); Kleinman et al. (1970),

however, AMT addresses several of its limitations (Neilson & Neilson, 1999), with

perhaps the greatest difference being the use of intermittent error corrections hy-

pothesised in AMT. Complementing the research of Vince (1948) and others who

had focused on performance in time-matching tasks, researchers began to investi-

gate speed-accuracy tradeoff in time-minimisation tasks, resulting in the discovery

by Fitts (1954) that such movements obey a logarithmic tradeoff between movement

speed and endpoint accuracy. Indeed, this relationship, which is known as Fitts’ law,

has been shown to hold for a vast variety of movement tasks. However, despite the

robustness of Fitts’ law, it fails in time-matched movements. In fact, Schmidt et al.

(1979) showed that the mathematical form of the speed-accuracy tradeoff depends

on the inclusion of a temporal goal or not in the movement task. While movements

that are spatially constrained typically yield a logarithmic speed-accuracy tradeoff,

movements that are temporally constrained, that is, timed movements, typically

result in a linear speed-accuracy tradeoff (Meyer et al., 1982; Wright & Meyer,
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1983). Whereas the logarithmic and the linear speed-accuracy tradeoffs are the two

most important tradeoffs reported in the literature, several other relationships have

been hypothesised, including other logarithmic and linear functions, power laws,

quadratic laws, and the delta-lognormal law (see Plamondon & Alimi, 1997, for

a review). In the following sections, the logarithmic and linear tradeoffs will be

discussed more thoroughly.

3.1.1 Logarithmic speed-accuracy tradeoff

The logarithmic speed-accuracy tradeoff results during spatially constrained move-

ments, that is, tasks in which subjects must end their movements inside a pre-

defined target region while attempting to minimise their average movement time

(Meyer et al., 1988). The first formalisation of this logarithmic relationship came

with the reciprocal tapping experiments of Fitts (1954). He had his subjects move

a hand-held stylus rapidly back and forth between two target regions, tapping the

targets at the end of each movement. The subjects were required to have at least

95% of their movements end inside the target regions while minimising their aver-

age movement times. By systematically varying two independent variables, namely

the target distance D and the target width W , Fitts (1954) showed that the mean

movement time T closely matched the following equation, which is also known as

Fitts’ law:

T = a + b log2

2D

W
, (3.1)

where a and b are constants. The logarithmic term of Equation 3.1 is referred to as

the index of difficulty Id:

Id = log2

2D

W
(3.2)

Substituting Id into the expression, a linear relationship arises between the index

of movement difficulty and average movement time:

T = a + bId (3.3)
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Inspired by the advances in information theory at the time of his experiment,

Fitts (1954) explained the speed-accuracy tradeoff as a result of the channel capacity

of the motor system for transfer of information being independent of the motor task.

Thus, when reducing the target width for the same target distance, the subject must

either accept a greater error rate or reduce the speed of the movement in order for

the channel capacity not to change. Specifically, Fitts (1954) defined an index of

performance Ip as the ratio of the index of difficulty Id and the mean movement

time T :

Ip =
Id

T
(3.4)

For all combinations of target distance and target width in the experiment of Fitts

(1954), the index of performance stayed nearly constant with values between 10.3

and 11.5 bits/s, indicating constant channel capacity.1

Whereas the experiment of Fitts (1954) involved repetitive self-paced movement

tasks, Fitts & Peterson (1964) examined the generality of Fitts’ law when applied

to discrete movements. Again, a strong linear relationship between the index of

difficulty and the mean movement time was found. Indeed, Fitts’ law has been

shown to hold for an extraordinary amount of movement paradigms, including sev-

eral kinds of movement (e.g., tapping, throwing, rotating, and other finger-, leg-,

head-, or wrist movements), manipulators (e.g., using a joystick, computer mouse,

rotary handle, keyboard, or foot pedal), environments (e.g., on land, under water,

during aircraft flights, viewing through a microscope, or under deprivation of visual

feedback), and subjects (e.g., children, young adults, elderly adults, mentally chal-

lenged people, patients with Parkinson’s disease, or drugged people) (Meyer et al.,

1988, 1990; Zelaznik, 1993; Plamondon & Alimi, 1997). It should be emphasised,

however, that the logarithmic tradeoff is generally limited to spatially constrained

movements. In contrast, when subjects are instructed to make movements with a

1Information theory was also the reason behind Fitts (1954) using a logarithm with base 2 for
the index of difficulty to obtain units of bits. As pointed out by Meyer et al. (1990), other bases
can be used instead without changing the linearity of the function. Changing the base simply
corresponds to changing the slope of the function.
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particular movement duration, that is, temporally constrained movements, a linear

speed-accuracy tradeoff occurs.

3.1.2 Linear speed-accuracy tradeoff

Schmidt et al. (1979) discovered that temporally constrained movements result in

a linear speed-accuracy tradeoff. Extending the discrete tapping task of Fitts &

Peterson (1964), subjects made single aimed tapping movements not only with pre-

specified distances (10, 20, and 30 cm) but also with pre-specified durations (140,

170, and 200 ms). Schmidt et al. (1979) found that the standard deviation S of the

movement endpoints increased linearly with the average velocity Vav:

S = a + bVav = a + b
D

T
, (3.5)

where a and b are constants, D is the mean movement distance, and T is the mean

movement duration. The standard deviation of the endpoint S is also referred to as

the effective target width We analogous to the target width W in Fitts’ law, because

it may correspond to an implicit well-defined region around the target point within

which the subjects try to end their movements (Schmidt et al., 1979). Substituting

We for S and rearranging Eq. 3.5 for comparison with Fitts’ law (Eq. 3.1), the

following non-logarithmic relationship emerges:

T = b
D

We − a
(3.6)

Letting a be sufficiently small and comparing the linear tradeoff in Equation 3.6 with

the logarithmic tradeoff in Eq. 3.1, one can observe that both are monotonically

increasing functions of the ratio of movement distance and target width.

Because Schmidt et al. (1979) found a strong linear tradeoff only for move-

ments with a duration of 200 ms or less, the linear tradeoff was initially explained

as being due to the lack of feedback, culminating in the movement-brevity and

feedback-deprivation hypotheses (Wright & Meyer, 1983). The movement-brevity

hypothesis predicts a linear tradeoff only for fast, ballistic movements without any

64



corrective submovements. Certainly this assumption would explain the lack of

a logarithmic tradeoff when considering the great success with which corrective

submovement models have explained Fitts’ law (e.g., Crossman & Goodeve, 1983;

Keele, 1968). The feedback-deprivation hypothesis states that the linear tradeoff

is due to the lack of peripheral feedback. Therefore, different from the movement-

brevity hypothesis, the feedback-deprivation hypothesis can account for a linear

tradeoff also for movements with durations greater than 200 ms. Accordingly,

Schmidt et al. (1979) suggested that the movement-brevity hypothesis is simply

a special case of the feedback-deprivation hypothesis. In contrast, Meyer et al.

(1982) proposed the temporal-precision hypothesis, which suggests that a linear

tradeoff occurs when subjects have to make precisely timed movements. Just like

the feedback-deprivation hypothesis, the temporal-precision hypothesis can account

for linear tradeoffs observed for movements with long duration, however, it states

that the linearity is not a result of deprivation of visual feedback but rather the sub-

jects performing time-matching movement tasks. Although some empirical evidence

exists for the movement-brevity hypothesis and the feedback-deprivation hypothesis

(Schmidt et al., 1979; Zelaznik, Shapiro, & McColsky, 1981), the behavioural evi-

dence largely supports the temporal-precision hypothesis. In particular, the exper-

iments by Zelaznik, Mone, McCabe, & Thaman (1988) provide strong support for

the temporal-precision hypothesis and against the movement-brevity and feedback-

deprivation hypotheses. Further evidence has been found not only in single tapping

tasks (e.g., Zelaznik et al., 1981), but also in saccadic eye movements (Abrams,

Meyer, & Kornblum, 1989), wrist rotations (Wright & Meyer, 1983; Meyer et al.,

1988), and other time-matching aiming tasks (see Zelaznik, 1993, for a review).

3.1.3 Velocity profiles in aimed movements

An important feature, or invariant, of human aimed movements is the shape of the

velocity profile. It has been shown repeatedly that the velocity profile of simple arm

movements is bell-shaped (e.g., Georgopoulos, Kalaska, & Massey, 1981; Soechting

& Lacquaniti, 1981; Morasso, 1981; Abend, Bizzi, & Morasso, 1982; Atkeson &
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Hollerbach, 1985; Nagasaki, 1989; Uno et al., 1989). Virtually all rapid point-

to-point limb movements have a bell-shaped velocity profile regardless of whether

single-joint or multiple-joint movements are under examination (Berardelli et al.,

1996). Moreover, movements with different kinematic and kinetic features show a

similar bell-shaped velocity profile after transformation of amplitude, duration, or

inertial load (Brown & Cooke, 1990; Berardelli et al., 1996).

For spatially constrained movements, the fastest possible ballistic movements,

with a duration of only 100 ms, have a symmetrical velocity profile (Berardelli et al.,

1996) whereas slower movements have a positively skewed (left-skewed) asymmetri-

cal bell-shape (e.g., Plamondon & Alimi, 1997). Beggs & Howarth (1972) observed

that the amount of this skewness increases as movements are slowed. For some

very high-speed movements, the asymmetry has been observed to be inverted, or

right-skewed (Zelaznik, Schmidt, & Gielen, 1986).

For movements that include both spatial and temporal constraints, that is, time-

matching movements with endpoint spatial error requirements, the velocity profile

stays symmetrical no matter the speed of the movement (Shapiro & Walter, 1986;

Cooke & Brown, 1994; Schmidt & Lee, 1999). Furthermore, symmetrical velocity

profiles have also been shown for movements of different speeds when no spatial or

temporal accuracy requirements were imposed on the subjects (Atkeson & Holler-

bach, 1985) or when subjects were instructed to move at their preferred speed

(Flanagan & Ostry, 1990).

Plamondon (see Plamondon & Alimi, 1997, for a review) has written extensively

about the asymmetry of the bell-shaped velocity profile and its relationship to move-

ment speed. He has proposed a kinematic theory to explain this phenomenon in

which it is suggested that synergies of agonist and antagonist muscles have a log-

normal velocity impulse resulting from the limiting behaviour of a large number

of interdependent neuromuscular networks as predicted by the central limit theo-

rem. With this log-normal velocity function, termed the delta-lognormal law, the

kinematic theory can almost perfectly reproduce the asymmetrical velocity profiles
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as well as the invariance and rescalability of these patterns observed under a vari-

ety of experimental conditions (e.g., Plamondon & Alimi, 1997; Plamondon, 1998;

Plamondon & Djioua, 2006). Bullock & Grossberg (1988) have pointed out that

the asymmetry, its degree, and its changes in direction are of major theoretical

importance. They argue, for example, that the minimum jerk model (Hogan, 1984;

Flash & Hogan, 1985) predicts symmetrical profiles and that superimposability of

velocity profiles after time rescaling is a defining characteristic of generalised motor

program models. Therefore, as Bullock & Grossberg point out, these models cannot

explain how the velocity profile asymmetry varies with movement speed.

The BUMP model hypothesises that receding and fixed horizon control in the

motor system predict asymmetrical and symmetrical velocity profiles, respectively.

Arguments for this hypothesis will be developed below.

3.2 Predictions of the BUMP model

3.2.1 Logarithmic speed-accuracy tradeoff

As outlined previously, the BUMP model sees movement as being comprised of a

concatenated sequence of 100 ms duration submovements. The acceleration and

deceleration waveforms associated with agonist and antagonist EMG bursts are

approximated as two rectangular pulses with a fixed duration T = 50 ms. For

fast ballistic movements, the two acceleration pulses will have equal and opposite

amplitudes, yielding a symmetrical S-shaped position trajectory (desired response)

such as that of Fig. 3.1(a). This is equivalent to receding horizon control with a

prediction horizon Th equal to the duration of an RP interval, that is, Th = Tp =

100 ms.

Letting the amplitudes of the positive and negative acceleration pulses equal

a and −a, respectively, the acceleration waveform A(t) depicted in Fig. 3.1(a) is

given by Eq. 3.7 with a = 400 (arbitrary units). The corresponding functions

describing the velocity V (t) and position P (t) are obtained by integration and
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given by Eq. 3.8–3.9:

A(t) =







a , 0 < t ≤ T

−a , T < t ≤ 2T
(3.7)

V (t) =







at , 0 < t ≤ T

−a(t − T ) + aT , T < t ≤ 2T
(3.8)

P (t) =







1
2
at2 , 0 < t ≤ T

−1
2
a(t − T )2 + aT (t − T ) + 1

2
aT 2 , T < t ≤ 2T

(3.9)
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Figure 3.1: Position (top) and velocity (middle) waveforms resulting from two rect-
angular acceleration pulses (bottom) of fixed duration T = 50 ms and opposite am-
plitudes (arbitrary units). (a) Ideal acceleration pulses with amplitudes ± a = 400
for a desired response. (b)–(e) Acceleration pulses due to additive stochastic noise
with amplitudes ± ∆a = 40.
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Thus, the total displacement D resulting from two rectangular acceleration pulses,

each of duration T and with amplitudes a and −a, is given by

D = P (2T ) = −
1

2
aT 2 + aT 2 +

1

2
aT 2 = aT 2 (3.10)

In the example shown in Fig. 3.1(a), the total displacement resulting from the

two acceleration pulses is given by D = 400 × 0.052 = 1. It may be observed

from Eq. 3.10 that the displacement D is proportional to the magnitude a of the

acceleration pulses, or vice versa, a ∝ D. Furthermore, according to AMT, additive

stochastic noise in the motor system introduces statistical variation, ∆a, into the

height of the acceleration pulses. As hypothesised in Chapter 2.6, this noise is

signal-dependent and varies with the size of the motor command. Specifically, on

average, the amplitude of each acceleration pulse will either increase or decrease by

an amount ∆a proportional to the magnitude a of the pulse, or ∆a ∝ a. However,

as a is proportional to the displacement D, ∆a is also proportional to D, or ∆a ∝ D.

Because this motor noise is hypothesised to be stochastic, the variation ∆a

occurs independently for each acceleration pulse. Consequently, for the two ac-

celeration pulses depicted in Fig. 3.1(a), there exist four possible combinations of

additive stochastic noise: (i) Both acceleration pulses might be increased by ∆a as

in Fig. 3.1(b); (ii) the first might be increased by ∆a and the second decreased by ∆a

as in Fig. 3.1(c); (iii) the first might be decreased by ∆a and the second increased

by ∆a as in Fig. 3.1(d); or (iv) both might be decreased by ∆a as in Fig. 3.1(e).

For the example in Fig. 3.1, ∆a has been chosen as 10% of a, or ∆a = 40.

The position trajectories in Figs. 3.1(b)–(e) show the displacement error E for

all four combinations of additive noise. It is apparent that the unity endpoint of the

unidimensional desired position trajectory R∗ depicted in Fig. 3.1(a) will either be

overshot by an amount of 0.2 (Fig. 3.1(b)) or 0.1 (Fig. 3.1(c)), or undershot by an

amount of 0.1 (Fig. 3.1(d)) or 0.2 (Fig. 3.1(e)) due to motor noise. In other words,

the error E in either the positive (overshoot) or negative (undershoot) direction is

proportional in each case to D, or E ∝ D.
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Consider the task of reaching towards a target as illustrated in Fig. 3.2. At

the beginning of each RP interval, the SA system has sensory feedback information

about the current state of the response based on afferent input acquired during the

previous RP interval. In addition, the R∗ trajectory preplanned during the previous

RP interval and about to be executed in real-time by the RE system is available from

working memory. By combining these two pieces of information passed from the SA

Figure 3.2: Reaching task using receding horizon control. The receding prediction
horizon is fixed at Th = Tp = 100 ms. During RP1, a desired response R∗

1 is gener-
ated. However, during the execution interval RE1, the actual response R1 deviates
from the desired response R∗

1 by an error E1 due to additive noise. During SA2
there is no sensory information available about this future error about to occur and
the RP system therefore assumes that the actual response will match that of the
desired response at the end of RE1. Thus, during RP2, no correcting trajectory is
generated, and during RE2, no correcting trajectory is executed. During RP3, how-
ever, an error-correcting submovement R∗

3 is planned based on information about
the error E1 collected during SA3. Again, the actual response R3 deviates from the
desired response R∗

3 by an error E2. This process iterates and reduces the error in
a logarithmic fashion.
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system, and assuming that the actual response R will match the desired response

R∗, the RP system can generate a prediction of the response position and velocity

100 ms ahead at the end of the current RP interval, that is, the initial state for the

trajectory about to be planned. As the target in this case is stationary, it is a simple

task for the RP system to project its future position (depicted as the top horizontal

line in Fig. 3.2). The RP system then generates an R∗ trajectory connecting the

predicted position and velocity of the response at the end of the RP interval (the

initial state) with the predicted position and velocity of the target one RP interval,

Tp = 100 ms, ahead in time (the final state). However, due to stochastic noise

in the motor system, the actual response R will deviate from the desired response

R∗. As mentioned, the standard deviation of the stochastic noise is assumed to be

proportional to the size of the motor command, which in turn, for a pure inertial

load, is proportional to acceleration. The time required to correct these execution

errors is independent of whether the actual response overshoots or undershoots the

desired response. Thus, for the sake of simplicity, only undershooting errors are

illustrated in Fig. 3.2. Furthermore, for the purpose of clarity, the execution errors

have been vastly exaggerated.

In the example of Fig. 3.2 the target is located a distance D away from the

limb about to be moved. The RP system plans a desired trajectory R∗

1 to align

the response with the target within 100 ms, that is, the fastest possible ballistic

movement. However, the first submovement R1 undershoots the desired response

R∗

1 by an error E1 due to stochastic variation ∆a added to the desired acceleration

waveform of R∗

1. As noted above, the average error E1 is proportional to the dis-

placement D, thus E1 = αD. Because no sensory information about E1 is gathered

during SA2, there is no correction for E1 incorporated in R∗

2. The desired response

R∗

1 is used as a prediction of the actual response R1, and consequently, R∗

2 is planned

on the assumption that R1 matches R∗

1. During RP3, however, sensory information

about E1 has been gathered during SA3 and an error-correcting desired response

R∗

3 is planned. Again, due to stochastic noise, the actual response R3 deviates from
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the desired response R∗

3 with an average amount of E2. This error is proportional

to the remaining distance E1 to the target, or E2 = αE1 = α2D. This process

iterates, and in general, the error for the k-th correction is given by

Ek = αkD , 0 ≤ α ≤ 1 (3.11)

By exactly the same argument used previously to derive the logarithmic speed-

accuracy tradeoff for the deterministic iterative-corrections model (Chapter 2.2.1),

the total movement time Tk after k corrections, each of duration 2Tp (only every

second submovement reduces the error in this example), is given by Tk = k × 2Tp.

Then k =
Tk

2Tp

and Eq. 3.11 becomes

Ek = α
Tk
2Tp D (3.12)

Taking logarithms on both sides of Eq. 3.12 and rearranging, the total movement

time Tk after k corrections (2k submovements) is given by

Tk = 2Tp logα

(

Ek

D

)

(3.13)

For direct correspondence with Fitts’ law (Eq. 3.1, p. 62), substitute 2Tp = b and

α = 0.5, and let the error Ek after k corrections equal half the target width W

(equivalent to the target being reached), or Ek =
W

2
. Eq. 3.13 then becomes

Tk = b log0.5

(

W/2

D

)

= b log2

(

2D

W

)

(3.14)

In addition, it is a reasonable assumption that the initial submovement differs from

the other corrective submovements by a constant a, because the planning time for

the first submovement is not part of the movement time. Hence, Eq. 3.14 can be
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rewritten as

Tk = (k − 1)2Tp + (2Tp + a) = k2Tp + a = b log2

(

2D

W

)

+ a, (3.15)

which is identical to Fitts’ law. In other words, receding horizon control with a

prediction horizon duration Th equal to the duration of one RP interval, Th = Tp =

100 ms, predicts a logarithmic tradeoff between the speed of a reaching movement

and its accuracy, consistent with Fitts’ law.

For the general case of receding horizon control, with a prediction horizon kept

constant at a duration greater than Tp = 100 ms, the RP system will generate S-

shaped minimum acceleration desired trajectories with a duration Th greater than

that of one RP interval used in the example above. Of course, as outlined previously,

only the first 100 ms of an R∗ trajectory will be executed before it is replaced

by an updated version during every RP interval. This implies that the first two

acceleration pulses of R∗ generally will not have equal but opposite amplitudes

such as those in Fig. 3.1(a). Let a and b denote the amplitudes of the first and the

second rectangular acceleration pulses, respectively. The acceleration, velocity, and

position waveforms are then given by

A(t) =







a , 0 < t ≤ T

b , T < t ≤ 2T
(3.16)

V (t) =







at , 0 < t ≤ T

b(t − T ) + aT , T < t ≤ 2T
(3.17)

P (t) =







1
2
at2 , 0 < t ≤ T

1
2
b(t − T )2 + aT (t − T ) + 1

2
aT 2 , T < t ≤ 2T

(3.18)

It may be observed that the special case of Eq. 3.7–3.9 is obtained by substituting

b = −a in the general case of Eq. 3.16–3.18. The total displacement due to both

pulses is

D = P (2T ) =
1

2
bT 2 + aT 2 +

1

2
aT 2 =

1

2
(3a + b)T 2 (3.19)
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Thus, the displacement D is proportional to a linear combination of a and b, namely

3a + b, and by the same argument as above, with the stochastic variations ∆a

proportional to a and ∆b proportional to b, the stochastic variation 3∆a + ∆b

will be proportional to 3a + b, and therefore also to D. Hence, as before, the

displacement error E is proportional to the displacement D resulting from two

rectangular acceleration pulses of amplitudes a and b.

For prediction horizons greater than Tp, only the first 100 ms of R∗ is executed

before R∗ is being updated, that is, for the k-th submovement, the response moves

only a distance dk towards the target, where dk is smaller than the remaining

distance to the target. As before, the error Ek is certainly proportional to the

distance dk moved during the k-th submovement, however, contrary to the example

of fast ballistic movements above, where the prediction horizon was 100 ms, dk is no

longer equal to the remaining distance to the target before the k-th submovement.

Let E0 = D, then

d1 = β1D ⇒

E1 = αd1 = αβ1D,

d2 = β2E1 = αβ2β1D ⇒

E2 = αd2 = α2β2β1D,

...

Ek = αkβk . . . β1D (3.20)

where βi for i = 1, . . . , k is some fraction of the remaining distance. Thus, unless

the movement is ballistic, and βi = 1 for all i, βi will vary. Therefore, although

Ek = αdk, there is no such simple relationship as Ek = αEk−1 = αkD as before,

because dk 6= Ek−1. Instead, dk will be equal to some fraction βk of the remaining

distance. This fraction will be dependent on the initial and final state used during

the k-th RP interval.

74



Consider for example a unit step movement with receding horizon control and

Th = 200 ms. The optimal trajectory planned during RP1 will move the response

from zero to unity in two submovements that minimise acceleration. This implies

a first submovement from zero to 0.5 and a second submovement from 0.5 to unity,

hence β1 = 0.5. However, only the first portion is executed. During RP2, another

optimal trajectory is planned to bring the response from 0.5 to unity but because

of the velocity at the initial state (at position 0.5), the response trajectory will

be planned to overshoot the target before returning in order to minimise accelera-

tion. Moreover, the trajectory will have to move some fraction β2 of the remaining

distance that is smaller than β1. An analytic expression for

k
∏

i=1

(βi) is difficult to

obtain. Decomposing βi into a constant term γ and some residual function φ(i)

results in

βi = γ + φ(i), 0 < γ < 1 (3.21)

Thus, if φ(i) is sufficiently negligible for all i, the endpoint error for the k-th sub-

movement can be approximated by

Ek = αkγkD (3.22)

and a logarithmic speed-accuracy relationship can be derived. The simulation study

presented in this chapter shows that the logarithmic relationship gradually shifts

towards a linear one when increasing the prediction horizon Th for receding horizon

control simulations. This indicates that as Th increases,
k

∏

i=1

(βi) gradually takes the

form
k

∏

i=1

(βi) = α−k(1 − kc) (3.23)

where c is some constant. Substituting Eq. 3.23 into Eq. 3.20 shows that the

endpoint error will then be reduced linearly as movement speed is slowed (and the

number of submovements k is increased):

Ek = (1 − kc)D (3.24)
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3.2.2 Asymmetrical velocity profiles

The BUMP model hypothesises that receding horizon control predicts asymmetrical

velocity profiles, where the level of asymmetry increases as movement is slowed, or

conversely, the velocity profile becomes increasingly symmetrical for faster move-

ments, with the fastest possible ballistic movement of 100 ms duration yielding a

symmetrical velocity profile. The asymmetry occurs as a consequence of the slowed

responses being comprised of a sequence of overlapping submovements, with each

submovement preplanned to a receding prediction horizon a fixed interval of time

ahead. This gives rise to a movement strategy of moving quickly to get within the

ballpark of the target before finetuning the movement endpoint with slower sub-

movements. As a result, the acceleration phase of the movement becomes shorter

relative to the deceleration phase as the number of submovements, or movement

duration, increases. Consequently, the velocity profile becomes asymmetrical, or

left-skewed, and the level of asymmetry increases with movement duration. The

velocity profile resulting from the superposition of submovements can be approxi-

mated by a log-normal function similar to that described by Plamondon & Alimi

(1997), who showed that the log-normal function accounts for the invariance and

rescalability of velocity profiles as well as for observations concerning the change

in maximum and mean velocities and time to maximum velocity under different

experimental conditions.

3.2.3 Linear speed-accuracy tradeoff

The BUMP model predicts a linear speed-accuracy tradeoff when movements are

made with a fixed horizon control strategy. Consider the unidimensional task of

reaching to a stationary target as illustrated in Fig. 3.3. Initially, the limb about to

be moved is at a distance D away from the target. Employing fixed horizon control,

every desired response trajectory R∗ is planned to a fixed point ahead in time and

space. In this example, the prediction horizon is set to Th = 5Tp = 500 ms initially

and is then reduced by Tp = 100 ms at every RP interval. During RP1, a desired

response R∗

1 of duration Th = 5Tp = 500 ms is generated, of which only the first
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Figure 3.3: Reaching task using fixed horizon control. Each desired response R∗

i is
being planned to a fixed point ahead in time and space, in this case, Th = 500 ms
ahead in time. However, only the first 100 ms of each desired response, correspond-
ing to the duration Tp of an RP interval, is being executed. The remaining part
of each desired response R∗

i is therefore shown with a stapled line to emphasise
that it is not being executed. As the target is approached, the duration of the
desired response decreases by Tp = 100 ms at every RP interval. For clarity, all
errors Ei between desired responses R∗

i and actual responses Ri are shown as un-
dershoot errors. The only errors not incorporated in the desired response R∗

i are
the errors that occur during execution of R∗

i and R∗

i−1. Thus, the error at the end
of any submovement is always determined solely by the execution errors occurring
during the previous 200 ms during which the submovement is being planned and
executed open-loop and the RP system is refractory to sensory feedback. The pre-
dicted endpoint error of the movement is proportional to the average speed of the
movement.
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100 ms will be executed. During the execution interval RE1, the actual response R1

deviates from the desired response R∗

1 by an error E1 due to stochastic noise. During

SA2 there is no sensory information available about this future error about to occur,

therefore, the RP system assumes that the actual response matches that of the

desired response. Hence, the desired trajectory R∗

2 of duration Th = 4Tp = 400 ms

is generated without taking E1 into account. As always, only the first 100 ms of

the desired trajectory R∗

2 is executed during RE2, and again, an execution error

occurs. Therefore, the error E2 is a result of the execution errors that occurred

during RE1 and RE2 combined. During RP3, an error-correcting submovement R∗

3

of duration Th = 3Tp = 300 ms is planned based on information about the error E1

collected during SA3. The execution error that happens simultaneously during RE2

is not taken into account until RP4, during which the only errors not taken into

account are those that occur during RE3 and RE4. The process iterates. Despite

intermittent error correction at planning time rates, at the end of any submovement,

the only errors not taken into account are those that occurred during that particular

submovement and the submovement immediately preceding it, that is, during the

previous 200 ms.

A movement trajectory generated using fixed horizon control has a symmetrical

velocity profile (see Chapter 3.2.4 below) and a position trajectory that is antisym-

metrical about its midpoint. This implies that the trajectory can be scaled in time

and space. For example, if the endpoint error E of a movement is equal to some

fraction of the movement distance D for a movement time T , scaling D by some

factor while keeping T constant will scale E by the same factor. Likewise, scaling T

by some factor while keeping D constant will scale E by the inverse of the scaling

factor. As a result, a fixed horizon control strategy causes a linear speed-accuracy

tradeoff since the error at the end of the overall movement is proportional to the

average speed of the movement
D

T
. In statistical terms, the mean trajectory is the

ideal trajectory that has zero endpoint error and consequently, E corresponds to

the standard deviation of the linear law (Eq. 3.5, p. 64) of Schmidt et al. (1979).
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3.2.4 Symmetrical velocity profiles

Contrary to receding horizon control, fixed horizon control predicts symmetrical

velocity profiles not just for the fastest possible movements, but for movements of

any duration. The reason for this is the strategy of planning every submovement

to the same point ahead fixed in time and space. Consider the optimal N -step

desired response R∗ in Fig. 2.12 discussed previously (Chapter 2.4, p. 51). The

position trajectory minimises acceleration and is perfectly antisymmetrical about

its midpoint. The underlying velocity profile is also symmetrical, with the peak

velocity occurring midway through the movement. At every RP interval, the RP

system generates an updated R∗ that smoothly connects the current state and the

final state with minimum demand on acceleration. Assuming zero noise, which is

equivalent to the average case because the additive noise is stochastic with zero

mean, the updated R∗ will trace the initial S-shaped trajectory generated at the

very first RP interval at every consecutive RP interval until the target is reached.

Consequently, when subjects adopt a fixed horizon strategy, the velocity profile is

symmetrical and independent of the movement speed.

3.3 Method

The theoretical mathematics used previously to describe the BUMP model can

appear overwhelming, even to those with a high level of mathematical expertise.

Moreover, testing the theory numerically quickly becomes a tedious task due to the

number of factors to consider, such as choice of variable horizon control strategy,

duration of the prediction horizon, and noise level. Finally, results obtained from

a theoretical model should be compared with human experimental data in order

to examine the validity of the model. For these reasons a computer-simulated

environment of the theory is required. Matlab and Simulink are software packages

developed by The MathWorks (see www.mathworks.com) and have become the de

facto standard for modelling and simulation. Matlab is a programming language

for technical computing. It offers an array of tools for simulation and modelling

79

http://www.mathworks.com


through its capabilities of mathematical computation and data analysis. Simulink is

built on Matlab and is capable of representing dynamical, possibly time-varying,

systems graphically as engineering block diagrams that implement mathematical

rules and equations. It provides an interactive graphical environment in which

a large collection of library building blocks can be connected to form a desired

system, or model. For particular needs, custom blocks can be developed with the

aid of Matlab code. Through batch processing scripts, the overall system can

be simulated with a number of combinations of settings and parameter values to

produce a large set of real-time response waveforms for comparison with data from

human experiments.

This thesis hypothesises that the BUMP model of response planning accounts

for both the logarithmic and the linear speed-accuracy tradeoffs in aimed move-

ment as well as for the accompanying asymmetrical and symmetrical velocity pro-

files and the way these change with movement speed. This hypothesis is tested by

means of a computational simulation of the intermittently operating optimal trajec-

tory generator described in the model. Trajectories for aimed step movements are

implemented with variable horizon predictive control along with signal-dependent

noise. As outlined in Chapter 3.2, the BUMP model predicts that receding horizon

control corresponds to spatially constrained movements with logarithmic speed-

accuracy tradeoffs and asymmetrical velocity profiles, whereas fixed horizon control

corresponds to time-matched movements with linear speed-accuracy tradeoffs and

asymmetrical velocity profiles.

3.3.1 Description of simulator

A comprehensive simulator of human movement planning and control has been de-

veloped within the AMT framework utilising Matlab and Simulink software (see

Appendix B.1 for a Simulink block diagram and explanation). The simulator imple-

ments the SA, RP, and RE systems and the detailed model description presented in

Chapter 2 and elsewhere (Neilson & Neilson, 2005b). Extending the work of Olsen

(2001), particular attention has been given to the development of the RP system
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and the OTG described in Chapter 2.4. Provided with position and velocity feed-

back of the actual response as well as the predicted future state of the target from

the SA system, the RP system calculates an optimal trajectory R∗ to reach the

predicted future state of the target and to compensate for executional error. Oper-

ating intermittently, the RP system passes R∗ to the RE system at 100 ms intervals.

Because the present study was focussed on response planning, the RE system was

simplified by pre-tuning the inverse model to exactly compensate for the dynamics

of the plant (i.e., wired-in synergy generator, the musculoskeletal system, and the

external world). Thus, the response at the output of the plant matches the required

response trajectory R∗ generated by the RP system regardless of plant dynamics.

Consequently, error in response execution is only related to stochastic noise, which

is added to the motor commands and whose standard deviation is proportional to

their magnitude.

3.3.2 Simulator settings

The simulator was programmed to implement a fixed horizon strategy and a re-

ceding horizon strategy for simulated aimed movement in order to investigate the

corresponding speed-accuracy tradeoffs and velocity profiles. Aimed movement was

simulated by specifying planned step movements, that is, to move from one fixed

spatial position to another fixed position some distance away. For receding hori-

zon control, 10 cm step movements with 10 different prediction horizons Th were

simulated. The test cases consisted of trials with Th = 100, 200, . . . , 1000 ms. The

prediction horizon remained constant during each movement. For fixed horizon

control, step movements of amplitudes 10, 20, and 30 cm with 20 different initial

prediction horizons Th = 100, 150, . . . , 1000 ms were simulated. At every planning

time interval Tp = 100 ms, the prediction horizon was reduced by 100 ms until

a minimum of Th = 100 ms was reached, after which Th remained constant at a

value of 100 ms. The only exception to the rule of subtracting 100 ms from the

prediction horizon occurred if the prediction horizon was Th = 150 ms during an
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Setting Receding strategy Fixed strategy

Tp (ms) 100 100
Th (ms) {100, 200, . . . , 1000} {100, 150, . . . , 1000}
D (cm) 10 {10, 20, 30}
Ts (s) 5 5
nc {0.5} {0.5}
S {5, 10, . . . , 5000} {5, 10, . . . , 5000}
Ns 1000 1000
Ntotal 10,000 60,000

Table 3.1: Settings for simulations of speed-accuracy tradeoffs in human aimed
movements. Tp is the RP interval; Th is the constant or initial prediction horizon
for receding or fixed horizon control, respectively; D is step movement amplitude; Ts

is simulation duration; nc is the noise constant; S are the seeds used in Matlab to
generate sequences of zero mean Gaussian numbers; Ns is the number of simulations
for each test case, which is equal to the number of different seeds; and Ntotal is the
total number of simulations for each control strategy.

RP interval, which resulted in the next prediction horizon being Th = 100 ms, that

is, a reduction of only 50 ms occurred in this particular case.

To investigate speed-accuracy tradeoffs, stochastic noise was added to the mo-

tor commands and was proportional to them by a factor, or noise constant, nc =

0.5. Each test case was simulated Ns = 1000 times with 1000 different “seeds”

S = {5, 10, . . . , 5000}, or sequences of random numbers, generated by the noise

module to signify stochastic noise. The same seeds were used for each test case.

The first Ts = 5 s of each simulated movement were recorded for subsequent anal-

ysis. Table 3.1 summarises the experimental setup for the speed-accuracy tradeoff

simulations.

To investigate velocity profiles, stochastic noise was set to zero for ten test cases

with Th = 100, 200, . . . , 1000 ms for both receding or fixed horizon control. In

addition, to simulate two typical velocity profiles observed in handwritten strokes,

Th was set to 150 and 200 ms, also with noise turned off.
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3.4 Results and conclusions

3.4.1 Logarithmic speed-accuracy tradeoff

Fig. 3.4(a) and (b) show the endpoint mean absolute error W versus time (top)

and the movement time T versus the index of difficulty Id = log2
2D
W

(bottom) for

simulations of 10 cm step movements using receding horizon control. Throughout

each movement the prediction horizon is kept constant at either Th = 100 ms

(Fig. 3.4(a)) or Th = 500 ms (Fig. 3.4(b)). In both figures, the error appears to be

reduced exponentially with time. Employing unconstrained nonlinear minimisation

through the Nelder-Mead direct search method, the best fit exponential function

W = D × 2−λt is found and superimposed as a solid line for the top plots. For

the bottom plots, a linear function T = aId + b that is the best fit in the least-

squares sense is superimposed as a solid line. Both the movement time and the

index of difficulty are in correspondence with those reported in the literature (e.g.,

Fitts, 1954; Fitts & Peterson, 1964). Movement time ranges from 100 to 700 ms

(Th = 100 ms) and from 500 to 1100 ms (Th = 500 ms), while the index of difficulty

ranges from 1.5 to 4.1 (Th = 100 ms) and from 2.2 to 3.8 (Th = 500 ms).

For each test case (only Th = 100 ms and Th = 500 ms presented graphically

here), Table 3.2 shows the goodness of fit given by the coefficient of determination

R2, which is the proportion of variability in a data set that is accounted for by a

statistical model and is equal to the square of Pearson’s product-moment correlation

coefficient. As is evident from Table 3.2, an exponential function is able to explain

99.39% or more of the variability of the endpoint mean absolute error, except for

the cases of Th = 100 ms and Th = 200 ms, where it explains 97.21% and 95.56%,

respectively. Table 3.2 also shows that a linear function is able to explain 98.04% or

more of the variability of the index of difficulty. Consequently, it may be concluded

that the error decreases exponentially with movement time, or equivalently, as the

movement amplitude is constant (10 cm), the error increases exponentially with

movement speed. Furthermore, it may be concluded that movement time increases

linearly as a function of the index of difficulty, a finding equivalent to Fitts’ law.

83



100 200 300 400 500 600 700
0

1

2

3

4

Time  t  (ms)

 W
=

D
× 

2−
λ 

t   (
cm

)

Receding horizon predictive control: 100 ms horizon

 

 
Mean absolute error W

 W=5.09×2−0.0041t

1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

Index of difficulty  I
d
  =  log

2
 (2D/W)

 T
 =

 a
I d+

b 
 (

m
s)

Receding horizon predictive control: 100 ms horizon

 

 
Movement time T
T=205.85 I

d
−159.44

(a)

500 600 700 800 900 1000 1100
0

0.5

1

1.5

2

2.5

Time  t  (ms)

 W
=

D
× 

2−
λ 

t   (
cm

)

Receding horizon predictive control: 500 ms horizon

 

 
Mean absolute error W

 W=5.12×2−0.0025t

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
400

500

600

700

800

900

1000

1100

Index of difficulty  I
d
  =  log

2
 (2D/W)

 T
 =

 a
I d+

b 
 (

m
s)

Receding horizon predictive control: 500 ms horizon

 

 
Movement time T
T=393.10 I

d
−394.36

(b)

Figure 3.4: Endpoint mean absolute error for simulations of a 10 cm step move-
ment using receding horizon control. A best fit exponential function of the form
W = D × 2−λt (top) as well as a best fit linear function T = aId + b (bottom) is
superimposed as a solid line for (a) Th = 100 ms and (b) Th = 500 ms.
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Prediction horizon Exponential fit Linear fit
Th (ms) R2 R2

100 0.9721 0.9804
200 0.9556 0.9805
300 0.9985 0.9982
400 0.9982 0.9985
500 0.9981 0.9984
600 0.9968 0.9978
700 0.9972 0.9982
800 0.9970 0.9970
900 0.9945 0.9946
1000 0.9939 0.9947

Table 3.2: Coefficient of determination R2 as a measure of goodness of fit for the best
fit exponential and linear functions W = D×2−λt and T = aId + b, respectively, for
10 cm step movements employing receding horizon control and prediction horizons
Th = {100, 200, . . . , 1000} ms.

3.4.2 Asymmetrical velocity profiles

Fig. 3.5(a) shows the velocity profile of a real 2-cm rapid handwritten stroke (adap-

ted from Fig. 4b, Plamondon, 1998) and its reproduced counterpart, simulated

using a receding horizon strategy with Tp and Th time-scaled to 70 ms and 140 ms,

respectively. The corresponding position trajectory (Fig. 4a, Plamondon, 1998, not

shown) is S-shaped with no overshoot. The goodness of fit is given by a coefficient

of determination R2 = 0.9990.

Fig. 3.5(b) shows the velocity profile of a real 3-cm rapid handwritten stroke

(adapted from Fig. 4e, Plamondon, 1998). Its reproduced counterpart was simu-

lated using a receding horizon strategy with Tp and Th time-scaled to 83 ms and

124 ms, respectively. The goodness of fit is given by a coefficient of determination

R2 = 0.9879. The corresponding position trajectory (Fig. 4d, Plamondon, 1998,

not shown) is S-shaped with more than 20% overshoot, which causes the second

negative peak in the velocity profile.

The correspondence between real and simulated data in Fig. 3.5 is remarkable

given that the simulated profile has straight-line segments (due to the approximation

of EMG bursts as rectangular pulses).
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Figure 3.5: Comparison between typical velocity profiles (solid lines) observed in
handwritten strokes (adapted from Plamondon, 1998) and simulated velocity pro-
files (stapled lines) obtained using receding horizon control with (a) Th = 200 ms
and (b) Th = 150 ms.
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Prediction horizon Acceleration time Deceleration time Asymmetry ratio

Th (ms) Ta (ms) Td (ms)
Ta

Td

100 75 75 1.0000
200 100 250 0.4000
300 150 400 0.3750
400 200 550 0.3636
500 250 700 0.3571
600 250 900 0.2778
700 300 1150 0.2609
800 350 1350 0.2593
900 400 1550 0.2581
1000 450 1750 0.2571

Table 3.3: Level of asymmetry in velocity profiles for 10 cm step movements using
receding horizon control given by the ratio of duration of positive and negative
acceleration.

Fig. 3.6(a) and (b) shows the velocity profiles for simulations of 10 cm step

movements using receding horizon control where the prediction horizon is kept con-

stant at either (a) Th = 100 ms, or (b) Th = 500 ms. The sharp corners of the

profiles are due to the approximation of EMG bursts as rectangular pulses. In the

case of Fig. 3.6(a), the maximum velocity occurs midway through the movement

and thus, the velocity profile is symmetrical. However, in the case of Fig. 3.6(b),

the maximum velocity occurs early in the movement and thus, the velocity pro-

file is left-skewed, or asymmetrical. Both velocity profiles are comparable to ones

observed experimentally (e.g., Berardelli et al., 1996; Plamondon & Alimi, 1997).

Examination of the velocity profiles of all 10 test cases ranging from Th = 100 ms to

Th = 1000 ms (only Th = 100 ms and Th = 500 ms presented graphically here) shows

that the velocity profile becomes increasingly asymmetrical, that is, left-skewed, as

the prediction horizon Th is increased, just as observed experimentally by Beggs &

Howarth (1972). Numerically, Table 3.3 shows the level of asymmetry given by the

ratio between the duration of positive and negative acceleration for each test case.
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Figure 3.6: Velocity profiles for simulations of a 10 cm step movement using receding
horizon control. (a) Movement with prediction horizon Th = 100 ms. The profile
is perfectly symmetrical. (b) Movement with prediction horizon Th = 500 ms. The
profile is left-skewed, or asymmetrical.
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These findings are consistent with the proposal that when performing spatially

constrained aimed movements without timing constraints, the CNS selects a reced-

ing horizon control strategy, and as a direct consequence, the resulting movements

obey Fitts’ law and display asymmetrical velocity profiles, as observed experimen-

tally.

3.4.3 Linear speed-accuracy tradeoff

To obtain comparisons of speed versus accuracy for movements employing fixed

horizon control, movements with different speeds, where the speed depends on the

initial prediction horizon (desired movement duration) and the movement distance,

are grouped together. In all, there are 60 test cases where the initial prediction

horizon varies from Th = 100 ms to Th = 1000 ms in 50 ms intervals and the

movement distance is either 10, 20, or 30 cm. Fig. 3.7 shows the endpoint standard

deviation We versus average velocity vav for one such group of movements with

durations of 100, 150, and 200 ms made to a target 10, 20, or 30 cm away.

The standard deviation appears to increase linearly as the movement speed

increases. The linear function We = avav + b = a
D

T
+ b that fits the data best in

the least-squares sense is superimposed as a solid line. Both the standard deviation

and the average velocity are directly comparable to those reported by Schmidt et al.

(1979). The standard deviation ranges from 2 to 9 mm while the average velocity

ranges from 70 to 300 cm/s.

Table 3.4 summarises the correlation coefficients between the best fit linear func-

tion and the data for movement groups A–F. It shows that a linear function is able

to explain 99.16% or more of the variability of the endpoint standard deviation,

except for the case of group B, where it explains 98.57% of the data. This im-

plies that the standard deviation increases linearly with the average velocity of the

movement.
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Figure 3.7: Endpoint standard deviation We versus average velocity vav using fixed
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+ b is superimposed as a solid line.
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Group Initial prediction horizons Movement distance Linear fit
Th (ms) D (cm) R2

A {100, 150, 200} {10, 20, 30} 0.9968
B {150, 200, 250} {10, 20, 30} 0.9940
C {100, 150, . . . , 500} {10, 20, 30} 0.9920
D {200, 400, . . . , 1000} {10, 20, 30} 0.9916
E {100, 150, . . . , 500} 10 0.9857
F {100, 200, . . . , 1000} 10 0.9942

Table 3.4: Groups of fixed horizon control step movements of varying initial predic-
tion horizons and movement distances and their corresponding correlation coeffi-
cient R2 as a measure of goodness of fit for the best linear function We = avav + b =

a
D

T
+ b. Th is the initial prediction horizon; D is the movement distance; and R2 is

the correlation coefficient.

3.4.4 Symmetrical velocity profiles

Fig. 3.8(a) and (b) show the velocity profiles for simulations of 10 cm step move-

ments using fixed horizon control where the initial prediction horizon is either (a)

Th = 100 ms, or (b) Th = 500 ms. Both velocity profiles have their maximum

velocity halfway through the movement, that is, the profiles are perfectly sym-

metrical. Indeed, examination of the velocity profiles of all 10 test cases ranging

from Th = 100 ms to Th = 1000 ms (only Th = 100 ms and Th = 500 ms pre-

sented graphically here) shows that the velocity profile is perfectly symmetrical in

all cases, or equivalently, the ratio of asymmetry is equal to one. These velocity

profiles match those reported experimentally (e.g., Novak, Miller, & Houk, 2000;

Atkeson & Hollerbach, 1985).

The findings are consistent with the proposal that when performing movements

that minimise endpoint error with a prespecified duration, the CNS selects a fixed

horizon control strategy, resulting in a linear speed-accuracy tradeoff and with sym-

metrical velocity profiles, as observed experimentally.
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Figure 3.8: Velocity profiles for a 10 cm step movement using fixed horizon control.
Movements with prediction horizons (a) Th = 100 ms; and (b) Th = 500 ms. The
velocity profile is perfectly symmetrical in both cases.
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3.5 Discussion

3.5.1 Logarithmic speed-accuracy tradeoff

The simulation results exemplified by Fig. 3.4(a) and (b) and summarised in Ta-

ble 3.2 show how the endpoint mean absolute error is reduced logarithmically with

time for 10 cm step movements employing a receding horizon control strategy. The

top graph in each figure shows a best fit exponential function of the same form as

Eq. 3.1 (Fitts’ law, p. 62) whereas the bottom graph shows a best fit linear function

of the same form as Eq. 3.3 (Fitts’ law as a function of the index of difficulty, p. 62).

Using a receding horizon control strategy, the duration of the preplanned optimal

trajectory R∗ generated at every RP interval is held constant. This duration is

referred to as the prediction horizon Th. As the prediction horizon is increased for

each test case, the exponential fit becomes gradually more linear as the decay rate

decreases. The simulations suggest that when subjects are told to make a point-to-

point movement with emphasis on spatial accuracy but in their own time of choice,

they adopt a receding horizon control strategy. By making slower than ballistic

movements they can reduce energy demands on muscles. It would also appear that

this is the strategy adopted when subjects are instructed explicitly to make slow

movements, or movements with durations within a broad time range. In such move-

ments where there is no or very little temporal accuracy involved, the simulations

show a fast initial movement followed by one or more correcting movements, just as

observed experimentally. Such movements have consistently been reported to abide

by Fitts’ law. However, it should be emphasised that experimental paradigms that

confirm Fitts’ law usually involve time-minimisation tasks where the subjects are

instructed to move as fast as possible while keeping within the maximally allowed

error range. This is equivalent to keeping the prediction horizon as small as pos-

sible, that is, the prediction horizon is Th = 100 ms, resulting in the logarithmic

tradeoff in Fig. 3.4(a). When Fitts (1954) proposed his logarithmic law, he did not

do any line fitting of his findings, however, in their discrete movement experiments

equivalent to the step movements examined here, Fitts & Peterson (1964) report
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strong correlation coefficients of 0.994 and 0.995 between the index of difficulty and

the movement time. Corresponding to the simulation test case of Th = 100 ms,

the comparable correlation coefficient R2 is slightly lower at 0.9804 for the best fit

linear function. In addition, Fitts’ law does hold for slower movements too, and in

the case of the simulations presented here, all the other test cases (Th > 100 ms)

also have strong correlation coefficients with values above 0.9556 and 0.9805 for

their exponential and linear functions, respectively.

3.5.2 Linear speed-accuracy tradeoff

The simulation results exemplified by Fig. 3.7 and summarised in Table 3.4 show

how the endpoint standard deviation increases linearly with the average movement

velocity for movements employing fixed horizon control. Each figure shows a best

fit linear function of the same form as Eq. 3.5 (p. 64) found by Schmidt et al.

(1979). Using a fixed horizon control strategy, the duration, or prediction horizon

Th, of the preplanned optimal trajectory R∗ is reduced at every RP interval by an

amount equal to the time it takes for the RP system to generate a new R∗, namely

100 ms. Therefore, the initial prediction horizon corresponds to the desired total

movement duration. The simulations include movements to a step target located

at a distance of 10, 20, or 30 cm. The initial prediction horizon ranges from 100

to 1000 ms. Particularly interesting are groups A and B in Table 3.4, where group

A is also depicted graphically in Fig. 3.7. Group A consists of step movements of

amplitudes 10, 20, and 30 cm, with durations of 100, 150, and 200 ms. Therefore,

this simulation is analogous to the experiment by Schmidt et al. (1979), where

subjects made single aimed tapping movements with the same amplitudes and 140,

170, and 200 ms durations. Schmidt et al. (1979) report a correlation of 0.97 between

the endpoint standard deviation and average velocity, whereas the simulations yield

a correlation coefficient of R2 = 0.9968. Group B, on the other hand, consists of

step movements of amplitudes 10, 20, and 30 cm and durations of 150, 200, and

250 ms. This simulation is analogous to the experiment by Zelaznik et al. (1986),

who had subjects perform exactly the same group of movements. Zelaznik et al.

94



(1986) report a correlation of 0.96 while the simulation results show a correlation

coefficient of R2 = 0.9940. Although the linear relationships of both Schmidt et al.

(1979) and Zelaznik et al. (1986) are very strong, it is perhaps not surprising that the

correlations in the simulations are even stronger. After all, experiments with human

beings are inherently prone to noise factors, for example lack of concentration,

whereas the simulator personifies someone who is highly skilled and does not get

distracted by external factors.

3.5.3 Velocity profiles

As previously discussed, acceleration waveforms associated with EMG bursts of

the agonist and antagonist muscle activity are approximated in the simulations by

rectangular pulses. Consequently, the velocity profiles produced by the simulator

(Figs. 3.5, 3.6, and 3.8) include sharp corners instead of being smooth. The distor-

tion introduced by this simplification becomes less important as the duration of the

movement is increased.

Applying a receding horizon control strategy, the simulator reproduces exactly

the left-skewed asymmetrical velocity profiles observed experimentally that occur in

spatially constrained movements. As can be seen in Fig. 3.6(a), the velocity profile

is perfectly symmetrical for a ballistic movement, just as reported experimentally

(e.g., Berardelli et al., 1996). However, the profile becomes gradually more asym-

metrical as the prediction horizon is increased (Fig. 3.6(b), Table 3.3). This is in

line with experimental data (e.g., Beggs & Howarth, 1972). When subjects are

instructed to emphasise spatial accuracy only, the velocity profile becomes increas-

ingly asymmetrical as movement speed is reduced, with the peak velocity occurring

relatively early in the movement. This corresponds to a strategy of making a fast

initial movement to move into the ballpark of the target before zooming in on the

target with one or several correcting movements.

Furthermore, applying a fixed horizon control strategy, the simulator reproduces

the symmetrical velocity profiles that occur in movements that are both spatially

and temporally constrained. As can be seen in Fig. 3.8(a), the velocity profile
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is symmetrical for a ballistic movement, however, examination of all test cases

show that it remains symmetrical even as the initial prediction horizon is increased,

with an example given by Fig. 3.8(b). The symmetrical velocity profiles are in

line with experimental findings in time-matching tasks (Shapiro & Walter, 1986;

Cooke & Brown, 1994; Schmidt & Lee, 1999). When subjects make movements

that emphasise both spatial and temporal accuracy, that is, time-matching tasks,

the maximum velocity occurs approximately midway, and the velocity profile is

symmetrical for a range of movement durations.
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Chapter 4

Study II: Physiological tremor

4.1 Literature review

4.1.1 Introduction

Tremor in relation to human motor control may be defined as unintentional back-

and-forth movements of a body part. Normal, or physiological, tremor is exhibited

by any healthy person. When it is exacerbated by stress, ageing, fatigue, anx-

iety, the influence of some medications, or medical conditions such as hyperthy-

roidism, it is termed enhanced physiological tremor (Bain, 2002; McAuley & Mars-

den, 2000). In contrast, pathological tremors occur as a manifestation of movement

disorders. Common pathological tremors include essential, parkinsonian, cerebel-

lar, psychogenic, orthostatic, rubral, Holmes’, and neuropathic tremor (Deuschl,

Raethjen, Lindemann, & Krack, 2001). According to Louis, Ottman, & Hauser

(1998), essential tremor is the most common adult movement disorder, being more

than 20 times more prevalent than Parkinson’s disease. Thus, it is not surprising

that research into pathological tremor has received much interest. Physiological

tremor, on the other hand, is a normal phenomenon unknown to most people as its

small amplitude oscillations are barely visible and generally do not impair every-

day motor tasks. Perhaps as a result, physiological tremor has traditionally been

considered simply as unwanted biological “noise” in the motor system (e.g., see Fox

& Randall, 1970; Goodman & Kelso, 1983; Lakie & Combes, 1999) and a purpose-

less feature of motor control (Brumlik, 1962; Stiles & Randall, 1967). According

to Morrison & Keogh (2001), this view is still held, which is somewhat surprising,
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given that oscillatory behavior is considered an intrinsic property of a normally

functioning motor system. Nevertheless, researchers have attempted to disclose the

origin of physiological tremor and its potential function for more than 120 years

(e.g., Horsley & Schäfer, 1886). Indeed, the view that physiological tremor may be

a manifestation in the periphery of functional central oscillatory activity has gained

interest in recent years (see McAuley & Marsden, 2000, for a review).

Tremor may be divided into categories depending on the conditions under which

it occurs. For the purpose of identification of pathological tremor, clinicians usu-

ally consider tremors that occur during rest, posture, or goal-directed movements

(Deuschl et al., 2001). According to Bain (2007), tremor can be defined as either

rest tremor or action tremor. Rest tremor is tremor that occurs when a body part is

not voluntarily activated and is completely supported against gravity. On the con-

trary, action tremor is any tremor that occurs during voluntary muscle contractions.

Action tremor may be further subdivided into postural tremor (tremor during the

voluntary maintenance of posture against gravity), kinetic tremor (tremor during

any voluntary movement), intention tremor (tremor occurring towards the end of a

target-directed movement), task-specific tremor (tremor during specific activities,

e.g., primary writing tremor), and isometric tremor (tremor during muscle con-

traction against a rigid stationary object) (Bain, 2007). Other categories include

higher amplitude tremors and tremor during compliant contractions (McAuley &

Marsden, 2000).

4.1.2 Mechanisms of physiological tremor

According to the review by Elble (1996), physiological tremor consists of two distinct

components, namely mechanical-reflex oscillations and 8–12 Hz central-neurogenic

oscillations. Mechanical properties such as the inertia, viscosity, and elasticity of a

body part cause damped oscillations to occur in response to pulsatile perturbations

(Elble, 2003). In addition, under the influence of mechanical load, drugs, or fatigue,

the spinal reflex arc may also contribute (Stiles, 1976; Hagbarth & Young, 1979),
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therefore this component is commonly termed mechanical-reflex tremor (Mayston,

Harrison, Stephens, & Farmer, 2001).

In contrast, the central-neurogenic tremor is always associated with modulation

of motor unit activity (Elble, 2003). Whereas the mechanical-reflex tremor may

be seen as a passive response to perturbations originating externally or internally

(Mayston et al., 2001), the central-neurogenic component is an active component,

where rhythmic motor unit activity, likely originating from an oscillating neural

network in the CNS (Elble, 1996), drives the tremor observed in a body part (Elble,

2003).

Both components are superimposed on a background of irregular fluctuations

in muscle force and limb displacement (Elble & Randall, 1976, 1978). These os-

cillations have a frequency of 0–15 Hz and are produced by motor units that fire

near their threshold (Allum, Dietz, & Freund, 1978; Christakos & Lal, 1980; Di-

etz, Bischofberger, Wita, & Freund, 1976; Freund, 1983; Marshall & Walsh, 1956).

However, skeletal muscles act as a low-pass filter, thus attenuating frequency com-

ponents above 3–5 Hz (Partridge, 1966).

It is certainly possible to view the components of physiological tremor differently

than Elble (1996). For example, Deuschl et al. (2001) postulate three causes of phys-

iological tremor: Mechanical tremor, reflexes of the CNS, and central oscillations.

McAuley & Marsden (2000) extend this view and lists five factors contributing

to physiological tremor, all of which contribute to varying degrees depending on

the conditions under which the tremor occurs: Mechanical resonances, feedback

resonances, motor unit firing properties, synchronised motor unit oscillations, and

central oscillations.

Mechanical resonances

Mechanical properties of bone, muscle, and soft tissue of a body part imply a system

possessing properties such as inertia, viscosity, and elasticity. This allows for a body

part to be modeled as a second-order mass-spring system. Based on this idea, inves-

tigation of muscle-load tremor of the rat and of the human hand and finger led to
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the mechanical resonance hypothesis (Rietz & Stiles, 1974; Stiles & Randall, 1967),

which assumes that broadband stochastic frequency forcing, i.e., asynchronous mus-

cle fiber contraction, within an underdamped viscoelastic-mass system accounts for

physiological tremor (Stiles, 1976, 1980). By systematically varying the moment of

inertia through the addition of loads, Rietz & Stiles (1974) found that tremor fre-

quency varied in the same manner as that predicted by a mass-spring model. Similar

results were obtained by Joyce & Rack (1974) from examination of mechanically

loaded elbow flexion movements against a spring. Varying both the stiffness and

load, Joyce & Rack were able to adjust the tremor frequency between 2 and 12 Hz.

In general, it is agreed that the mechanical fundamental, or resonant, frequency ω0

of a body limb approximates

ω0 = 2πf0 =

√

K

I
, (4.1)

where K is the stiffness or forces exerted on the limb and I is the moment of inertia

(e.g., Elble, 1996; Deuschl et al., 2001; McAuley & Marsden, 2000).

For the unloaded finger, the resonant frequency is in the range of 25 Hz (Stiles

& Randall, 1967) to 27 Hz (Halliday & Redfearn, 1956). The resonant frequency of

the wrist has been reported as 9 Hz (Marsden, 1984) or more broadly as 8–12 Hz

(Elble & Randall, 1978; Lakie, Walsh, & Wright, 1986), whereas the elbow has

been found to have a resonant frequency of 2 Hz (Marsden, 1984) or 3–5 Hz (Fox

& Randall, 1970).

If loaded or under force exertion, new fundamental frequencies can be found by

sharply perturbing the body part. Similar to tapping a tuning fork, the perturba-

tion results in die-away oscillations of the new load and force dependent frequency

(Halliday & Redfearn, 1956).

From the above, mechanical resonance may only account for physiological tremor

of the wrist, which has a fundamental frequency in the same range as physiological

tremor. To account for more proximal limbs, their fundamental frequencies must

be increased by increasing muscle tension and stiffening the limbs. Still, mechanical
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resonance can play a passive but important role in tremor generation through its

filtering properties. Tremor of a frequency widely different from the fundamental

frequency needs to be of great power to exert a noticeable modulation (McAuley &

Marsden, 2000). Consequently, the likelihood of detecting higher peak frequencies

decreases from including mechanical loads and increases from using elastic forces.

Reflex loop resonances

Many have proposed reflex loop resonances to be a major contributor to physiolog-

ical tremor (e.g., Halliday & Redfearn, 1958; Joyce & Rack, 1974; Joyce, Rack, &

Ross, 1974; Lippold, Redfearn, & Vučo, 1957; Lippold, 1970; Mori, 1975; Perkins,

1945). This view is based upon the fact that the peripheral stretch reflex can be

considered a negative feedback loop. Such a servo-mechanism may cause synchro-

nised EMG activity and tremor with a period of double the loop delay (McAuley

& Marsden, 2000). In other words, if the loop delay is half the period of a muscle

oscillation, the negative feedback signal will become positive due to phase reversal

in the loop and a self-maintained oscillation may occur (Halliday & Redfearn, 1956).

According to Marsden (1978), the loop time for the spinal stretch reflex in the finger

is approximately 50 ms. Therefore, a muscle oscillation with a period of 100 ms, or

a frequency of 10 Hz, could be enhanced by reflex loop resonance. Similarly, oscil-

lations due to the long latency stretch reflex would occur at 7 Hz (Marsden, 1978).

As pointed out by McAuley & Marsden (2000), even in cases where short or long

latency reflex loop times do not correspond exactly with experimentally observed

tremor frequencies, they may still be influential, as co-existing loops may interact

together or with other modulations, thus causing other tremor peak frequencies to

occur (Matthews, 1993).

Early examinations of finger tremor in tabetic patients provided support for the

servo-loop hypothesis because of an absence of a 10 Hz peak for the most severely

deafferented patients (Halliday & Redfearn, 1958), however, others have been unable

to reproduce this finding (Marsden, Meadows, Lange, & Watson, 1967b).
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The relative size of a physiological tremor power peak generally increases with

the tremor amplitude (Marsden, Meadows, Lange, & Watson, 1969c). One possible

explanation is that muscle spindles receive increased stimuli from the mechanical

oscillations, which in turn increases the synchronisation of motor neuron discharge

around the peak frequency (Marsden, Meadows, & Lange, 1970).

As for mechanical resonances, mechanical loading decreases the reflex loop

tremor frequencies (Berthoz & Metral, 1970). The greater inertia due to the load

increases the delay from movement production to detection by afferent receptors

(McAuley & Marsden, 2000), thus lowering the frequency of the tremor component

due to reflex loop resonance.

Together with mechanical resonances, reflex resonances may be seen as passive

contributors to physiological tremor. For example, as suggested by Joyce & Rack

(1974), a tremor may have its principal frequencies determined by the mechanical

system in the limb as well as the stretch reflex timing, whereas the driving mecha-

nism may be an irregular disturbance signal due to the irregularity of motor neuron

discharge (Taylor, 1962), cardiac factors such as the pulsatile ejection of blood and

its movements through vessels (Yap & Boshes, 1967), chest movements due to res-

piration (Padsha & Stein, 1973), or other mechanically coupled movements in the

body.

Motor unit firing properties

Individual motor units do not fire over a continuous frequency range but start firing

at a minimum frequency of about 8–10 Hz (Henneman, 1979), possibly in part due to

spinal mechanisms such as Renshaw inhibition (Granit & Renkin, 1961). According

to McAuley & Marsden (2000), frequency spectra from surface EMG recordings of

multiple motor units during steady isometric contractions generally have a peak

in the 8–12 Hz range, suggesting summated activity of a number of motor units.

Therefore, summation of motor unit forces at a muscle tendon resulting in active

tremor could reflect such motor unit firing properties (Marshall & Walsh, 1956;

Hömberg, Reiners, Hefter, & Freund, 1986).

102



Change in mean motor unit firing rates or varying contraction lengths do not

shift the active tremor frequency from its 10 Hz peak, which seems to oppose the

above hypothesis. McAuley & Marsden (2000) explain this invariance on the basis

that newly recruited motor units firing in the minimum 8–12 Hz range will be

larger and dominate the other faster firing units. The phenomenon of fusion means

that force fluctuations due to faster firing units are relatively more attenuated by

mechanical properties of the muscle (Marsden, 1978). Hence, newly recruited units,

which contribute a proportionately large amount to the force output (Allum et al.,

1978), will cause unfused twitches at 8–12 Hz. Examining submaximal isometric

knee contractions, Ebenbichler et al. (2000) observed a 10 Hz tremor that was

probably due to the recruitment of units and fatigue-related properties of high

threshold motor units of muscles.

Synchronised motor unit oscillations

It is known from studies on isometric contraction that under some experimental

conditions, the 8–12 Hz peak frequency results from synchronisation of motor units

that tend to fire together in a pervasive 8–12 Hz rhythm rather than at random (Fox

& Randall, 1970; Mori, 1975; Elble & Randall, 1976; Elble, 1986). For example,

Elble & Randall (1976) found that the majority of individual finger muscle units

were firing in the range 13–22 Hz, whereas surface EMG showed a 8–12 Hz rhythm

related to whole populations of units. Examination of individual motor unit spike

trains displayed transient sequences of double discharges with interspike intervals

(ISIs) of approximately 8–30 ms alternated with ISIs of 60-90 ms. As a result, the

frequency spectra of these motor units showed distinct 8–12 Hz peaks in addition

to peaks in the higher mean firing range. Coherency analysis demonstrated that

the 8–12 Hz peak was correlated to the 8–12 Hz finger tremor and surface EMG

modulation.

Based on the shape of cross-correlation histograms (cross-correlograms) of pairs

of intercostal motor units in the anaesthetised cat, Kirkwood, Sears, Tuck, & West-

gaard (1982) defined three forms of synchronisation, namely short-term synchroni-
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sation, broad-peak synchronisation, and high-frequency oscillation synchronisation.

Short-term synchronisation is the result of branching, or divergence, of immediate

motor unit inputs and the corresponding cross-corellogram contains a very narrow

peak (±3 ms) that occurs independent of any synchronisation between discharges

of individual presynaptic axons (Sears & Stagg, 1976). Broad-peak synchronisa-

tion, on the other hand, results from a common input many synapses distant from

the motor units; the synapses introduce temporal “jitter” in signal transmission,

and hence, a “looser” synchronisation and a broader cross-correlogram peak oc-

cur (McAuley & Marsden, 2000). Finally, as for short-term synchronisation, high-

frequency oscillation synchronisation occurs due to branching of motor unit inputs,

but in addition, these inputs are themselves driven by a common driving oscillation,

such as that of the medullary respiratory centre at 60–120 Hz (Cohen, 1979).

A central cross-correlation peak between the EMG activity of two muscles in

the same limb does not imply a common CNS oscillatory modulation of motor unit

inputs (McAuley & Brown, 1995). Indeed, Dietz et al. (1976) suggested that physi-

ological tremor could be non-specifically augmented by short-term synchronisation

due to the divergence of descending spinal inputs to several motor units in a limb.

To confirm a common central driving oscillation, it is necessary to examine the

coherence between motor units rather than their cross-correlation. Such a common

rhythmic modulation of motor unit inputs was found by Elble & Randall (1976),

who performed coherence analyses of simultaneously recorded motor units.

Central oscillations

As noted by McAuley & Marsden (2000), by inference, evidence against synchro-

nisation by peripheral mechanisms strengthens arguments for synchronisation by

central oscillations. In a deafferented patient, Marsden et al. (1967b) found a well-

defined 9 Hz physiological tremor peak both in the normal left arm and in a totally

deafferented right arm, thus providing evidence that the tremor peak arises inde-

pendently of sensory feedback and is not due solely to the stretch reflex mechanism.

Furthermore, contrary to Halliday & Redfearn (1958), their examination of finger
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tremor in patients with severe tabes dorsalis consistently confirmed the presence

of this peak. Finally, Marsden et al. (1967b) reported that patients with notable

slowing of conduction in peripheral nerves still had a tremor peak of about 9 Hz

rather than at lower frequencies as predicted by the servo-loop hypothesis.

Related results obtained by Proudlock & Scott (2003) demonstrated that a 8–

10 Hz tremor was present in both position holding and in slow finger movements

even after complete ulnar nerve transection and subsequent reinnervation of intrin-

sic hand muscles. Their observations are corroborated by the findings of Wessberg

& Vallbo (1995b), who showed that spindle output during slow movements is insuf-

ficient to generate the 8–10 Hz oscillations.

Examinations of slow voluntary finger movements have shown a motion tremor

consisting of regular pulses fixed at 8–10 Hz (Vallbo & Wessberg, 1993). The pulses

have large amplitudes, are unaffected by varying the finger velocity or mechanical

load, and display a timing inconsistent with the timing of reafferent impulses (Wess-

berg & Vallbo, 1995a). Analysing the effect of stretch perturbations during such

movements, Wessberg & Vallbo (1996) found that stretch reflexes are too delayed

and too weak to fit a reflex loop hypothesis.

Freund, Büdingen, & Dietz (1975) reported that newly recruited motor units,

which are the strongest, discharge at 6–10 Hz and could therefore provide an ex-

planation to finger movement discontinuities1. However, in a study by Wessberg &

Kakuda (1999), no units were able to exhibit a sustained 8–10 Hz firing pattern.

Instead, units consistently fired at higher frequencies but were frequency modulated

at circa 8–12 Hz, implying a common modulatory input to a high proportion of the

active motor neurons. This matches well with results obtained by Wessberg (1996),

who demonstrated significant intermittent left-right synchronisation during a bi-

manual finger movement task, a result that implies supraspinal, possibly cortical,

control.

1Whereas the term “discontinuities” in its strict mathematical sense denotes points where a
signal is not continuous, the term is commonly abused in the tremor literature to denote (sharp)
oscillations.
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In studies of compliant finger muscle contractions, McAuley, Rothwell, & Mars-

den (1997) found that mechanical loading, stiffness, or anaesthesia did not shift the

frequency of synchronised 10 Hz motor unit activity and therefore attributed the

tremor to central neural oscillators.

Studies of patients with X-linked Kallmann’s syndrome (XKS) and pathological

mirror movements have shown that shared voluntary motor commands are con-

ducted through bilateral corticospinal pathways, with abnormal synchronisation of

motor unit firing between homologous left and right muscles as a result (Farmer, In-

gram, & Stephens, 1990; Mayston, Harrison, Quinton, Stephens, Krams, & Bouloux,

1997). Unilateral magnetic brain stimulation of patients with XKS resulted in sig-

nificant coherence for all combinations of left and right tremor and EMG, with load-

independent coherent frequencies in the rance of 7–12 Hz (Mayston et al., 2001).

This is in contrast to recordings of finger tremor and EMG in healthy subjects,

which only show significant coherence unilaterally (Marsden, Meadows, Lange, &

Watson, 1969a; Köster et al., 1998).

Similarly, it has been demonstrated that subjects with bilateral projections of

the corticospinal tract and corresponding congenital mirror movements have an

8–12 Hz component that is coherent in both arms (Köster et al., 1998), whereas

normal subjects do not (Lauk, Köster, Timmer, Guschlbauer, Deuschl, & Lücking,

1999; Raethjen et al., 2000).

All of the evidence presented above suggest that the 8–12 Hz tremor is central

in origin. Indeed, this evidence is so strong that some authors matter-of-factly refer

to the 8–12 Hz power peak as the central-neurogenic component of physiological

tremor (e.g., Mayston et al., 2001).

4.1.3 The degree of contribution depends on the condition

The previous section presented a variety of mechanisms contributing to physiologi-

cal tremor. Much evidence point to central oscillators being responsible for 8–12 Hz

oscillations in movement, yet, hypotheses related to intrinsic mechanical properties,
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individual motor unit firing, and synchronisation by mechanical or reflex loop res-

onances have also received considerable support. The apparent contradictions in

the tremor literature are related to the fact that the degree to which a mechanism

contributes to tremor is dependent on the conditions under which the tremor occurs.

It is commonly accepted that physiological tremor may be separated into a

mechanical-reflex component and an 8–12 Hz central-neurogenic component (e.g.,

Deuschl et al., 2001; Elble, 1996; Mayston et al., 2001). Many conflicting views

have probably arisen due to both tremor peaks overlapping at the same frequency

band, thus appearing as a single frequency peak. Although both peaks are often

indistinguishable around 10–12 Hz (Timmer, Lauk, Pfleger, & Deuschl, 1998), it

is usually possible to identify the mechanical-reflex component by shifting its peak

through the addition of load (bias towards lower frequencies) or using an elastic

force (bias towards higher frequencies). The following sections attempt to resolve

some of the confusion by investigating the relative contribution of peripheral and

central mechanisms under various experimental conditions.

Rest tremor

A body part is at rest if no voluntary neuromuscular activity is required for sup-

port against gravity (Bain, 2007). Therefore, by definition, the small-amplitude

rest tremor that occurs is unlikely to be central-neurogenic in origin (McAuley &

Marsden, 2000). Instead, ballistocardiogram (BCG) recordings suggest that rest

tremor is related to cardioballistic effects (Yap & Boshes, 1967), respiratory chest

movements (Padsha & Stein, 1973), or other movements in the body that are me-

chanically coupled to the trembling limb.

Postural tremor

Postural tremor occurs during the voluntary maintenance of posture against grav-

ity. The 10 Hz tremor that occurs when trying to keep an outstretched limb at

standstill has been attributed to mechanical resonances (Lakie et al., 1986; Amjad

et al., 1994) because the tremor frequency can be varied by mechanical loading or
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as a peripheral stretch reflex loop resonance (e.g., Halliday & Redfearn, 1956; Hag-

barth & Young, 1979; Sakamoto et al., 1992). On the other hand, postural tremor

has been shown to persist, albeit with a less sharply “tuned” 10 Hz frequency com-

ponent, in deafferented patients without reflex loop contributions (Marsden et al.,

1967b). Moreover, postural tremor at the extremities may in part be due to the

transfer, mechanical or otherwise, of oscillations from a more “active” tremor of

proximal muscles maintaining the posture (Marsden, Meadows, Lange, & Watson,

1969b). Postural tremor therefore appears to be multifactorial in origin, with both

mechanical and reflex loop components as well as a central component.

Tremor during isometric contractions

As noted by McAuley & Marsden (2000), tremor at around 10 Hz during iso-

metric contraction is associated with EMG activity and, when of low amplitude,

may be a result of single motor unit activity (Freund & Dietz, 1978). Histori-

cally, centrally generated oscillations in the 10 Hz range have not been found to

manifest peripherally in many studies dominated by isometric paradigms, which is

probably due to the strong dampening effect on tremor from muscle contractions

against a stationary object (McAuley & Marsden, 2000). For example, Joyce &

Rack (1974) had subjects perform compliant contractions against a spring, how-

ever, as the spring stiffness was progressively increased, the experimental paradigm

gradually approached an isometric one, with the result that the tremor amplitude

diminished and became irregular and the corresponding power spectra had a variety

of frequency components.

Durbaba, Taylor, Manu, & Buonajuti (2005) argue that under true isometric

conditions with the body limb attached to a rigid transducer, tremor is abolished.

Addressing this, Sowman & Türker (2005) examined physiological tremor in the jaw

by attaching the mandible via the teeth to a rigid transducer, thus obtaining an

almost direct coupling to the bone and minimising the contribution from the stretch

reflex. Sowman & Türker were able to consistently observe a 7 Hz tremor indepen-

dent of bite force and concluded from coherence and phase analyses of the tremor
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and EMG that this tremor is centrally generated, with reflex loop contributions

being modulatory at the most.

Introducing ischaemic sensory deafferentation in the upper limb during isomet-

ric contractions, Pohja & Salenius (2003) found that the frequency of coherence

between whole-scalp magnetoencephalogram (MEG) and EMG did not change sig-

nificantly during ischaemia, although the strength of the coherence was reduced.

As for the experiments of Sowman & Türker (2005), this implies that a reflex loop

may be seen as a passive element modulating centrally driven oscillations.

In a study of coherence between MEG and EMG during isometric contractions,

Salenius, Portin, Kajola, Salmelin, & Hari (1997) demonstrated significant coher-

ence in the frequency range of 15–33 Hz between MEG from the primary senso-

rimotor cortex (S1–M1) and the rectified EMG of the contralateral hand or foot

muscles. A similar result was obtained by Ohara et al. (2000), who found significant

coherence between hand muscle EMG and the electroencephalogram (EEG) of the

primary motor area (M1), the supplementary motor area proper (SMA proper), and

the primary somatosensory area (S1) at peak frequencies in the range 12–15 Hz.

Both results are highly indicative of cortical rhythms being responsible for periph-

eral tremor, although in both cases, the frequency range of coherence was higher

than the 10 Hz range of physiological tremor. A possible reason was given by Gross

et al. (2000), who found strong 10 Hz components in the power spectra of EMG

and MEG of M1, but significant coherence was restricted to the 20 Hz range. This

result is in accord with the hypothesis that the 10 and 20 Hz components may have

different functional roles (Salmelin & Hari, 1994). Furthermore, Gross et al. (2000)

speculated that the 20 Hz motor cortex oscillations may arise under stationary con-

ditions such as those of isometric contractions where no encoding of the dynamics

of motor control is needed, and the motor cortex might be sending the same motor

commands repeatedly at a constant rate of 20 Hz. In a similar vein, Baker, Kilner,

Pinches, & Lemon (1999) suggested that when little information needs to be trans-
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ferred, sending oscillatory motor commands yields an efficient recruitment of motor

units (see also Hari & Salenius, 1999).

From the above, it is clear that the experimental condition often being isometric

has contributed significantly to much confusion in the literature. The strong damp-

ening effect have probably rendered tremor unobservable, or at least irregular, in

many studies, leading to the rejection of centrally generated oscillations hypotheses

and the support of stretch reflex hypotheses, even very recently (Durbaba et al.,

2005). Furthermore, the fact that the limb is not moving may mean that the mech-

anism being studied is different to the one causing tremor during movement, which

may explain the high coherence frequencies (12–33 Hz) reported for isometric con-

tractions. Overall, it may be concluded that tremor during isometric contractions

likely is central in origin, but reflex loop resonances may contribute as a modulatory

factor.

Tremor during compliant contractions

Studies of compliant, or elastic, contractions avoid the problem of the strong damp-

ening effect during isometric contractions. Observing compliant finger muscle con-

tractions, McAuley et al. (1997) found that frequency peaks of tremor and EMG

were coherent at 10, 20, and 40 Hz and had a fixed phase difference. Thorough

analyses excluded the possibility that the three frequency peaks simply represented

harmonics. Because amplitudes were too great to have been generated by single

motor units and because polyphasic activity at the peak frequencies was seen in

both surface and needle EMG records, the authors concluded that tremor during

compliant contractions is due to synchronised firing of motor units. Moreover, be-

cause the tremor frequency was insensitive to anaesthesia and inertial or elastic

loading, the results suggest that the synchronisation was centrally generated.

Different results were obtained by Joyce & Rack (1974) for compliant elbow

contractions against a spring, where the tremor and EMG frequency peaks were

reduced by adding weight to the wrist or increased by stiffening the spring. Similar
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findings have been reported by Matthews & Muir (1980) and suggest a mechanical-

reflex mechanism causing the tremor. Both studies were slightly different from the

finger study of McAuley et al. (1997) in their experimental setup. In the studies of

Joyce & Rack (1974) and Matthews & Muir (1980), the elbow was fairly stabilised

and the forearm raised vertically in a balancing position, while the finger in the

study of McAuley et al. (1997) had no support against gravity and contractions

were made in the horizontal plane.

The literature suffers from most studies examinining isometric contractions

rather than elastic ones, but the studies mentioned here may indicate that tremor

observed in compliant contractions is multifactorial, where the contribution depends

on the experimental conditions (McAuley & Marsden, 2000)

Higher amplitude tremor

According to Deuschl et al. (2001), the distinction between physiological and en-

hanced physiological tremor is purely clinical and they share common mechanisms.

Enhanced physiological tremor has higher amplitudes, can occur during posture

or active contractions, and is likely due to unit synchronisation from an external

source (McAuley & Marsden, 2000). Compared with physiological tremor, the gen-

eral view is that reflexes are the tremor component that is being enhanced and

causes higher amplitude tremor (Deuschl et al., 2001).

In a study on strong contractions and fatigue, Ebenbichler et al. (2000) con-

cluded that load-dependent, fatigue-related high amplitude tremor during submax-

imal voluntary contractions was the result of recruitment of motor units and the

fatigue-related properties of high threshold units.

It has been shown in studies of thyroid hormones (Hefter, Hömberg, Reiners,

& Freund, 1987; Hömberg, Hefter, Reiners, & Freund, 1987; Marsden et al., 1970)

and stress and β-adrenergic agents (Foley, Marsden, & Owen, 1967; Marsden, Fo-

ley, Owen, & McAllister, 1967a; Marsden & Meadows, 1968, 1970) that the gain of

muscle receptors and spinal reflex loops increases with hyperthyroidism, stress, and
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adrenaline. The enhancement of afferent feedback results in increased synchronisa-

tion of units and increased tremor amplitude (Hagbarth & Young, 1979).

Recently, however, a drug-induced enhancement of the central rather than the

reflex component of physiological tremor was obtained. After amitriptyline in-

take, patients had an increase in tremor amplitude as well as a synchronisation of

motor units between different muscles in the range of 7–15 Hz (Raethjen et al.,

2001). Moreover, Decima (1996) found that tremor activity induced by the drug

oxotremorine continued even after deafferentation of the cat, and concluded that

the synchronising mechanism was central, probably located in the ventral horn.

Studying visually enhanced goal-directed pointing, Morrison & Keogh (2001)

showed that tremor amplitude of the digits increased with higher accuracy require-

ments and enhanced visual feedback, whereas it decreased for the hand. The authors

suggested that the participants, upon receiving augmented visual information about

their tremor, stiffened their joint muscles in an attempt to reduce this tremor, how-

ever, this resulted in a reduced coupling between hand and finger, and enhanced

tremor at the periphery. In general, even without visual enhancement, motion

tremor is characterised by 8–10 Hz pulses of large amplitudes (Vallbo & Wessberg,

1993; Wessberg & Vallbo, 1995a). Motion tremor is discussed more thoroughly in

the next section.

Together, these studies of higher amplitude tremor confirm the view that phys-

iological tremor can be divided into mechanical-reflex and central-neurogenic com-

ponents, where the contribution of each depends on the external source.

Motion tremor

It has been shown that slow finger movements we conceive as continuous are not

smooth but have discontinuities at approximately 8–10 Hz (Vallbo & Wessberg,

1993). Effects from varying the velocity or mechanical load as well as timing prop-

erties and the effect of stretch pertubations have been inconsistent with reflex reso-

nance hypotheses (Wessberg & Vallbo, 1995a, 1996). Furthermore, the hypothesis

that newly recruited units give rise to this tremor has also been rejected (Wessberg
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& Kakuda, 1999; Wessberg, 1996). Instead, these studies consistently show that

8–10 Hz motion tremor is a centrally generated phenomenon.

In visual pursuit tracking tasks, McAuley, Farmer, Rothwell, & Marsden (1999)

found synchronised 3 and 10 Hz oscillations between hand and eye, and between

the two hands, when tracking the same target. In a related study, Evans & Baker

(2003) observed task-dependent intermanual coupling of 8 Hz discontinuities during

slow finger movements. Both studies indicate that a central oscillator may mod-

ulate anatomically distinct structures. Moreover, that coupling is task-dependent

suggest that such a mechanism may play a functional role in eye-hand coordination

(McAuley et al., 1999).

Pulsatile control (Vallbo & Wessberg, 1993; Farmer, 1999) has also been demon-

strated in slow movements of other limbs than the finger, such as jaw or wrist move-

ments. The control system for masticatory muscles differ from that of the fingers

because jaw-opening muscles hardly contain muscle spindles and lack reciprocal

stretch reflexes (Luschei & Goldberg, 1981). Jaberzadeh et al. (2003) showed that

8 Hz physiological tremor of the jaw muscles during slow movements is the result of

centrally generated alternating bursts of activity analogous to that of finger muscles

(Vallbo & Wessberg, 1993). Examining motor unit pairs during slow movements as

well as position holding of the wrist, Kakuda, Nagaoka, & Wessberg (1999) found

significant coherence at 6–12 Hz between unit pairs and between single units and

acceleration records. These workers concluded that a 6–12 Hz common modulation

of agonist motor units is a distinguishing feature of slow wrist movements but is

very small or absent during postural control.

A neural basis for intermittent motor control of continuous movements was

recently demonstrated by Gross et al. (2002). Combining whole-head MEG record-

ings, dynamic imaging of coherent sources (DICS), and finger muscle EMG, these

authors were able to pin-point synchronised oscillatory activity around 8 Hz in the

cerebello-thalamo-cortical loop as being responsible for the corresponding pulsatile
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velocity changes of slow finger movements. Possible functions of such a central

oscillating network is presented next.

4.1.4 Functional significance of central oscillations

Tremor has traditionally been viewed as a source of unwanted noise in the motor

system; something to be dampened out or controlled (Goodman & Kelso, 1983). For

example, theories based on a closed-loop servomechanism that focus on setpoints

and error correction processes consider such oscillations as an unwanted source of

variability (e.g., Adams, 1971). Nevertheless, the idea that tremor exists for a reason

is not new and potential functional significance of central oscillations is presented

below.

Function at the peripheral level

McAuley & Marsden (2000) suggest that motor commands consisting of synchro-

nised pulses may cause motor neurons to uniformly approach firing thresholds si-

multaneously, which in turn results in a more linear and uniform motor neuron

output. Moreover, from mechanics, a continuously oscillating system with a forcing

function that is appropriately phased requires less energy to move than a system in

static equilibrium (Goodman & Kelso, 1983). Finally, a pulsatile output could be

helpful for achieving sudden velocity changes when substantial inertial resistance is

involved (Greene, 1972). These views are in accord with the proposition that the

motor control system is sensitive to its own physical dynamics and is capable of

taking advantage of them (e.g., Kelso, 1981; Kelso et al., 1981; Kugler et al., 1982).

Synchronisation and binding

According to McAuley & Marsden (2000), groups of inferior olive units in rats can

become temporarily linked by oscillatory modulation of their firing during various

phases of a licking task. Such linking might represent a functional coordination

of combinations of muscle actions, where movement consists of a concatenated se-

quence of discrete ballistic movements (Llinás, 1991; Welsh, Lang, Sugihara, &

Llinás, 1995).
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From studies of 40 Hz oscillations in the visual cortex it has been proposed

that synchronisation may serve as a function for feature linking or binding when

processing sensory information (Eckhorn et al., 1988; Gray, König, Engel, & Singer,

1989). Thus, although parallel processing may occur in different cortical areas and

have variable durations, sensory information can still be identified and associated

with a particular visual feature (McAuley & Marsden, 2000). Analogously, binding

of motor signals can form discrete muscle collectives, where different tasks make

use of different combinations of such functional groups and thereby avoiding a

“combinatorial explosion” (Farmer, 1998; Welsh & Llinás, 1997).

Central oscillations manifest in the periphery provide a means to investigate a

possible binding mechanism, however, many studies have been unable to demon-

strate linking between peripheral rhythms. For example, Marsden et al. (1969a)

found that left and right hand tremors are independent of each other during pos-

ture. Similarly, recordings of EMG of the hands during simultaneous pinch-gripping

(Conway et al., 1995) and EMG of the bicepses during dual-hand weightlifting

(Bruce & Ackerson, 1986) have failed to show a left-right linking. Furthermore, ex-

amining different muscles of the same hand, McAuley & Brown (1995) did not find

significant coherence during simultaneous contractions. One possible explanation

may be that the tasks in these studies did not sufficiently require functional linking

resulting in a common modulation of the motor commands (McAuley & Marsden,

2000).

On the contrary, animal studies involving direct cortical measurements have

shown linking between 25 Hz oscillations in cortical areas (Murthy & Fetz, 1992,

1996; Nicolelis, Baccala, Lin, & Chapin, 1995). The linking appeared to be task-

dependent, as it only occurred during complex motor activity and not during simple

over-learnt movements (Murthy & Fetz, 1992, 1996).

Different but closely related muscles may reveal coherence between single mo-

tor units, for example in a grip task such as that of Farmer, Bremner, Halliday,

Rosenberg, & Stephens (1993). However, this coherence may be due to so-called
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“hard-wired” branching of single corticospinal axons rather than linking of cor-

tical oscillations (McAuley & Marsden, 2000). To reduce the risk of mistaking

hard-wired branching for functional binding, McAuley et al. (1999) studied eye

and finger movements, which involve dissimilar and spatially separate motor sys-

tems. The authors observed linking between eye and finger oscillations at 3 and

10 Hz when the eye and finger simultaneously tracked a visual target but never

when they moved independently. However, such functional binding was not always

present and McAuley et al. (1999) suggested three possible reasons for this: First,

the oscillations may simply be an epiphenomenon superimposed on related motor

signals. Second, central binding might exist but only manifest irregularly at the

periphery. Third, competing mechanisms for eye-hand coordination may exist and

are sometimes preferred to central oscillatory motor control.

Frequency and phase coding

Studying finger movements, McAuley et al. (1997) found multiple coexisting central

oscillations at 10, 20, and 40 Hz and postulated that these rhythms may reflect cen-

tral “timing” mechanisms that assist in coding of motor commands. The different

frequencies may represent separate muscle collectives and aid in identifying differ-

ent classes of a task (McAuley & Marsden, 2000). 10 Hz oscillations are usually

associated with slow movements (cf. Vallbo & Wessberg, 1993) and has recently

been shown to be correlated with MEG activity (Gross et al., 2002). 20 Hz oscil-

lations, on the other hand, tend to occur during the hold phase (e.g., Kilner et al.,

1999) of humans and pinch-grip tasks of monkeys (Baker, Olivier, & Lemon, 1997).

Coherence between MEG and EMG in the 20 Hz range have been shown in many

studies (e.g., Conway et al., 1995; Salenius et al., 1997; Halliday, Conway, Farmer,

& Rosenberg, 1998; Baker et al., 1997). In light of this, the study of McAuley et al.

(1997) may provide an example of frequency coding, where central 10 and 20 Hz

oscillations cause closely related muscle collectives of a single peripheral structure

to simultaneously achieve fine motion control (10 Hz frequency coding) and main-

tenance of posture (20 Hz frequency coding).
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Further indications of frequency coding are found from studies of parkinsonian

patients, where both 10 Hz and 40 Hz tremors exist during movement when patients

are on medication, but vanish when medication is withheld (Brown & Corcos, 1997;

McAuley, Corcos, Rothwell, Quinn, & Marsden, 2001). That the 40 Hz Piper

rhythm (Piper, 1907) also vanishes suggests that the Piper rhythm is a mechanism

of motor control that is disrupted in parkinsonian patients (McAuley & Marsden,

2000).

As noted by McAuley & Marsden (2000), phase shifts between oscillations of

a particular frequency in different structures provide a mechanism for coding of

motor signals. Such phase coding seems to occur in hippocampal spatial memory

cells of the rat, where spatial locations are mapped to specific phase shifts (O’Keefe

& Recce, 1993). A similar consistent mapping between postures and phase shifts

are observed in primary orthostatic tremor (McAuley, Britton, Rothwell, Findley,

& Marsden, 2000).

Pulsatile CNS motor output

Studies have shown a timing relationship between movement and the phase of phys-

iological tremor, where upward movements are initated during the ascending phase

of tremor and vice versa for downward movements (Goodman & Kelso, 1983; Travis,

1929). However, in a more recent study by Lakie & Combes (2000), no such rela-

tionship was found. Nevertheless, it has been hypothesised that the computational

demand associated with motor actions can be reduced by a discontinuous timing of

motor output (Welsh & Llinás, 1997). For example, movement trajectories could

be computed at 100 ms intervals corresponding to 10 Hz oscillations rather than

continuously. In fact, such a scheme is reminiscent of the biphasic pulse genera-

tor proposed by Vallbo & Wessberg (1993). They suggest that a central generator

produces a biphasic pulse pattern consisting of an agonist burst followed by an

antagonist burst, and that slow movements consist of several such patterns con-

catenated at 8–10 Hz, with a pulse height regulator controlling the overall speed of

the movement. A 8–10 Hz tremor would then manifest itself in the moving limb
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although the movement would still be adequately smooth for most purposes (Vallbo

& Wessberg, 1993).

The views of Vallbo & Wessberg (1993) and Welsh & Llinás (1997) are corrobo-

rated by Gross et al. (2002). They showed that a cerebello-thalamo-cortical loop is

the neural basis for intermittent motor control, where the cerebellum is responsible

for optimisation and intermittent error correction of ongoing movements by using

sensory information. As a result, movement is composed of successive “micromove-

ments” that have a fixed duration inversely related to the 6–9 Hz oscillations of the

loop. Two afferent channels separately coding acceleration and deceleration (Wess-

berg & Vallbo, 1995b) allow the cerebellum to make accurate adjustments of the

relative amplitude and timing of the agonist and antagonist bursts (MacKinnon &

Rothwell, 2000; Topka et al., 1999) when planning each micromovement.

The cerebellum may be the origin of a 10 Hz clock involved in motor timing

(Welsh et al., 1995). Considering the similar frequency of synchronisation at 6–

9 Hz by the cerebello-thalamo-cortical loop, it is possible that the motor system

is synchronising oscillations of spatially separate areas at a fundamental frequency

around 10 Hz (Gross et al., 2002), similar to the function of gamma band synchro-

nisation in perceptual binding (Singer, 1999).

The findings by Gross et al. (2002) imply a discrete mode of motor control,

where the cerebellum plans micromovements of constant duration intermittently

at a rate corresponding to the frequency of oscillations in the cerebello-thalamo-

cortical system. Such a modus operandi may be favourable, or even necessary, in

order to reduce computational workload and obtain a sensorimotor control loop

that is stable and robust, even in the presence of loop delays (Gross et al., 2002).

4.2 Method

This thesis hypothesises that intermittent optimal control through sequential op-

eration of BUMPs is a fundamental mechanism of 10 Hz physiological tremor in

movement. As outlined in Chapter 2 and elaborated in Chapter 3.2, the optimal

response trajectory R∗ planned during an RP interval minimises acceleration and
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will therefore be S-shaped. When tracking a ramp target, the RP system incorpo-

rates the future state of the target as well as available sensory information about

execution error. Consequently, a sequence of error-correcting minimum accelera-

tion trajectories are executed at 100 ms intervals. These submovements will not

be perfectly antisymmetrical about the midpoint due to execution error but will

still approximate an S-shape and have a single-peaked velocity profile. Therefore,

the response will contain a tremor component at 10 Hz, inversely related to the

100 ms duration of the submovements. This hypothesis is tested by means of a

computational simulation of the intermittently operating optimal trajectory gener-

ator described in Chapter 2.4. Trajectories for constant velocity tracking movements

are simulated with receding horizon control along with signal-dependent noise. The

simulation results are compared with results from the slow finger movement exper-

iments by Vallbo & Wessberg (1993).

4.2.1 Description of simulator

The simulator developed and used for the simulation study in Chapter 3 has been

further developed to allow for a simulation study of physiological tremor in move-

ment (see Appendix B.2 for a Simulink block diagram and explanation). Extending

the work of Master (2003), attention has been given to the development of the RP

system and the OTG described in Chapter 2.4. In addition, the simulator has been

extended to enable simulation of movements without visual feedback, adaptation

of internal models, and continuous-time movement trajectories. The latter enables

frequency analysis of 10 Hz physiological tremor in simulated trajectories because

data points can be obtained at any desirable sample rate.

In this study, the sample rate is set to 100 Hz, more than sufficient to capture

the frequency content of interest. Provided with position and velocity feedback of

the actual response as well as the predicted future state of the target from the SA

system, the RP system calculates an optimal trajectory R∗ to reach the predicted

future state of the target and to compensate for executional error. For simulations

of movements without visual feedback, the RP system assumes that the actual
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response is executed without executional error and matches the desired response

planned during the previous RP interval. Operating intermittently, the RP system

passes R∗ to the RE system at 100 ms intervals.

To simulate a highly skilled human subject, the RE system was simplified by pre-

tuning the inverse model to exactly compensate for the dynamics of the plant (i.e.,

wired-in synergy generator, the musculoskeletal system, and the external world).

Thus, the response at the output of the plant matches the required response trajec-

tory R∗ generated by the RP system regardless of plant dynamics. Consequently,

error in response execution is only related to stochastic noise, which is added to the

motor commands and whose standard deviation is proportional to their magnitude.

To simulate a less skilled human subject, the inverse model was pre-tuned

through adaptive tuning, in which an initial arbitrary inverse model is allowed to

converge (adapt) over time while tracking a training signal. The level of convergence

corresponds to the skill level of a simulated human subject. Early interruption of

the adaptation process yields a highly detuned inverse model corresponding to a

poorly skilled subject, while a completely converged model yields an inverse model

close to ideal corresponding to a highly skilled subject. The adaptation process is

heuristic and dependent on many factors such as choice of initial inverse model,

level of noise, adaptation gain, and the complexity of the training signal. With a

non-ideal inverse model, error in response execution is related both to stochastic

noise and less than ideal motor commands.

The following sections describe the simulation experiments and corresponding

simulator settings.

4.2.2 Experiment 1

Experiment 1 is devoted to the results presented in Fig. 1 of Vallbo & Wessberg

(1993). The top two plots of Fig. 4.1 (p. 124) depict two selected sequences of

ramp and hold movements, one with visual feedback and one without (adapted

from Fig. 1A, Vallbo & Wessberg, 1993). Both sequences consist of one extension

(downward) movement and one flexion (upward) movement. The remaining six
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plots of Fig. 4.1 show the joint angle (position), angular velocity and acceleration

records from another sequence of ramp and hold movements performed with visual

feedback (adapted from Fig. 1B, Vallbo & Wessberg, 1993).

To simulate the ramp and hold movements of Fig. 4.1, the simulator was set

up with an ideal inverse model, thus simulating a highly skilled subject. The noise

constant was set to 0.2. Simulations were performed both with and without visual

feedback.

4.2.3 Experiment 2

Experiment 2 is devoted to the results presented in Fig. 2 and 3 of Vallbo & Wess-

berg (1993). Fig. 4.4 (p. 128) shows characteristics of ramp and hold movements of

two subjects M.S. and A.P. of different skill level (adapted from Fig. 2, Vallbo &

Wessberg, 1993). The top and middle plots show the position and velocity records,

respectively, of M.S., whereas the bottom plots show the velocity records of A.P.

Fig. 4.5 (p. 128) shows the power spectra of acceleration records from ramp move-

ments of eight subjects, including subjects M.S. and A.P (adapted from Fig. 3,

Vallbo & Wessberg, 1993). From observation, Fig. 4.4–4.5 show that M.S. per-

formed ramp movements with a very distinguished 10 Hz power peak, whereas A.P.

had a broader 10 Hz peak with less power as well as a secondary frequency com-

ponent at 2–3 Hz. As argued in detail in Chapter 4.4, it may be inferred from

Fig. 4.4–4.5 that M.S., being a semi-professional cellist, likely is a highly skilled

subject, whereas subject A.P., together with subject K.G. (see Experiment 4), is

the subject with the poorest skill out of all eight subjects.

To simulate the two extremes, a highly skilled subject (M.S.) and a poorly skilled

subject (A.P.), there are two factors to consider: The level of signal-dependent

noise in the motor system, and the accuracy of the internal models. When subjects

are poorly trained, they often co-contract and stiffen, which increases the amount

of signal-dependent noise. Moreover, less trained subjects have not developed an

accurate internal model of the external system to be controlled, that is, the inverse
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model of the plant is detuned. Out of the two factors, an inaccurate internal model

is probably the biggest difference between the two subjects.

Consequently, the simulated subject M.S. was assigned a noise constant of 0.2

and an ideal inverse model. The simulated subject A.P. was assigned a noise con-

stant of 0.4 and a highly detuned inverse model corresponding to a short period of

adaptation. Visual feedback was turned on for both subjects. Whereas the power

spectra in Fig. 4.5 are averages of 42–204 ramp movements, likely of duration 2–3

seconds, the simulator produced a single ramp movement of 10 seconds duration

for each simulated subject.

4.2.4 Experiment 3

Experiment 3 is devoted to the results presented in Fig. 4 of Vallbo & Wessberg

(1993). Fig. 4.11 (p. 135) shows the position records of ramp movements with

velocities 4, 10, 25, and 62 deg/s, whereas Fig. 4.12 (p. 135) shows the corresponding

velocity records (both figures adapted from Fig. 4A, Vallbo & Wessberg, 1993).

The simulator was set up with an ideal inverse model, thus simulating a highly

skilled subject. The noise constant was set to 0.2. Ramp speeds were set to 4, 10,

25, 50, and 62 deg/s. Visual feedback was turned on.

4.2.5 Experiment 4

Experiment 4 is devoted to the results presented in Fig. 5 of Vallbo & Wessberg

(1993). Fig. 4.15 (p. 139) shows ramp movements performed with and without

visual feedback by the poorly skilled subject K.G. (adapted from Fig. 5A, Vallbo &

Wessberg, 1993). Fig. 4.16 (p. 139) shows power spectra for the same movements

(adapted from Fig. 5B, Vallbo & Wessberg, 1993).

The simulated subject K.G. was assigned a noise constant of 0.4 and a highly

detuned inverse model similar to the one used for the poorly skilled subject A.P. in

Experiment 2. Simulations were performed both with and without visual feedback.
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Setting Exp. 1 Exp. 2 Exp. 3 Exp. 4

Tp (ms) 100 100 100 100
Th (ms) 100 100 100 100
S (deg/s) 10 10 {4, 10, 25, 50, 62} 10
Ts (s) 10 10 7 10
nc 0.2 {0, 0.2, 0.4} 0.2 0.4
Ideal model Yes {Yes, No} Yes No
Visual feedback {Yes, No} Yes Yes {Yes, No}

Table 4.1: Settings for simulations of human ramp movements. Tp is the RP interval;
Th is the constant prediction horizon for receding horizon control; S is ramp speed;
Ts is simulation duration; and nc is the noise constant. When an ideal inverse
model was not used, a highly detuned model was used instead. Visual feedback was
employed as indicated.

4.2.6 Summary of simulator settings

All simulation experiments were performed with a fixed duration planning interval

of Tp = 100 ms and a receding horizon control strategy with a prediction horizon

Th = 100 ms. Stochastic noise was added to the motor commands and was pro-

portional to them by a factor, or noise constant, nc dependent on the particular

experiment. Other experiment-specific settings include tracking speed S, simulation

time Ts, use of visual feedback or not, and employing an ideal inverse model or not.

When an ideal inverse model was not used, a highly detuned inverse model signify-

ing an unskilled subject was used instead. The simulator settings are summarised

in Table 4.1.

4.3 Results

4.3.1 Experiment 1

Fig. 4.2–4.3 show simulations of the human experiment depicted in Fig. 4.1 (adapted

from Fig. 1, Vallbo & Wessberg, 1993). Both figures show a tracking task consisting

of ramp and hold movements, one extension (downward) and one flexion (upward)

movement. When movement is simulated with visual feedback (Fig. 4.2), the re-

sponse ramps to a distance of -20, holds, returns to zero, and holds again. When
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movement is simulated in the absence of visual feedback (Fig. 4.3), the hold phases

are at inaccurate distances due to the lack of feedback assisting in error correction.

It is evident from the velocity and acceleration profiles in Fig. 4.2–4.3 that there

are cyclic discontinuities at intervals of 100 ms, corresponding to a tremor frequency

of 10 Hz. This matches the human experiment in Fig. 4.1, where inspection of the

waveforms, particularly velocity and acceleration, shows that discontinuities occur

at a rate of approximately 8–10 Hz.
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Figure 4.1: Human ramp and hold movements. The top two plots show position
records with (left) and without (right) visual feedback (adapted from Fig. 1A, Vallbo
& Wessberg, 1993). The remaing six plots show position, velocity, and acceleration
records with visual feedback (adapted from Fig. 1B, Vallbo & Wessberg, 1993).
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Figure 4.2: Simulated ramp and hold movements with visual feedback.
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Figure 4.3: Simulated ramp and hold movements without visual feedback.
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4.3.2 Experiment 2

Fig. 4.6–4.10 show the simulated position, velocity, acceleration, power of accelera-

tion, and power of velocity of ramp movements performed by human subjects M.S.

and A.P. as illustrated by Fig. 4.4–4.5 (adapted from Fig. 2–3, Vallbo & Wessberg,

1993). From inspection, the position (Fig. 4.6), velocity (Fig. 4.7), and acceleration

(Fig. 4.8) records for the ramp movement signifying the poorly skilled subject A.P.

have a low frequency component in addition to the 10 Hz component. However, the

power spectrum of acceleration for A.P. (Fig. 4.9) only shows the 10 Hz component.

This is due to the acceleration waveform being rectangular at 50 ms intervals. By

low-pass filtering the acceleration waveform using a simple 100-tap finite impulse

response (FIR) filter before calculating the spectrum, the low frequency component

does indeed show up (not shown graphically here). A simpler remedy, however, is

to take the power spectrum of the velocity record instead. The power spectra of

velocity for the M.S. and A.P. simulations (Fig. 4.10) show that the simulation of a

highly skilled subject (M.S.) depicts a very distinguished 10 Hz power peak, while

the poorly skilled subject (A.P.) has a low frequency power peak at approximately

2 Hz in addition to the 10 Hz peak. These results match those of Vallbo & Wessberg

(1993) shown in Fig. 4.4–4.5.

It is possible to simulate subject A.P. with a range of detuned inverse models

that are closer to the ideal, that is, more accurate inverse models. The observed

effect of detuning the inverse model is the emergence of the low frequency peak

around 2 Hz with gradually increasing power as the model is increasingly detuned.

Conversely, gradually increasing the accuracy for the inverse model has the effect

that the power of the low frequency peak gradually decreases while the power of

the 10 Hz peak gradually increases. Hence, it is possible to obtain a similar range

of power spectra (not shown graphically here) as in Fig. 4.5.
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Figure 4.4: Human ramp and hold movements. Position (top) and velocity (middle)
records of subject M.S and velocity records (bottom) of subject A.P. (adapted from
Fig. 2, Vallbo & Wessberg, 1993).
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Figure 4.6: Simulated ramp movements performed by subjects (a) M.S. and
(b) A.P., position.
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Figure 4.7: Simulated ramp movements performed by subjects (a) M.S. and
(b) A.P., velocity.
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Figure 4.8: Simulated ramp movements performed by subjects (a) M.S. and
(b) A.P., acceleration.
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Figure 4.9: Simulated ramp movements performed by subjects (a) M.S. and
(b) A.P., power of acceleration.
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Figure 4.10: Simulated ramp movements performed by subjects (a) M.S. and
(b) A.P., power of velocity.
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4.3.3 Experiment 3

Fig. 4.13 shows the simulated position and velocity records of the four human ramp

movements depicted in Fig. 4.11–4.12 (adapted from Fig. 4A of Vallbo & Wessberg

(1993)). From inspection, it appears that the amplitude of the simulated position

and velocity oscillations increases with the ramp velocity. This impression is verified

by Fig. 4.14(a), which shows the position records in Fig. 4.13(a) zoomed-in to a time

interval from t = 1.25 to t = 1.50 s and then detrended. It shows that faster ramps

have bigger oscillations perpendicular to the direction of movement, which also

seems to be the case for the human ramp movements shown in Fig. 4.11–4.12.

Vallbo & Wessberg (1993) mention that “the amplitude [of the individual move-

ment cycle] clustered around 0.4 deg in the slowest movements (track speed 4 deg/s)

to about 6 deg in the fastest movements (track speed 62 deg/s).” This is a differ-

ent kind of amplitude to the one in Fig. 4.14(a). With this statement, Vallbo &

Wessberg are referring to the amount by which the joint angle changes for each

submovement. Examination of Fig. 4.13 shows that the slowest movement (ramp

speed 4 deg/s) moves from zero to 20 deg in 5 s and has approximately 50 sub-

movements. Thus, each submovement constitutes on average a joint angle change

of 20/50 = 0.4 deg, corresponding to 1/10 of the movement made with that ramp

speed for one second. The same relationship seems to appear for the other ramp

speeds. Indeed, this relationship is verified by the simulation of four ideal (zero

noise and ideal inverse model) ramp movements with speeds 4, 10, 25, and 50 deg/s

(using 50 deg/s to get an integer number of submovements when moving through

20 degrees) as depicted in Fig. 4.14(b). For any ramp speed, dividing the angular

displacement by the number of submovements during a time interval shows that

each submovement contributes a joint angle change equal to 1/10 of a one-second

movement with the corresponding ramp speed, exactly replicating the finding of

Vallbo & Wessberg (1993).
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Figure 4.11: Position records for human ramp movements with speeds 4, 10, 25,
and 62 deg/s (adapted from Fig. 4A, Vallbo & Wessberg, 1993).
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Figure 4.12: Velocity records for human ramp movements with speeds 4, 10, 25,
and 62 deg/s (adapted from Fig. 4A, Vallbo & Wessberg, 1993).
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Figure 4.13: Simulated ramp movements with speeds 4, 10, 25, 62 deg/s.
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Figure 4.14: Amplitude of submovements increases with ramp speed. (a) Position
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4.3.4 Experiment 4

Fig. 4.17–4.19 show the simulated position, velocity, and power of velocity records

for ramp movements with and without visual feedback performed by human subject

K.G. as depicted in Fig. 4.15–4.16 (adapted from Fig. 5, Vallbo & Wessberg, 1993).

Fig. 4.17–4.18 show that the simulated ramp movement performed without visual

feedback is much smoother than the one performed with visual feedback. The same

finding is observed for the human ramp movements in Fig. 4.15. Moreover, Fig. 4.19

shows that the low frequency component at ∼2 Hz has halved, from about 16% to

8% (normalised power), due to the inclusion of visual feedback. This is a reduction

of exactly the same magnitude as that of the human subject in Fig. 4.16, where

normalised power was reduced from 8% to 4% when allowing visual feedback.

4.3.5 Conclusions

The results presented above show that the simulator consistently reproduced the

human experiments of Vallbo & Wessberg (1993). All simulated ramp movements

had a dominant 10 Hz peak in their velocity profiles. In addition, detuning the

inverse model, thus simulating a less skilled subject, led to the emergence of a low

frequency component around 2 Hz. The normalised power of this component was

approximately doubled by the inclusion of visual feedback. The step size, or angular

displacement, of each submovement increased linearly with ramp speed. Varying

ramp speed, each submovement consistently contributed a joint angle change equal

to 1/10 of a one-second movement, reflecting a 10 Hz tremor independent of ramp

speed. The simulator’s ability to reproduce human ramp movements performed

both with and without visual feedback, at different speeds, and by subjects with

different skill levels provides strong support to the BUMP model of response plan-

ning and the corresponding hypotheses presented in this thesis.
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Figure 4.16: Power spectra from human ramp movements performed by K.G. with
and without visual feedback (adapted from Fig. 5B, Vallbo & Wessberg, 1993).
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4.4 Discussion

The results of the simulation experiments in Chapter 4.3 show that the simulated

implementation of the BUMP model reproduces the experimental results of Vallbo

& Wessberg (1993). Using a receding horizon control strategy, the duration of the

preplanned optimal trajectory R∗ generated at every RP interval is kept constant.

This duration is referred to as the prediction horizon Th and is set to 100 ms for all

simulations. The duration of the planning interval is referred to as Tp and is fixed

at 100 ms. Because each optimal response is generated to minimise acceleration

it will have an S-shaped position trajectory. The resulting overall movement will

be non-smooth, consisting of a concatenated sequence of S-shaped submovements,

or BUMPs, dispersed at 100 ms intervals. These oscillations are observed in the

overall movement trajectory at a rate inversely related to Tp, namely 10 Hz. The

simulation results suggest that such an intermittent optimal control scheme through

sequential operation of BUMPs is a fundamental mechanism of 10 Hz physiological

tremor in movement.

4.4.1 Velocity of movements

Vallbo & Wessberg (1993) found that the 8–10 Hz frequency of discontinuities in

ramp movements were independent of ramp speed. Moreover, Vallbo & Wessberg

showed that the amplitude, or step size, of each movement cycle increased lin-

early with ramp speed. For example, with a ramp speed of 4 deg/s, each cycle

contributed approximately 0.4 deg, while with a ramp speed of 10 deg/s, each cy-

cle contributed approximately 1 deg. These findings of Vallbo & Wessberg are

illustrated in Fig. 4.11–4.12 and are reproduced by the simulator. The simulated

results, depicted in Fig. 4.13–4.14, show that ramp movements of varying speed

are composed of submovements with a fixed duration of 100 ms, corresponding to

a tremor rate of 10 Hz. Moreover, the step size of each submovement varies lin-

early with ramp speed. Just like the human experiment, small variations of the

step size may occur due to motor noise and an inaccurate inverse model. However,

on average, each submovement moves through the same angle as did the human
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subjects of Vallbo & Wessberg, namely 1/10 of a one-second ramp movement. In

fact, Fig. 4.14(b) shows that by switching off motor noise and using an ideal inverse

model, the simulator reproduces this relationship between angular displacement of

submovements and ramp speed exactly.

4.4.2 Visual feedback and skill level

The study of Vallbo & Wessberg (1993) found that visual feedback in some cases

promoted 2–3 Hz discontinuities, particularly for subject K.G. Fig. 4.15–4.16 shows

the joint angle and velocity records as well as power spectra from ramp movements

performed by K.G. with and without visual feedback. With visual feedback, a low

frequency component is clearly visible as steps in the movement trajectory, whereas

the trajectory is considerably smoother without visual feedback. The power spectra

quantify this observation and show that a distinct 2–3 Hz peak with even more

power than the 10 Hz peak dominate the power spectrum for records with visual

feedback, whereas without visual feedback, the magnitude of the 2–3 Hz peak is

halved.

Vallbo & Wessberg (1993) reported that the occurence of 2–3 Hz cycles was

inconsistent across subjects and varied considerably. This is reflected in Fig. 4.5,

which shows the power spectra of eight subjects, ranging from subject K.G. to M.S.

Whereas M.S. has a narrow and distinct 10 Hz peak, K.G. has a 10 Hz peak that

has less power and is wider than that of M.S. In addition, K.G. has a significant low

frequency peak at 2–3 Hz. In between these two subjects, the power spectra for the

other subjects all have a 10 Hz peak that is wider and of less power than M.S. but

more distinct and with more power than K.G. Moreover, the 2–3 Hz component

is also clearly visible for subject A.P. but decreases or vanishes for subjects whose

10 Hz peak is narrower and of more power than that of K.G.

Vallbo & Wessberg (1993) did not provide much information about the skill-level

or preferred hand of their subjects. Their main concern was with demonstrating

that 8–10 Hz discontinuities occur independent of factors such as visual feedback,

skill level, or handedness, not with the potential dependence of the 2–3 Hz low
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frequency component on such factors. Nevertheless, it is possible to speculate on

the latter given the information available. M.S. was a semi-professional cellist and

used her preferred hand for the experiments, whereas C.H. used her non-preferred

hand and claimed poor manual skill. Examination of Fig. 4.5 shows that the power

spectra of C.H. is “mid-range” compared with the power spectra of the other seven

subjects, with a 10 Hz peak broader and of less magnitude than four other subjects,

and a 2–3 Hz component smaller than three other subjects. As mentioned above,

M.S. represents one end of the power spectrum range, while K.G. represents the

other. It may be inferred that high skill level and using the preferred hand (e.g.,

M.S.) enhances the 10 Hz power peak while repressing the 2–3 Hz peak. It may

also be inferred, although slightly more speculatively, since no information about

skill level and handedness is given for K.G., that low skill level enhances the 2–3 Hz

peak while reducing the power of 10 Hz peak.

Moreover, although not stated explicitly by Vallbo & Wessberg (1993), it ap-

pears that Fig. 4.5 displays the average spectra of ramp movements both with and

without visual feedback. This can be deduced from a comparison of the power

spectrum of K.G. in Fig. 4.5 with her two power spectra (with and without visual

feedback) in Fig. 4.16. As a result, a potential 2–3 Hz component promoted by

unskilled subjects with visual feedback will be camouflaged in Fig. 4.16 from the

averaging effect of including spectra without visual feedback.

Simulations of subjects M.S., A.P., and K.G. requires an adaptation paradigm

(see Neilson & Neilson, 2005b, for further details on adaptation). Replacing the

ideal inverse model with a highly inaccurate one, the model is allowed to converge

while the simulator tracks a training signal. Interrupting the training process before

the model has fully converged results in an inaccurate, or detuned, model. Early

interruption yields a highly detuned model corresponding to an unskilled subject

with little practice, while late interruption yields a more accurate model corre-

sponding to a more skilled subject that has practiced more. Here, M.S. is simulated

with an ideal inverse model (no adaptation process needed), whereas A.P. and K.G.
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are assigned a highly detuned inverse model obtained from an adaptation process.

The results from Experiment 2 (Fig. 4.6–4.10) and Experiment 4 (Fig. 4.17–4.19)

show that the BUMP model simulator is able to closely reproduce the actual ramp

movements and power spectra of M.S., A.P., and K.G. shown in Fig. 4.4–4.5 and

Fig. 4.15–4.16. Like the experiments by Vallbo & Wessberg (1993), the results sug-

gest that 10 Hz discontinuities occur in movements independent of visual feedback

or skill level. In addition, but with more speculative support from the experiments

by Vallbo & Wessberg, the simulated results indicate that unskilled subjects will

also display a low frequency power peak at 2–3 Hz. This peak is promoted by visual

feedback and is halved in power from removing visual feedback.

4.4.3 Bandwidth of tremor

By turning off the noise generator during simulation of ramp movements, the sim-

ulator produces a sequence of perfectly symmetrical S-shaped submovements and

a very distinguished 10 Hz peak is observed in its power spectrum. Turning on the

noise generator will cause execution errors in the response, therefore each submove-

ment will overshoot or undershoot its planned endpoint. Combined with detuned

inverse models, the effect of noise is the occurrence of a low frequency peak in ad-

dition to the strong 10 Hz peak broadening and decreasing in amplitude. Still, the

bandwidths of the power peaks found by Vallbo & Wessberg (1993) are broader

than those of the simulator. Comparing with the power spectrum analysis per-

formed on the simulation results, Vallbo & Wessberg (1993) used a much lower

frequency resolution of only 1 Hz. The power spectra from 5-s time series were

averaged and the frequency content was split into bands of 1 Hz bandwidth. In the

simulator, power spectra were obtained from single ramp movements of durations

of 10 s and had a much higher spectral resolution. It is possible that running a large

set of simulations with shorter duration ramp movements and averaging the power

spectra using the same frequency resolution would have produced power peaks of

broader bandwidths that more resembled the figures of Vallbo & Wessberg (1993).
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4.4.4 Handedness and flexion versus extension movements

According to Vallbo & Wessberg (1993), 8–10 Hz discontinuities were present in

preferred as well as in non-preferred hands. As discussed in Chapter 2, an inverse

model must compensate for the dynamics of the plant to be controlled, namely

wired-in synergy generator, the musculoskeletal system, and the external world.

Therefore, differences in control of the two hands correspond to differences in the

accuracy of the internal inverse models representing them. In the current simulated

version of the BUMP model, a distinction between left and right hand can be

made by using different inverse models and different noise levels. For example, to

simulate the non-preferred hand, the inverse model could be slightly more detuned

than for the preferred hand. Also, a higher noise constant could be employed. The

simulated result would be the same as for simulating an unskilled subject, with

8–10 Hz discontinuities consistently present. In addition, if the inverse model were

sufficiently detuned, the 2–3 Hz component would also emerge as discussed above.

In terms of flexion versus extension movements, Vallbo & Wessberg (1993) found

that the 8–10 Hz discontinuities were slightly more pronounced during extension

than during flexion for all subjects. The simulated results presented here does not

show such a difference because the simulator does not distinguish between extension

and flexion movements. However, from the same argument as above, one could

simulate the two by assigning slightly different inverse models to each of them.

Accordingly, the finding by Vallbo & Wessberg indicates that the inverse model for

the extension movement is slightly more accurate than the inverse model for the

flexion movement, and therefore results in more pronounced discontinuities.

4.4.5 Oscillations during position holding

The study of Vallbo & Wessberg (1993) was focused on 8–10 Hz discontinuities

during movement, however, oscillations of the same frequency were occasionally

observed during the hold phase. When present, the oscillations were most promi-

nent at the beginning of the hold phase, successively decreasing in amplitude. Co-

contractions or large constant-torque loads promoted the tremor, which was gen-
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erally of much lower amplitude than the 8–10 Hz discontinuities during voluntary

ramps.

Fig. 4.2 shows that the simulator produces no such tremor during hold phases

when visual feedback is turned on. However, as depicted in Fig. 4.3, the simulator

does produce oscillations of low amplitude for ramp and hold movements without

visual feedback. Thus, the lack of feedback assisting in error correction seems to be

the reason for tremor in the simulated hold phases.

Vallbo & Wessberg (1993) do not refer to such a distinction between ramp

and hold tasks with and without visual feedback. On the other hand, they do

suggest that the phenomenon of 10 Hz discontinuities during movements may be

of a different nature than physiological finger tremor and enhanced physiological

tremor in postural tasks. For example, physiological tremor during posture is an

order of magnitude smaller than physiological tremor during movement (e.g., Hal-

liday & Redfearn, 1956; Lippold, 1970; Hagbarth & Young, 1979; Marsden, 1984).

Moreover, postural tremor consists of back and forth movements about a neutral

position, whereas the discontinuities during movement are consistently unidirec-

tional and imply periodic speed variations in the direction of movement (Vallbo &

Wessberg, 1993). Based on these findings, Vallbo & Wessberg (1993) suggest that

physiological tremor during motion may be of a different nature than physiological

tremor during posture.

The AMT view of motion tremor versus posture tremor is not in disagreement

with the findings listed above. As this simulation study shows, 10 Hz oscillations

of significant magnitude during movement can be the result of an intermittently

operating optimal controller that generates BUMPs at intervals of 100 ms. Dur-

ing posture, however, the simulator does not produce this tremor. Nevertheless,

although not incorporated into the current version of the simulator, it is possible

that external influences such as heartbeats or breathing can provide perturbations

that cause the limb to deviate from its desired neutral position. As a result, the cen-

tral intermittent controller would try to correct such small errors at a rate of 10 Hz.
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Reinforced by mechanical resonances and stretch reflexes, the limb would experience

small amplitude oscillations around its desired neutral point, a condition known as

postural tremor. Thus, in terms of the mechanical-reflex and central-neurogenic

components discussed in Chapter 4.1, AMT sees 10 Hz physiological tremor dur-

ing motion as a phenomenon dominated by the central-neurogenic component but

weakly modulated by mechanical-reflex resonances, whereas physiological tremor

during posture is seen as a phenomenon dominated by the mechanical-reflex com-

ponent but weakly modulated by the central-neurogenic component.

4.4.6 Pulsatile motor output

Based on their findings, Vallbo & Wessberg (1993) suggested that slow finger move-

ments are implemented by a series of biphasic force pulses that reflect the organi-

sation of the descending motor commands. They hypothesised that a central gen-

erator produces the biphasic pattern, characterised by an agonist burst followed by

an antagonist burst “a few tens of milliseconds” later. Indeed, their EMG records

(Fig. 8, Vallbo & Wessberg, 1993) as well as findings by Gross et al. (2002) show

that alternating acceleration and deceleration phases during ramp movements cor-

respond with alternating extensor and flexor EMG bursts, each with a bell-shaped

envelope and a duration of approximately 50 ms. Furthermore, Vallbo & Wess-

berg postulated a pulse height regulator to set the overall speed of the voluntary

movement.

The above description of an intermittent regulator controlling only the height

of fixed duration EMG pulses resembles that of the BUMP model. As discussed

in Chapter 2.3.11, AMT hypothesises that at least the first 50 ms EMG burst

in a 100 ms fast ballistic movement constitute the quantum of control exerted

by the cortex over the motor neuron pool. Longer duration movements are seen

as a concatenated sequence of 100 ms submovements, or BUMPs. Each BUMP

corresponds to a pair of agonist and antagonist bell-shaped EMG bursts, each of

50 ms duration, where the height of each pulse determines movement speed.
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Chapter 5

General discussion

5.1 Comparison with other models

5.1.1 Speed-accuracy tradeoff

The BUMP model of response planning has elements in common with the determin-

istic iterative-corrections model (Crossman & Goodeve, 1983) as well as the impulse-

variability model (Schmidt et al., 1979) and the stochastic optimised-submovement

model (Meyer et al., 1988), however, it differs in some key aspects. The Crossman

and Goodeve model successfully accounts for the logarithmic speed-accuracy trade-

off by suggesting that submovements have a fixed duration and move a constant

proportion of the remaining distance. Comparing with the BUMP proposal, both

models are based on submovements that have a fixed duration. However, in the

BUMP account the required response trajectory R∗ is always planned to hit the

target predicted ahead in time, and the whole trajectory is updated at the end of

each fixed duration planning interval, thereby introducing intermittency and the

opportunity for error correction. As a consequence, the actual response is com-

prised of a concatenated sequence of fixed duration submovements similar to the

Crossman and Goodeve account.

Unlike the Crossman and Goodeve model, the BUMP model incorporates pre-

diction. This allows a variety of movement control strategies to be implemented,

ranging from receding horizon control, producing the logarithmic tradeoff, to fixed

horizon control, producing the linear tradeoff. The linear speed-accuracy tradeoff

was accounted for by Schmidt et al. (1979) with their impulse-variability model.
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But whereas that model applies only to fast movements preprogrammed and ex-

ecuted open loop, the BUMP proposal produces linear tradeoffs for both ballistic

movements and for slower movements that require temporal precision. While slower

movements can incorporate error-correcting submovements based on feedback, in

the case of time constraint the final submovement will necessarily be ballistic and

therefore subject to all the noise-induced error that underpins the linear tradeoff in

the fast movements of the more restricted impulse-variability model.

For their open-loop movements, Schmidt and colleagues postulated the vari-

ability of their force impulse to be proportional to the average movement velocity.

In the BUMP model simulator the standard deviation of the introduced noise is

proportional to the signal that represents the motor command that generates each

BUMP. Effectively, for inertial loads, this is equivalent to setting the variability

of the noise proportional to the average velocity of the generated submovement.

A similar arrangement of noise proportionality to submovement velocity was used

in the proposal of Meyer et al. (1988), however, they discarded the Crossman &

Goodeve notion of fixed duration submovements to which the BUMP model ad-

heres. Their stochastic optimised-submovement model incorporates submovements

of variable duration, a decision based on experimental findings using movement-

parsing algorithms that detect peaks and troughs in velocity and acceleration pro-

files. However, their movement-parsing findings do not invalidate the hypothesis

that submovements have a fixed duration of 100 ms. In the BUMP model, fixed

duration submovements are planned to connect smoothly at RP intervals, and con-

sequently, peaks and troughs in velocity and acceleration waveforms will only be

observed when the actual response differs from the intended response due to noise

in the nervous system, lack of skill, and/or other uncertainties in response execu-

tion (Neilson & Neilson, 2005b). This is consistent with early observations of Vince

(1948) that peaks and troughs in velocity and acceleration waveforms are particu-

larly visible in untrained subjects. Thus, it is not surprising that durations between

discontinuities in velocity and acceleration vary, as argued by Meyer and colleagues,
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and on average are observed more than 200 ms apart. Moreover, in contrast with

the BUMP model, the stochastic optimised-submovement model does not give any

account of the time required by central processes to detect execution errors and

to program and initiate corrective responses that incorporate prediction of future

errors. Finally, the stochastic optimised-submovement model does not address the

problem of redundancy in trajectory generation, as an infinite number of possible

response trajectories would satisfy its specifications. AMT provides a solution to

the redundancy problem, suggesting that the CNS uses task-dependent synergies

to overcome this difficulty (see Neilson & Neilson, 2005b).

Nevertheless, the Meyer et al. (1988) model presented a possible way to account

theoretically for the logarithmic tradeoff and for the linear tradeoff, at least for rapid

movements in the case of the latter. The need for a unified account that applies

to the complete range of movement generation was strongly argued by Hancock &

Newell (1985). In their influential contribution they emphasised that both spatial

and temporal components of movement should be considered in the same framework

(i.e., space-time). Certainly, as realised by Zelaznik et al. (1988), the required

spatial precision and the required temporal precision for a task dually affect the

nature of the speed-accuracy relation by virtue of the control structure imposed. In

allowing for differing space-time constraints by means of variable horizon predictive

control, the BUMP model succeeds in accounting for both logarithmic and linear

tradeoffs (and indeed for other intermediate tradeoffs, although that has not been

simulated here). It also succeeds in accounting for movement velocity profiles.

5.1.2 Velocity profiles

As mentioned in Chapter 3.1.3, the kinematic theory of Plamondon (see Plamon-

don & Alimi, 1997, for a review) accounts for asymmetrical velocity profiles by

suggesting that synergies of agonist and antagonist muscles have a log-normal ve-

locity impulse response function. This is attributed to the limiting behaviour of a

large number of neuromuscular networks involved in generating a movement whose

averaged behaviour tends towards a log-normal impulse response function in the
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manner of the central limit theorem. In a sense, the BUMP model of response

planning is not inconsistent with this. As described in Chapter 2.4, AMT proposes

that within response planning there exist parallel neural circuits, the OTGs, that

require a fixed interval of time (100 ms), to read in sensory information, generate

a required response trajectory R∗, and write R∗ into working memory ready for

response execution. The OTGs generate an optimally smooth R∗ (i.e., minimum

second or third derivative consistent with minimum acceleration or minimum jerk)

to move the selected sensory feature of the intended response from its initial state xi,

detected by sensory feedback, to a required final state xf predicted ahead in time.

The required response R∗ is then transformed in real-time into appropriate motor

commands by an adaptive, optimal feedforward/feedback control system (the RE

system). This repeating process introduces intermittency into movement control,

creating a response comprised of a sequence of 100 ms duration submovements. At

the level of response feedback, each submovement can be thought of as analogous

to an impulse response function of the type proposed by Plamondon. Each BUMP

consists potentially of a family of possible R∗ trajectories, so a particular response

R is comprised of a sequence of R∗ trajectories (actually the first 100 ms of each

R∗ trajectory) drawn from this family. Statistically, the result is a response R

generated by a summation (i.e., a convolution) of impulse response functions, each

drawn from a family of possible impulse response functions. This creates a statis-

tical picture not dissimilar to that proposed by Plamondon and colleagues. Hence,

the BUMP model provides a possible computational mechanism that can account

for the log-normal impulse response function proposed by Plamondon.

5.2 Challenges from experiment

5.2.1 Glitches in rapid movements

A commonly observed phenomenon in movements such as handwriting strokes or

reaching and grasping is reversals in the direction of motion in the beginning and/or

end of the trajectory. According to Plamondon & Djioua (2006), there may be up to
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two such glitches at the end of the trajectory, or one at the beginning and one at the

end. The simulation experiments presented in this thesis have focused exclusively on

one-dimensional straight rapid movements, however, in a previous two-dimensional

simulation study on reaching and grasping movements (Jiang et al., 2002), the

BUMP model successfully reproduced curved trajectories of the finger and thumb

as well as glitches and the resulting multiple peaks in velocity profiles, similar to

those presented by Plamondon & Djioua.

5.2.2 Fitts’ law in unsighted movements

While the simulation experiments of this thesis have implicitly assumed the avail-

ability of vision during movements, Wallace & Newell (1983) showed that unsighted

movements also obey Fitts’ law. This finding does not contradict the BUMP model.

According to AMT, responses can be planned in terms of desired sensory (percep-

tual) consequences in any sensory mode, including kinaesthetic. It is merely for the

sake of simplicity that simulated trajectories have been related to visual targets.

Furthermore, even with visual feedback removed, there will still be proprioceptive

feedback assisting in response planning.

5.3 Modelling issues

5.3.1 Continuous-time versus discrete-time modelling

It may be tempting to dismiss a minimum acceleration approach on the rationale

that it implies discontinuities in acceleration at the start and end of a movement.

Such discontinuities are not observed in human aimed movements. This thesis

argues that acceleration waveforms related to EMG (force) bursts can be approxi-

mated in the simulator by rectangular pulses. Introducing smoothness in the EMG

pulses by rounding the corners of rectangular pulses does not imply moving towards

a continuous-time domain. In line with AMT, it is argued that descending control

of muscles is achieved through a sequence of discrete units of bell-shaped EMG

bursts with a fixed duration but with varying amplitudes. In the BUMP model

these bell-shaped EMG bursts are approximated by a sequence of 50 ms duration
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rectangular pulses with varying amplitudes. Discrete-time control theory is per-

fectly applicable whether the discrete control signal is a ZOH signal (rectangular

pulse), a first order hold (FOH) signal (linear slope), or a bell-shaped pulse.

5.3.2 Model parameters

An important question that model developers are interested in is the total number

of parameters that is required by a model to produce the simulated data and which

ones are the most critical. For an N -step optimal trajectory, the OTG performs 2N

matrix multiplications in parallel involving the state matrix G and the Grammian

matrix Γ(0, k). As observed from Eq. 2.15 (p. 51), the Grammian matrix will have

four elements dependent on the state matrix G and the input matrix H. Therefore,

there are six parameters involved in calculating any point in the trajectory, four for

the state matrix G, and two for the input matrix H.

5.3.3 Choice of response planning interval

Simulation studies based on AMT have previously been using an RP interval Tp

in the range of 100–200 ms. Results have yielded good agreement with studies of

human visual tracking. This is a strength of AMT and underlines the robustness

of the theory. In terms of the fixed duration RP interval, AMT argues that this

interval is fixed for any single person but may vary across individuals. In fact, from

an AMT point of view, this difference in planning time is likely the main source of

difference in motor skill between one person and another. Changes in planning time

between 100 to 200 ms from one individual to another should, according to AMT,

change the frequency of physiological tremor between 5 and 10 Hz. These figures

are consistent with the tremor literature, in which physiological tremor is typically

reported with a frequency of 7–12 Hz, which corresponds to a planning time of

approximately 80 to 140 ms. In this thesis, Tp was set to 100 ms, corresponding to

10 Hz physiological tremor.
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5.3.4 Genuine results or consequences of system design?

It might be asked whether the phenomena observed in these simulations are genuine

results or inevitable consequences of the system design. Specifically, one may ask if

the well-known discrete-time control phenomenon of oscillations at half the sample

frequency combined with a a quantum of control consisting of 50 ms EMG bursts

could provide an alternative explanation of physiological tremor.

The answer would be yes if one were considering a discrete-time sampled data

system as used in digital signal theory. However, the nervous system is not such a

system. In AMT, it is hypothesised that the nervous system requires a fixed interval

of time to read in sensory information, plan an appropriate response trajectory, and

write it into working memory ready for execution. This introduces intermittency

into response planning and breaks control of movement into a concatenated sequence

of submovements. It is proposed that it is this intermittency in response planning

within the nervous system that underlies physiological tremor. It is not an artifact

of the simulation, but a fundamental proposal within BUMP theory.

Furthermore, consider the well-known phenomenon of colour blending when

flashing different colours at a subject. When increasing the flash frequency, the

temporal order of the flashes will not be perceivable at some frequency and the

colours will blend in an additive manner. Moreover, consider presenting a very

short auditory signal of 5 ms, say, to a subject. The nervous system will not miss

the signal as if it fell between 50 ms samples. The nervous system detects brief

stimuli but it cannot determine temporal order within about 50 ms. It is as if the

nervous system continuously integrates sensory inputs over time and resets at about

50 ms intervals. In conclusion, the alternative explanation does not apply.

5.3.5 Analytical proofs

It is prudent to ask whether analytical proofs could be used instead of, or in ad-

dition to, selected simulation cases. Clearly, analytical proofs are stronger than

simply providing simulation examples. In Chapter 3.2, one such analytical proof

is provided to show that the BUMP model predicts a logarithmic speed-accuracy
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tradeoff when employing receding horizon control. In addition, graphical figures

and the theory of the BUMP model laid out previously are used to explain how

the linear speed-accuracy tradeoff and both asymmetrical and symmetrical velocity

profiles are predicted by the BUMP model. Thus, whilst not as strong as a full list

of analytical proofs, this section sufficiently serves the purpose of explaining how

the BUMP model predicts a set of human movement phenomena without resorting

simply to particular simulation cases.

Furthermore, one must also consider that the targeted readership of this the-

sis, many of which with backgrounds from experimental psychology, physiology,

neurology, and motor behaviour, more often than not will lack the necessary math-

ematical skills to appreciate analytical proofs. To such a readership, this amount

of mathematical detail may rather obfuscate than clarify.

5.3.6 Choice of sampling rates

In this study, the sampling rate is set to 100 Hz, which corresponds to five times

oversampling. Real-world signals are not perfectly filtered and will often contain

frequency components greater than the Nyquist frequency, which is equal to half

the sampling frequency. One reason for oversampling is to increase the foldover

frequency to ensure that unwanted frequency components are not aliased into the

passband. Another reason relates to the capturing of fast edges or transients.

In its simplest form, the BUMP simulator requires a continuous-time plant with

continuous-time sampling of position and velocity, which is then sampled and fed

back to the discrete-time controller. The implementation constructs velocity and

position signals through the integration of rectangular acceleration pulses. The

sampling rate of these pulses can be set to any desired frequency. Thus, there is

complete knowledge of the shape of the signals dealt with, which are rectangular

(acceleration), triangular or piecewise linear (velocity), and symmetrically S-shaped

(position). In light of this, and in accord with the simulation results, it appears that

a sampling frequency of 100 Hz is be more than sufficient to capture the frequency

content of interest, namely a 10 Hz bandwidth.
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5.3.7 Choice of noise constants

It may be noted that a noise constant nc = 0.5 was used for simulations of speed-

accuracy tradeoffs, whereas nc = 0.2 and nc = 0.4 were used for simulations of

physiological tremor. Thus, the curious reader may question the rationale behind

the choice of nc.

In the BUMP model simulator, variability in the descending motor commands is

set to vary with the size of the commands. Specifically, and in line with experimental

results (for example, see the much-quoted paper by Harris & Wolpert, 1998), the

standard deviation of noise is determined by the level of descending drive to the

alpha motor neurons. The exact relationship between the level of alpha drive and

the standard deviation of the noise, equivalent to the noise constant nc, is uncertain

and probably dependent on many factors.

In terms of simulating human movements, setting the noise levels too high will

lead to responses being dominated by noise. In the study of speed-accuracy trade-

offs, the human operator was simulated with a perfect inverse model of the plant,

thus, noise was the only contributor to error. Due to the very high performance of

this simulated operator, the noise constant had to be set very high (nc = 0.5) in

order for the endpoint error to be within similar range as in human experiments.

An alternative could have been to detune the inverse model as was done in the

study on physiological tremor. In that study, the noise constant was set to nc = 0.2

for the skilled subject and to nc = 0.4 for the less skilled subject in order to best

mimic actual human behaviour observed by Vallbo & Wessberg (1993). The exact

relationship between standard deviation of noise and alpha drive employed in the

simulations should probably not be given much importance. Of greater importan-

tance, however, is the fact that noise is modelled as being signal-dependent, in line

with the suggestion by Harris & Wolpert (1998).

158



5.4 Implications of the BUMP model

5.4.1 Predictive control

It is known from human tracking experiments that regardless of the dynamics of the

tracking system, open-loop tracking characteristics always converge with practice

to a gain, a time delay, and a first-order lag filter (McRuer & Krendel, 1974).

This finding has been reproduced in AMT simulations of tracking and equates

to the formation of accurate internal models of the neuromusculoskeletal system in

interaction with the external system (Neilson et al., 1988a). AMT hypothesises that

such internal models are formed by adaptive neural filters. These filter networks can

also be used to generate predictions of future values of stochastic signals (Neilson &

Neilson, 2005b). The proposition that human subjects employ stochastic prediction

of target and response signals has been strongly substantiated in a simulation study

of human tracking (Neilson et al., 1988b).

In line with the above, Gawthrop, Lakie, & Loram (2008) note in a recent

paper that Fitts’ law is exactly consistent with the closed-loop step response of

a time-delayed, first order system. Moreover, assuming the existence of closed-

loop feedback, be it continuous or intermittent, Gawthrop et al. demonstrate using

known control theory that the controller must be predictive in order to be consistent

with Fitts’ law. The authors suggest that this new insight implies that prediction

is an inherent part of speed-accuracy tradeoffs.

AMT agrees that predictive control is fundamental to speed-accuracy tradeoffs,

thus matching the conclusions of Gawthrop et al. (2008). This thesis demonstrates

that variable horizon predictive control with some similarity to the intermittent pre-

dictive control reported in the engineering literature (e.g., Gawthrop & Wang, 2006)

is able to reproduce both the logarithmic and the linear speed-accuracy tradeoffs.

Moreover, Gawthrop et al. (2008) points to the cerebellum as a potential location

associated with prediction. The neuroanatomy of the intermittent optimal con-

troller of the BUMP model is described in terms of cortico-cerebellar-cortical loops

and is discussed further below.
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5.4.2 Optimal control and strategy selection

In a pursuit tracking task, the RP system can function as an optimal controller

that can vary the tradeoff between variance of the error and the demand on mus-

cular energy by varying the prediction horizon for planning of R∗ (Neilson et al.,

1995). AMT suggests that varying the prediction horizon corresponds to adjusting

the weights, typically denoted Q and R, of a linear quadratic cost function. If Q is

large relative to R, low error variance is emphasised, whereas if R is large relative

to Q, low input (muscular) energy is emphasised. Not only does this ability explain

(i) speed-accuracy tradeoffs, it also accounts for (ii) an accuracy-energy tradeoff,

(iii) a mechanism for tuning of stability margins and stability robustness, (iv) the

strategy of unskilled subjects to slow and stiffen, and (v) differences in performance

between subjects. When tracking a stationary target (e.g., reaching to a target at

a fixed position), reducing the prediction horizon causes a faster movement at the

expense of increasing the endpoint error. When tracking a moving target, reducing

the prediction horizon will reduce the variance of the error between the target and

tracking response waveforms at the expense of increasing the input energy, whereas

increasing the prediction horizon effectively introduces a low-pass filter between tar-

get and response that limits high-speed tracking (Neilson et al., 1988a,b). Moreover,

unskilled subjects or subjects with a damaged CNS such as that of cerebral palsy

patients lack accurate internal models of their musculoskeletal system and slow and

stiffen in movement tasks. This corresponds to an optimal control strategy that

involves increasing the prediction horizon and detuning the inverse model (Neilson

& Neilson, 1999). The resulting reduction in gain and bandwidth in the perceptual-

motor loop improves stability margins and stability robustness. Furthermore, the

strategy of slowing responses may be seen as a means of reducing the variance of

neural noise, which in turn improves the accuracy of the movement. Finally, AMT

argues that differences in performance between subjects are accounted for, partly

at least, by differences in prediction horizon settings. Subjects with different skill

levels will choose different optimal control strategies.
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5.4.3 Neuroanatomy of the intermittent optimal controller

The findings of Llinás (1991) suggest that a clock device responsible for the pulsatile

control of motor output may be located in the olivocerebellar system. Furthermore,

it was recently shown by Gross et al. (2002) that synchronised oscillatory activ-

ity in the cerebello-thalamo-cortical loop is responsible for pulsatile motor control

observed in slow finger movements. These workers demonstrated 8 Hz coupling

between MEG recordings of central brain areas, EMG activity, and tremor during

slow finger movements. Gross et al. propose that the cerebellum is responsible

for optimisation and ongoing error correction based on available sensory informa-

tion reflected in their finding of coupling from muscle to cerebellum. Moreover,

they suggest that coupling from the motor cortex (M1) to cerebellum represents an

efference copy needed to predict the consequence of motor output.

Neural adaptive processing in AMT is described in terms of cortico-cerebellar-

cortical loops. As described in detail by Neilson & Neilson (2005b), AMT hypoth-

esises that neuroanatomical connections involving the cerebellum, thalamus, and

cortex form a circuit implementing the least mean squares (LMS) algorithm. This

LMS module is repeated hundreds of thousands of times within the cerebellar struc-

ture, with each module operating more or less independently in parallel with each

other. If this circuit is actually implemented in the CNS, its parallel operation syn-

chronised at a frequency of 10 Hz should be detected in MEG recordings coupled

with EMG bursts and intermittency in movement of the same frequency. Indeed,

such coupling is reported by Gross et al. (2002), albeit at a slightly lower frequency,

and provides strong support to this fundamental hypothesis of AMT.

5.4.4 Synchronisation and binding

From studies of 40 Hz oscillations in the visual cortex it has been proposed that

synchronisation may serve as a function for feature linking or binding in sensory

information processing (Eckhorn et al., 1988; Gray et al., 1989). Moreover, it has

been suggested that binding of motor signals can form discrete muscle synergies,

where different tasks make use of different combinations of such functional groups

161



(Farmer, 1998; Welsh & Llinás, 1997). However, many studies have been unable

to demonstrate linking between peripheral rhythms such as tremors in the two

hands (e.g., Marsden et al., 1969a; Conway et al., 1995; Bruce & Ackerson, 1986).

Even different muscles of the same hand have failed to display coherence during

simultaneous contractions (McAuley & Brown, 1995). One possible explanation

may be that the tasks in these studies did not sufficiently require functional linking

resulting in a common modulation of motor commands (McAuley & Marsden, 2000).

AMT agrees with this explanation. In AMT, each desired optimal trajectory

R∗ generated centrally by the RP system corresponds to a functional (synergistic)

linking of functional muscles, elemental movements, forces, and other reafferent

signals. Thus, muscles which are linked within a synergy will have coherent EMG

bursts during a task requiring coordinated muscle contractions. On the other hand,

in a task with multiple degrees of freedom, individual functional muscles can be

involved in multiple overlapping synergies, receiving bursts from multiple cortical

ensembles. This might break up the coherence between EMG in different muscles.

Furthermore, local feedback (reflex) loops contribute to EMG, which in turn will

weaken coherence between central bursts as observed in EMG recordings.

5.4.5 Phase coding

Phase shifts between oscillations of a particular frequency in different structures pro-

vide a mechanism for coding of motor signals (McAuley & Marsden, 2000). Spatial

locations have been shown to be mapped to specific phase shifts in the hippocampal

spatial memory cells of the rat (O’Keefe & Recce, 1993). Similarly, consistent map-

ping between postures and phase shifts have been observed in primary orthostatic

tremor (McAuley et al., 2000)

An appropriate analogy to the bursting of a cortical ensemble of neurons is

the underdamped swing of a pendulum. The contribution of another ensemble of

neurons driving the cortical column will be determined from its phase. If the driving

ensemble is in phase with the receiving ensemble, it will act as a positive input. If

the driving ensemble is out of phase with the receiving ensemble, it will act as a
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negative input. Phase shifts less than 90 degrees, which could be caused by neural

transmission time delays of up to about 10 ms between one part of the nervous

system and another, would be like gain change and could be easily compensated.

Thus, a burst code might allow neural processing to be relatively insensitive to

transmission time delays within the brain.

5.5 Concluding remarks

The success of the BUMP model of response planning in reproducing speed-accuracy

tradeoffs and accompanying velocity profiles as well as 10 Hz physiological tremor

as demonstrated by this thesis strengthens the foundation for a unified theory of

motor control and planning. This success is of particular theoretical importance in

light of the fact, mentioned earlier, and pointed out by Bullock & Grossberg (1988),

that other models of response planning, such as the minimum-jerk model and the

generalized motor programs model, cannot explain the experimentally observed

variation of velocity profile with movement speed and distance.

The aim of this thesis was to test the BUMP model by establishing whether or

not it reproduces (i) both the logarithmic and the linear speed-accuracy tradeoffs

in aimed movement as well as the accompanying asymmetrical and symmetrical

velocity profiles, and (ii) the 10 Hz physiological tremor in ramp movements. In-

deed, the simulations show that intermittent adaptive optimal control employing

the two extremes of variable horizon predictive control, combined with the addition

of noise, yields results in accord with the experimental findings. On the one ex-

treme, a receding horizon strategy results in a logarithmic speed-accuracy tradeoff

as well as asymmetrical velocity profiles. On the other extreme, a fixed horizon

strategy results in a linear speed-accuracy as well as symmetrical velocity profiles.

In addition, the intermittent behaviour of the controller causes a tremor of 10 Hz

to occur during ramp movements.

While it is certainly the case that variable horizon strategies are not necessary to

explain speed-accuracy tradeoffs or velocity profiles, they are nonetheless sufficient.

Moreover, it is now well established that physiological tremor during movement is
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driven by centrally generated oscillations, thus implying an intermittent mode of

control. This thesis shows that the BUMP model of response planning provides one

possible account of the sensory-motor processes that generate these phenomena.

Importantly, all the components of the BUMP model simulator embody precise

proposals from AMT about the nature of information processing within the CNS,

based on its actual structure and function. This fact adds to the credibility of the

correspondence between the data computed from theory and that from observa-

tion. With these simulation results, speed-accuracy tradeoffs, velocity profiles, and

physiological tremor are added to a variety of other movement phenomena that

have been found consistent with the AMT account of sensory-motor control and

its disorders (Neilson 1999; Neilson & Neilson, 1987; Neilson et al., 1988, 1992,

1993, 1995). With the recent development of biologically-feasible nonlinear adap-

tive filters (Neilson & Neilson, 2005b), AMT now offers a complete framework for

simulation of human movement planning and control.
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Vallbo, Å. B., & Wessberg, J. (1993). Organization of motor output in slow finger

movements in man. Journal of Physiology , 469 , 673–691.

van Beers, R. J., Baraduc, P., & Wolpert, D. M. (2002). Role of uncertainty in sen-

sorimotor control. Philosophical Transactions of the Royal Society B: Biological

Sciences, 357 , 1137–1145.

van Beers, R. J., Haggard, P., & Wolpert, D. M. (2004). The role of execution noise

in movement variability. Journal of Neurophysiology , 91 , 1050–1063.

Vince, M. A. (1948). The intermittency of control movements and the psychological

refractory period. British Journal of Psychology , 38 , 149–157.

Viviani, P., & Terzuolo, C. (1982). Trajectory determines movement dynamics.

Neuroscience, 7 (2), 431–437.

188



von Hofsten, C. (1980). Predictive reaching for moving objects by human infants.

Journal of Experimental Child Psychology , 30 , 369–382.

von Seelen, W., Mallot, H. A., Krone, G., & Dinse, H. (1986). On information

processing in the cat’s visual cortex. In G. Palm, & A. Aertsen (Eds.) Brain

theory , (pp. 49–79). Berlin: Springer.

Wadman, W. J., Denier van der Gon, J. J., Geuze, R. H., & Mol, C. R. (1979). Con-

trol of fast goal-directed arm movements. Journal of Human Movement Studies ,

5 , 3–17.

Wallace, S. A., & Newell, K. M. (1983). Visual control of discrete aiming movements.

Quarterly Journal of Experimental Psychology , 35A, 311–321.

Welford, A. T. (1967). Single-channel operation in the brain. Acta Psychologica,

27 , 5–22.

Welford, A. T. (1980). The single-channel hypothesis. In A. T. Welford (Ed.)

Reaction Times , (pp. 215–252). London: Academic.

Welsh, J. P., Lang, E. J., Sugihara, I., & Llinás, R. (1995). Dynamic organization

of motor control within the olivocerebellar system. Nature, 374 , 453–457.

Welsh, J. P., & Llinás, R. (1997). Some organizing principles for the control of

movement based on olivocerebellar physiology. Progress in Brain Research, 114 ,

449–461.

Wessberg, J. (1996). Significant left-right synchronisation of pulsatile motor output

in a human bimanual finger movement task. Society for Neuroscience Abstracts,

22 , 428.

Wessberg, J., & Kakuda, N. (1999). Single motor unit activity in relation to pulsatile

motor output in human finger movements. Journal of Physiology , 517 , 273–285.
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Appendix A

Properties of logarithmic functions

A.1 Changing the base of a logarithm

For each strictly positive real number a and b, different from 1, we have

loga(x) =
1

logb(a)
logb(x) (A.1)

We will prove that

logb(a) loga(x) = logb(x) (A.2)

Let

logb(a) = u (A.3)

loga(x) = v (A.4)

logb(x) = w (A.5)

Then

bu = a (A.6)

av = x (A.7)

bw = x (A.8)
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From Equations A.7 and A.8 we have

av = bw (A.9)

Using Equation A.6,

(bu)v = buv = bw (A.10)

Therefore,

uv = w (A.11)

or

logb(a) loga(x) = logb(x) (A.12)

A.2 Logarithm of a fraction

We have

loga

(

x

y

)

= − loga

(y

x

)

(A.13)

We will prove that

loga

(

x

y

)

= loga(x) − loga(y), (A.14)

and thus, by analogy,

loga

(y

x

)

= loga(y) − loga(x)

= − (loga(x) − loga(y))

= − loga

(

x

y

)

(A.15)

Let

loga(x) = u (A.16)

loga(y) = v (A.17)
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Then

au = x (A.18)

av = y (A.19)

Therefore

loga

(

x

y

)

= loga au−v

= u − v

= loga(x) − loga(y) (A.20)
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Appendix B

Block diagrams of the simulator

This appendix provides a brief explanation of the various components of the BUMP

model simulator. In the following, readers may refer to Chapter 2 for details on

the SA, RP, and RE systems and their interaction. While this thesis is particularly

concernced with the RP system, a detailed overview of all three systems can be

found in Neilson & Neilson (2005b).

B.1 Simulator used for Study I

Fig. B.1 shows a block diagram of the Simulink implementation of the BUMP model

used for Study I in Chapter 3. This chapter dealt with speed-accuracy tradeoffs and

velocity profiles in aimed movements. Therefore, the simulator was set up to make

discrete movements to a stationary target. In engineering terms, this is equivalent

to tracking of a step signal. In Fig. B.1 the Step1 block provides such a step signal

with unity magnitude. The step signal is then (optionally) scaled by the Gain block

and fed through the MAD Stimulus Predictor block, which predicts the future

state of the stimulus signal. Naturally, for a stationary stimulus this prediction is

very simple.

The RP system consists of the Response Planner and the Prediction Hori-

zon blocks. Given sensory information about the state of the response (zoh

position and zoh velocity), the part of the response estimated to be due to

noise (disturbance prediction), and the predicted future state of the stimulus

1Names of blocks and signals in the diagram are denoted in boldface.
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(stimulus prediction), the RP system plans an optimal trajectory with a predic-

tion horizon (kh), or duration, provided by the Prediction Horizon block.

When the RP system has finished calculating an optimal desired trajectory

after an RP interval of 100 ms, it passes the first-differences of the desired po-

sition trajectory to the RE system, which in turn transforms these signals into

appropriate first-differenced motor commands through an Inverse Model. The

first-differenced motor commands have signal-dependent noise added to them by

the Noise block before being transformed to positional motor commands through

the postural Summer. The postural summer holds the motor commands on line

such that only changes in the motor commands need to be processed centrally.

This reduces the demand on resources as it allows unchanged motor commands to

be supplied to all those muscles that maintain fixed aspects of posture in a task.

The summed control signal from the Summer block is the fed to the Plant, which

consists of a wired-in synergy generator, the musculoskeletal system, and the ex-

ternal world lumped together. When the inverse model is perfectly accurate, the

motor commands will force the output of the plant to track the desired response

and any deviation will be solely due to signal-dependent noise. The ZOH position

and velocity output is fed back to the RP system as sensory feedback and another

optimal trajectory can be generated during the next planning interval.

The output of the plant as well as an efference copy of the motor commands

are converted to first-difference signals through Differencer blocks and fed into a

modelling network containing a forward model of the plant. Thus, this modelling

network performs adaptive tuning of the inverse model of the plant based on sig-

nals with statistical properties similar to those that they will ultimately transform.

Experimental observations concerning the accuracy of internal models support the

inclusion of postural summers and the associated use of first-difference signals for

the formation of models (Davidson, Jones, Sirisena, & Andreae, 2000; Ghous &

Neilson, 2002).
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To simulate a highly skilled subject, the inverse model is set to perfectly cancel

the dynamics of the plant and the modelling network is turned off to ensure that

the inverse model remains unchanged. To simulate a less skilled subject, the inverse

model is first set to be highly inaccurate and the modelling network is turned on.

Running a simulation for a period of time, the inverse model is gradually tuned and

becomes more accurate. When the desired accuracy is reached, the inverse model

is stored and the modelling network is turned off. The simulator can then be run

with the inverse model obtained during adaptation.

B.2 Simulator used for Study II

Fig. B.2 shows a block diagram of the Simulink implementation of the BUMP model

used for Study II in Chapter 4. The simulator is identical to the one depicted in

Fig. B.1 with two exceptions: First, Chapter 4 dealt with the simulator’s ability to

reproduce physiological tremor in a human ramp movements. Therefore, the Step

block in Fig. B.1 is replaced with a Signal Builder containing a set of stimulus,

or tracking, signals consisting of sequences of ramp and hold movements. A Mul-

tiport Switch and an inputsig block provides the ability to select a particular

tracking signal.

Second, there is an inherent limitation in Simulink with respect to calculating

correct continuous-time derivatives. This problem is overcome by feeding the plant’s

ZOH velocity signal through a Φ block in series with a gain and a derivative block.

The Φ block contains a simple mathematical operation that together with the gain

and derivative blocks produce the mathematically correct acceleration signal of the

plant, consisting of rectangular 50 ms acceleration pulses as described in Chapter 2.

These pulses are then integrated once and twice to obtain the velocity and position

signal, respectively, at any sampling rate desirable. In Study II, the sampling rate

was set to 100 Hz, more than sufficient for frequency analysis of 10 Hz physiological

tremor.
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For more details on the implementation of the simulator, please refer to Matlab

and Simulink source files contained on the CD-ROM accompanying this thesis (see

Appendix C for CD-ROM content).
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Appendix C

CD-ROM content

The accompanying CD-ROM contains the following directories:

LaTeX contains the LATEX development for this thesis.

MATLAB contains Matlab and Simulink files used for simulation, analysis, and

illustration.

Papers contains digital copies of most of the references as well as other researched

material of partial relevance.

PhDthesis.pdf is this document.
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