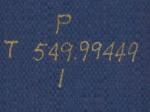


Aspects of mineralogical variation in the Western A Lode, N.B.H.C. Mine, Broken Hill, New South Wales, Australia

Author: Bottrill, Ralph Stephen

Publication Date: 1984

DOI: https://doi.org/10.26190/unsworks/11188


# License:

https://creativecommons.org/licenses/by-nc-nd/3.0/au/ Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/66412 in https:// unsworks.unsw.edu.au on 2024-04-25









UNSW

P .T549.99449 

Aspects of Mineralogical Variation in the Western A Lode, N.B.H.C. Mine, Broken Hill, New South Wales, Australia.

> A thesis submitted by Ralph Stephen Bottrill, Bsc (Hons.) Adel.

> > for the degree of Master of Science

## in the

School of Applied Geology University of New South Wales

in

September 1984



#### THE UNIVERSITY OF NEW SOUTH WALES

## DECLARATION RELATING TO DISPOSITION OF THESIS

This is to certify that I Ralph Stephen Bottrill being a candidate for the degree of Master of Science am fully aware of the policy of the University relating to the retention and use of higher degree theses, namely that the University retains the copies of any thesis submitted for examination, "and is free to allow the thesis to be consulted or borrowed. Subject to the provisions of the Copyright Act (1968) the University may issue the thesis in whole or in part, in photostat or microfilm or other copying medium."

In the light of these provisions I grant the University Librarian permission to publish, or to authorise the publication of my thesis, in whole or in part, as he deems fit.

I also authorize the publication by University Microfilms of a 600 word abstract in Dissertation Abstracts International (D.A.I.).

Signature

Witness

Date 16/4/34-

## DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from other sources, published and unpublished, has been acknowledged in the text.

R.S Bottrill

## CONTENTS

## ABSTRACT

.

# CHAPTER 1 INTRODUCTION

| 1.1   | The nature of this investigation.                          | 1  |
|-------|------------------------------------------------------------|----|
| 1.2   | General geology                                            | 3  |
| 1.3   | Geology of the mines area.                                 | 3  |
| 1.3.1 | Lithology.                                                 | 6  |
| 1.3.2 | Stratigraphy and environment of deposition.                | 10 |
| 1.3.3 | Structure in the region of the orebodies.                  | 12 |
| 1.3.4 | Wallrock alteration.                                       | 13 |
| 1.3.5 | Metamorphism and synmetamorphic metasomatism in the lodes. | 14 |
| 1.3.6 | Retrogression of the orebodies.                            | 15 |
| 1.3.7 | Zoning and variability in the orebodies.                   | 16 |
| 1.4   | Methods of investigation used in this study.               | 18 |

## CHAPTER 2 STRATIGRAPHY AND STRUCTURE

| 2.1 | Introduction.              | 21 |
|-----|----------------------------|----|
| 2.2 | Sillimanite Gneiss.        | 21 |
| 2.3 | Gahnite-rich zone.         | 22 |
| 2.4 | Upper garnet quartzite.    | 22 |
| 2.5 | Pyroxenoid-amphibole zone. | 23 |
| 2.6 | Lower garnet quartzite.    | 24 |
| 2.7 | Sillimanite Gneiss.        | 24 |

# CHAPTER 3 PETROGRAPHY

| 3.1   | Introduction.                       | 25 |
|-------|-------------------------------------|----|
| 3.2   | Textures.                           | 25 |
| 3.3   | Petrography of principal rocktypes. | 27 |
| 3.3.1 | Pelites (Sillimanite Gneiss).       | 27 |
| 3.3.2 | Gahnite-rich rocks.                 | 27 |

## Page

١

|           |         |                                       | Page |
|-----------|---------|---------------------------------------|------|
| CHAPTER 3 | (cont.) | )                                     |      |
|           | 3.3.3   | Garnet quartzite                      | 28   |
|           | 3.3.4   | Pyroxenoid-rich rocks                 | 29   |
|           | 3.3.5   | Amphibole-rich units                  | 30   |
| •         | 3.3.6   | Sulphide quartzite                    | 31   |
|           | 3.4     | Petrography of minor rocktypes        | 32   |
|           | 3.4.1   | Introduction                          | 32   |
|           | 3.4.2   | Quartz-rich veins                     | 32   |
|           | 3.4.3   | Garnet sandstone                      | 33   |
|           | 3.4.4   | Quartzo-feldspathic rocks             | 33   |
|           | 3.4.5   | Apatite-rich rocks                    | 34   |
|           | 3.4.6   | Remobilised sulphides                 | 35   |
|           | 3.5     | Petrography of retrograde lithologies | 35   |
|           |         |                                       |      |
| CHAPTER 4 | MINERA  | ALOGY                                 |      |
|           | 4.1     | Introduction                          | 37   |
|           | 4.2     | Quartz                                | 37   |
|           | 4.3     | Garnet                                | 39   |
|           | 4.4     | Biotite                               | 41   |
|           | 4.5     | Sillimanite                           | 44   |
|           | 4.6     | Feldspars                             | 44   |
|           | 4.7     | Spinels                               | 46   |
|           | 4.8     | Amphiboles                            | 49   |
|           | 4.9     | Pyroxenes and pyroxenoids             | 52   |
|           | 4.10    | Staurolite                            | 56   |
|           | 4.11    | Ilmenite                              | 57   |
|           | 4.12    | Sulphides                             | 58   |
|           | 4.13    | Retrograde phyllosilicates            | 59   |
|           | 4.14    | Other minerals                        | 62   |

# CONTENTS (cont.)

|           |        |                                       | Page   |
|-----------|--------|---------------------------------------|--------|
| CHAPTER 5 | MINERA | AL AND WHOLEROCK CHEMICAL VARIABILITY |        |
|           | 5.1    | Introduction                          | 65     |
|           | 5.2    | Whole-rock chemistry                  | 65     |
|           | 5.2.1  | Chemical variation                    | 66     |
|           | 5.2.2  | Correlation coefficient analysis      | 67     |
|           | 5.2.3  | Palaeosalinity                        | <br>68 |
|           | 5.2.4  | Base metal variations                 | 71     |
|           | 5.3    | Variations in mineral chemistry       | 72     |
|           | 5.3.1  | Garnets                               | 73     |
|           | 5.3.2  | Biotite                               | 73     |
|           | 5.3.3  | Spinels                               | 75     |
| CHAPTER 6 | SUMMAR | AND CONCLUSIONS                       |        |
|           | 6.1    | Summary of zoning in the WAL          | 76     |
|           | 6.2    | Origin of prograde mineral phases     | 78     |
|           | 6.2.1  | Sillimanite                           | 78     |
|           | 6.2.2  | Feldspars                             | 78     |
|           | 6.2.3  | Biotite                               | 79     |
|           | 6.2.4  | Garnet                                | 80     |
|           | 6.2.5  | Spinels                               | 80     |
| ,         | 6.2.6  | Pyrrhotite and other sulphides        | 83     |
|           | 6.2.7  | Pyroxenoids and pyroxenes             | 85     |
|           | 6.3    | Origin of principal rock – types      | 86     |
|           | 6.3.1  | Sillimanite Gneiss (detrital facies)  | 87     |
|           | 6.3.2  | Gahnite-rich zone                     | 87     |
|           | 6.3.3  | Garnet quartzite                      | 88     |
|           | 6.3.4  | Pyroxenoid-amphibole zone             | 91     |
|           | 6.4    | Retrogression                         | 91     |
|           | 6.4.1  | Amphiboles                            | 91     |

.

ì

.

|                                    | . Page                                                       |
|------------------------------------|--------------------------------------------------------------|
| <u>t.</u> )                        |                                                              |
| .2 Other retrograde silicates      | 92                                                           |
| Environment of deposition          | 94                                                           |
| Economic aspects of this thesis    | 96                                                           |
| Summary of geological history      | 96                                                           |
| R FURTHER WORK                     | 98                                                           |
| TS                                 | 99                                                           |
|                                    |                                                              |
|                                    |                                                              |
| Analytical methods                 |                                                              |
| Mineral analyses                   |                                                              |
| Assay data                         |                                                              |
| a)Whole rock geochemical trends    |                                                              |
| b) Base metal trends               |                                                              |
| c) Mineral composition trends      |                                                              |
| XRD analyses of pyroxenoids        |                                                              |
| Publications                       |                                                              |
| Abbreviations                      |                                                              |
| Computer program for stoichiometry |                                                              |
|                                    |                                                              |
|                                    | Environment of deposition<br>Economic aspects of this thesis |

Page

# TABLES

|     |                                                                | Page    |
|-----|----------------------------------------------------------------|---------|
| 1.1 | A comparison of mineral assemblages used to define metamorphic | -,<br>, |
|     | zones in the Broken Hill Block.                                | 2       |
| 1.2 | Summary of estimated metamorphic conditions at Broken Hill.    | 4a      |
| 1.3 | Principal ore lenses at ZC/NBHC mines.                         | 8       |
| 1.4 | Principal gangue mineralogy and typical mining grades of the   |         |
|     | Broken Hill orebodies.                                         | 9       |
|     |                                                                |         |
| 3.1 | Approximate grainsize ranges.                                  | 26      |
| 3.2 | Average modal compositions of important rocktypes.             | 26a     |
|     |                                                                |         |
| 4.1 | Average analyses of various mineral phases in the WAL.         | 37a,b,c |
| 4.2 | Fluorine and chlorine in various phases.                       | 43      |
| 4.3 | Comparison of rhodonite and pyroxmangite.                      | 53      |
|     |                                                                |         |
| 5.1 | Whole rock analyses.                                           | 65a     |
| 5.2 | Spearman correlations.                                         | 67a     |
| 5.3 | Kendall correlations.                                          | 67b     |
| 5.4 | Comparison of average sillimanite gneiss, freshwater shale     |         |
|     | and marine shale analyses.                                     | 70      |
|     |                                                                |         |
|     |                                                                |         |

.

.

•

.

## FIGURES

|      |                                                                   | Page        |
|------|-------------------------------------------------------------------|-------------|
| 1.1  | Prograde metamorphic zones of the Broken Hill Block.              | 1a          |
| 1.2  | Distribution of Broken Hill type lode horizons.in the Broken Hill |             |
|      | Block.                                                            | 1b          |
| 1.3A | Geological map of the Broken Hill mines area.                     | lc          |
| B    | Longitudinal cross-section of the Broken Hill mines area.         | 1c          |
| С    | Stratigraphic sequence in the Broken Hill mines area.             | 1c          |
| 1.4  | Geological cross-section No. 62, NBHC.                            | 1d          |
| 1.5  | Longitudinal projection of A lode and WAL.                        | 1e          |
| 1.6  | ZC and NBHC leases, showing drill sections.                       | 1f          |
| 1.7  | Block diagram of southern mines area.                             | <b>1</b> 2a |
| 1.8  | Schematic unfolded section of Broken Hill orebodies, showing      |             |
|      | elemental zonation.                                               | 18a         |
|      |                                                                   |             |
| 2.1  | Drill section 26, ZC.                                             | 21a         |
| 2.2  | Drill section 50, NBHC.                                           | 21b         |
| 2.3  | Drill section 58, NBHC.                                           | 21c         |
| 2.4  | Drill section 64, NBHC.                                           | 21d         |
| 2.5  | Drill section 66, NBHC.                                           | 21e         |
| 2.6  | Drill section 68, NBHC.                                           | 21f         |
| 2.7  | Drill section 70, NBHC.                                           | 21g         |
| 2.8  | Drill section 76, NBHC.                                           | 21h         |
| 2.9  | Approximate projection of WAL onto the 19 level.                  | 21i         |
| 2.10 | Schematic mineral distribution in drillholes 2682 and 4496.       | 21j         |
|      |                                                                   |             |
| 3.1  | Microfaulted garnet in quartz.                                    | 27a         |
| 3.2  | Exsolution of ilmenite and rutile in and about biotite.           | 27a         |
| 3.3  | Staurolite vein in quartzite with garnet.                         | 29a         |
| 3.4  | Intergrowth of rhodonite and pyroxmangite.                        | 29a         |
| 3.5  | Intergrowth of rhodonite and hedenbergite.                        | 30a         |
| 3.6  | Dannemorite replacing pyroxenoid along grain boundaries,          |             |

FIGURES (cont.)

|      | <u>_</u>                                                               | Page |
|------|------------------------------------------------------------------------|------|
| 3.6  | Dannemorite replacing pyroxenoid along grain boundaries, fractures     |      |
|      | and cleavages.                                                         | 30a  |
| 3.7  | Dannemorite replacing pyroxenoid along fractures and cleavages,        |      |
|      | with coarse dannemorite and garnet.                                    | 30b  |
| 3.8  | Ragged pyrosmalite crystal replacing pyroxenoid.                       | 30b  |
| 3.9  | Alteration of pyroxenoid to pyrosmalite with a fine-grained selvage    | ·    |
|      | of manganopyrosmalite and galena.                                      | 30c  |
| 3.10 | Manganoan stilpnomelane in pyrrhotite with rhodonite.                  | 30c  |
| 3.11 | Vein of cummingtonite/dannemorite, with chalcopyrite and pyrrhotite    |      |
|      | in coarse-grained, remobilised garnet and quartz.                      | 31a  |
| 3.12 | Quartz vein with remobilised sulphides and coarse-grained garnet-      |      |
|      | rich selvages, in garnet quartzite with sulphide-garnet quartzite.     | 31a  |
| 3.13 | Aggregate of dannemorite in quartz.                                    | 31b  |
| 3.14 | Dannemorite replacing sphalerite with garnet.                          | 31b  |
| 3.15 | Sphalerite intergrown with dannemorite.                                | 31c  |
| 3.16 | Two generations of dannemorite with garnet and quartz.                 | 31c  |
| 3.17 | Two generations of dannemorite with quartz.                            | 31d  |
| 3.18 | Two generations of actinolite with sulphide inclusions and a           |      |
|      | pleochroic halo about allanite.                                        | 31d  |
|      | ,                                                                      |      |
| 4.1  | Blue quartz, showing a fine cross-hatching and some recrystallisation. | 37d  |
| 4.2  | Blue quartz (with inclusions) recrystallised along grain boundaries.   | 37d  |
| 4.3  | Composition of garnets.                                                | 39b  |
| 4.4  | Composition of garnets.                                                | 39b  |
| 4.5  | Compositional zoning in .garnet from the amphibole subzone.            | 40a  |
| 4.6  | The relation between Fe/Fe+Mg and Al in biotites.                      | 41a  |
| 4.7  | Relation between Mg, (Fe+Mn) and Al in trioctahedral micas,            |      |
|      | showing the compositional limits from Foster (1960).                   | 42a  |
| 4.8  | The relation between Fe/Fe + Mg and Ti in biotites.                    | 42b  |
| 4.9  | Chlorite and galena replacing biotite.                                 | 44a  |

FIGURES (cont.)

7

.

|       |                                                               | Page |
|-------|---------------------------------------------------------------|------|
| 4.10  | Fine galena inclusions in orthoclase, with a core of coarser  |      |
|       | galena, garnet and clinozoisite.                              | 44a  |
| 4.11  | Plot of structural states of WAL potash feldspars.            | 45a  |
| 4.12  | The composition of zincian spinels.                           | 46a  |
| 4.13  | Alteration of gahnite to sericite with a sphalerite rim.      | 47a  |
| 4.14  | Alteration of biotite and gahnite to chlorite with sphalerite |      |
|       | and garnet.                                                   | 47a  |
| 4.15  | Staurolite alteration rim about gahnite.                      | 47b  |
| 4.16  | Epitaxial overgrowth or oriented replacement of gahnite by    |      |
|       | staurolite.                                                   | 47b  |
| 4.17  | Gahnite partly replaced by a single crystal of staurolite.    | 47c  |
| 4.18  | Fine pyrrhotite inclusions in gahnite adjacent to coarse      |      |
|       | pyrrhotite, with ilmenite and chalcopyrite.                   | 47c  |
| 4.19  | Aggregates of sericite, biotite and sphalerite pseudomorphous |      |
|       | after gahnite.                                                | 49a  |
| 4.20  | Fine exsolution of kanoite in tirodite with manganoan biotite |      |
|       | and pyroxmangite.                                             | 49a  |
| 4.21  | Composition of amphiboles.                                    | 49Ь  |
| 4.22  | Composition of amphiboles.                                    | 49c  |
| 4.22a | Composition of amphiboles.                                    | 49d  |
| 4.23  | Pressure-temperature curve for the rhodonite/pyroxmangite     |      |
|       | transformation, for pure MnSiO <sub>3</sub> .                 | 52a  |
| 4.24  | Composition of pyroxenoids and pyroxenes in Mg-poor samples.  | 52b  |
| 4.25  | Composition of pyroxenoids, pyroxenes and amphiboles in       |      |
|       | Mg-rich samples.                                              | 52c  |
| 4.26  | Compositions of pyroxenoids, pyroxenes and amphiboles in      |      |
|       | Mg-rich samples.                                              | 52d  |
| 4.27  | Compositions of pyroxenoids and pyroxenes.                    | 52e  |
| 4.28  | Compositions of staurolites.                                  | 57a  |
| 4.29  | Compositions of ilmenites.                                    | 58a  |

FIGURES (cont.)

|      |                                                                       | Page |
|------|-----------------------------------------------------------------------|------|
| 4.30 | Pyrrhotite grain, enclosed in dannemorite, showing typical            |      |
|      | flame-like exsolution lamellae of troilite.                           | 58b  |
| 4.31 | Late-stage sulphide vein in garnet quartzite, showing galena          |      |
|      | replacing pyrrhotite, with sphalerite and ilmenite.                   | 58b  |
| 4.32 | Garnetisation of biotite, as evidenced by the presence of fine        |      |
|      | ilmenite in both biotite and garnet.                                  | 59a  |
| 4.33 | Pyrite overgrowth on pyrrhotite.                                      | 59a  |
| 4.34 | Replacement of loellingite by arsenopyrite, in pyrrhotite.            | 59b  |
| 4.35 | Chlorite-calcite vein in garnet quartzite.                            | 59b  |
| 4.36 | Composition of chlorites.                                             | 60a  |
| 4.37 | Relation between coexisting chlorites and biotites.                   | 60b  |
| 4.38 | Relations between Mn and Al in chlorites.                             | 60c  |
|      |                                                                       |      |
| 5.1  | Wholerock geochemical trends for drillhole 4496.                      | 65b  |
| 5.2  | Relation between Mg and Fe in wholerock analyses from drillhole 4496. | 66a  |
| 5.3  | Relation between B,Ga and Rb in WAL wholerock samples, showing the    |      |
|      | palaeosalinity fields of Degens et al. (1957).                        | 69a  |
| .5.4 | Base metal variation in drillhole 4496.                               | 71a  |
| 5.5  | Base metal variation in drillhole 2682.                               | 71b  |
| 5.6  | Base metal variation in drillholes 4483 and 4502.                     | 71c  |
| 5.7  | Relation between Ag and Pb in drillhole 4502.                         | 72a  |
| 5.8  | Relation between Bi and Pb in drillhole 4502.                         | [.2b |
| 5.9  | Mineral chemistry variations in drillhole 4496.                       | 73a  |
| 5.10 | Mineral chemistry variations in drillhole 4502.                       | 73b  |
|      |                                                                       |      |
| 6.1  | Schematic summary of geochemical variation in the WAL.                | 76b  |

.

•

#### Abstract

The Western A Lode (WAL), an extension of the zinc - rich A lode at Broken Hill, NSW, shows a gradation between manganese silicate - rich sulphide ores and the pelitic metasediments of the wallrocks. This sequence can be subdivided petrographically into four broad zones, approximately symmetric about the centre of the lode. Passing from the pelitic wallrocks these zones are: a sillimanite gneiss, a gahnite - rich zone, a garnet quartzite and an amphibole - pyroxenoid zone. This latter zone may be further subdivided into amphibole and pyroxenoid subzones.

Sulphides occur throughout the WAL sequence, and commonly are concentrated in the gahnite - rich zone and in the lower garnet quartzite, stratigraphically immediately below the lower amphibole subzone, but the principal concentration is in the pyroxenoid subzone. Distinct geochemical trends parallel the mineralogical variations: approaching the centre of the WAL from the wallrocks there is a distinct increase in Ca, Mn, P, S and base metals, and a corresponding decrease in Al, Ti, K and Mg/Mg + Fe. Some minerals reflect these trends in their composition: biotite shows a decrease in Al, and garnet a decrease in Mg and an increase in Ca and Mn towards the lode centre.

The sillimanite gnelss is considered to have been deposited as an argillaceous sediment in an anoxic basin. The other WAL rocktypes are consistent with having originally contained accessory to dominant Mn/Fe/Ca carbonate, silica and sulphides, chemically precipitated from exhaled hydrothermal solutions. These chemical sediments gradually overwhelmed the detrital input, but became overwhelmed again by detrital sediments as the exhalation waned.

Metamorphism of the lode to lower granulite facies resulted in almost complete decarbonation and dehydration, and partial desulphurisation, and was followed by extensive but variable retrogression. The prograde and retrograde metamorphic events have both contributed to a complex range of mineral assemblages, compositions and textures with minor sulphide remobilization. They have also instigated sulphide - silicate reactions, especially between gahnite, sphalerite, staurolite and phyllosilicates.

## Chapter 1. Introduction and Previous Work.

## 1.1 The Nature of this Investigation.

The Broken Hill silver-lead-zinc deposit occurs in high grade metamorphic rocks of the Lower Proterozoic Willyama Complex, in the Barrier Ranges of far western New South Wales (Fig's 1.1, 1.2, and 1.3). The deposit comprises a number of distinct ore-bearing lenses, of which the A-lode is economically one of the most important (Fig. 1.4). The western A-lode (WAL) (Figs. 1.4 and 1.5), has, so far, been left largely untouched in mining operations. It occurs mainly in the New Broken Hill Consolidated (NBHC) and Zinc Corporation (ZC) mines.

The main components of the lode are quartz, garnet, sphalerite and pyrrhotite, with galena, pyroxmangite, biotite, feldspar, gahnite and amphiboles locally abundant, but generally the distribution of minerals in the lode is extremely heterogenous particularly for the sulphides. The structure is very complex and highly deformed, but mesoscopic layering is sometimes present.

The origin of the Broken Hill ore deposit has been the subject of controversy for some time but it is now generally agreed to have been deposited as a chemical sediment and subsequently isochemically metamorphosed (Johnson & Klinger, 1975; Stanton, 1976a, b, c, d; Plimer, 1979) The original nature of some rock-types, e.g. quartz-gahnite rocks, pegmatoids, and garnet-rich rocks, is still poorly understood, despite intensive study by many workers (e.g. Stanton, 1976a, b, c, d; Spry, 1978; Billington, 1979; and Plimer, 1979). A number of peculiarities about the ore bodies have not been satisfactorily explained, such as the complete lack of pyrite, the

-1-

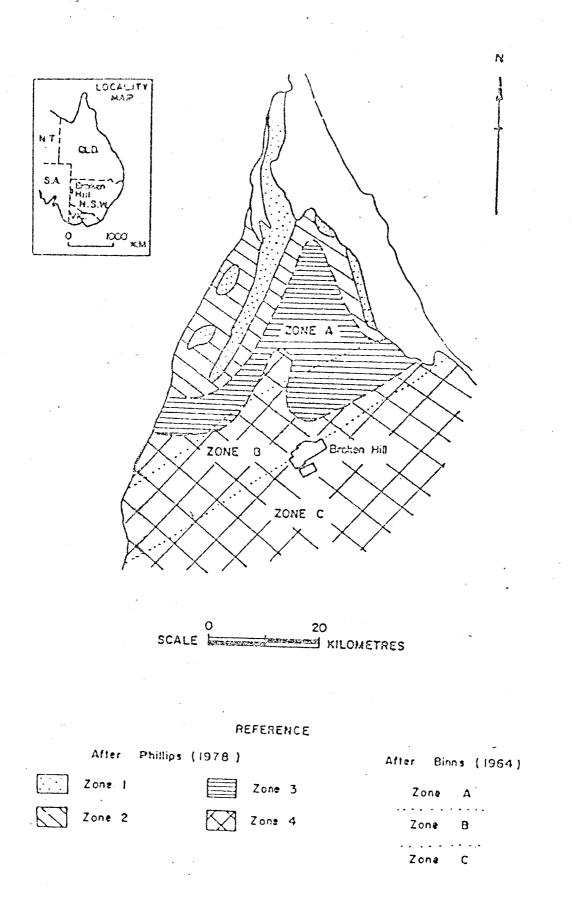



Fig. 1.1 Prograde metamorphic zones of the Broken Hill Block. For explanation of zones see Table 1.1 (after Elliott, 1979).

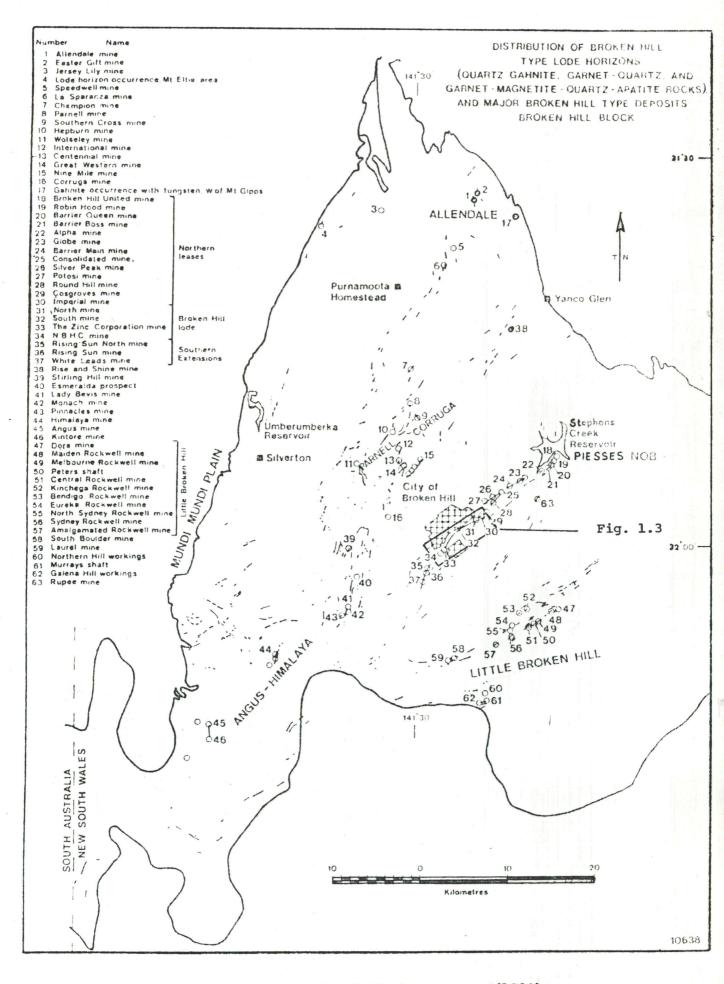



Fig. 1.2 (showing position of Fig. 1.3) from Barnes (1980).

1b

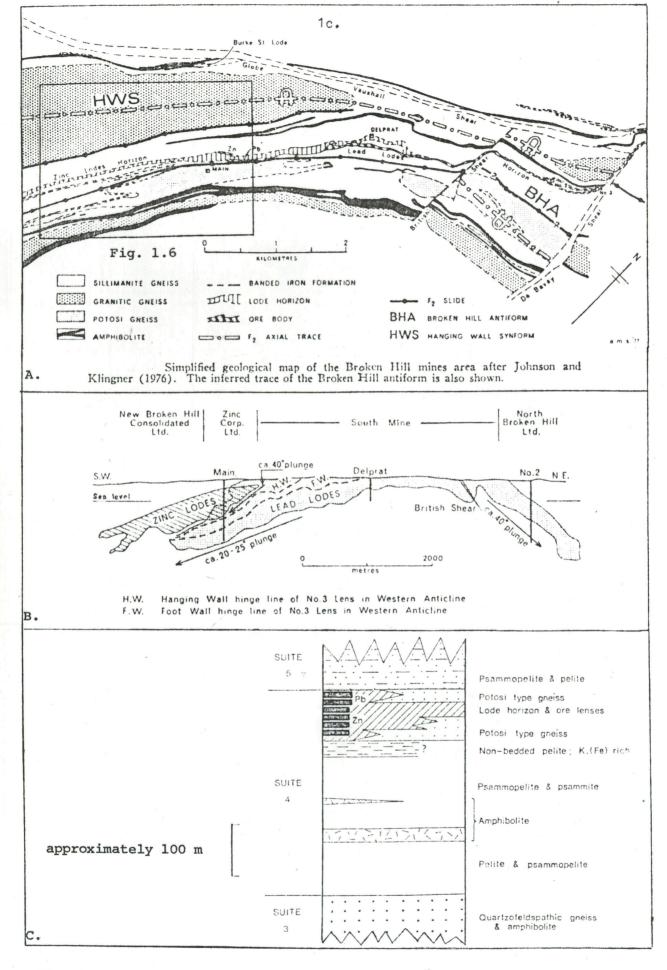
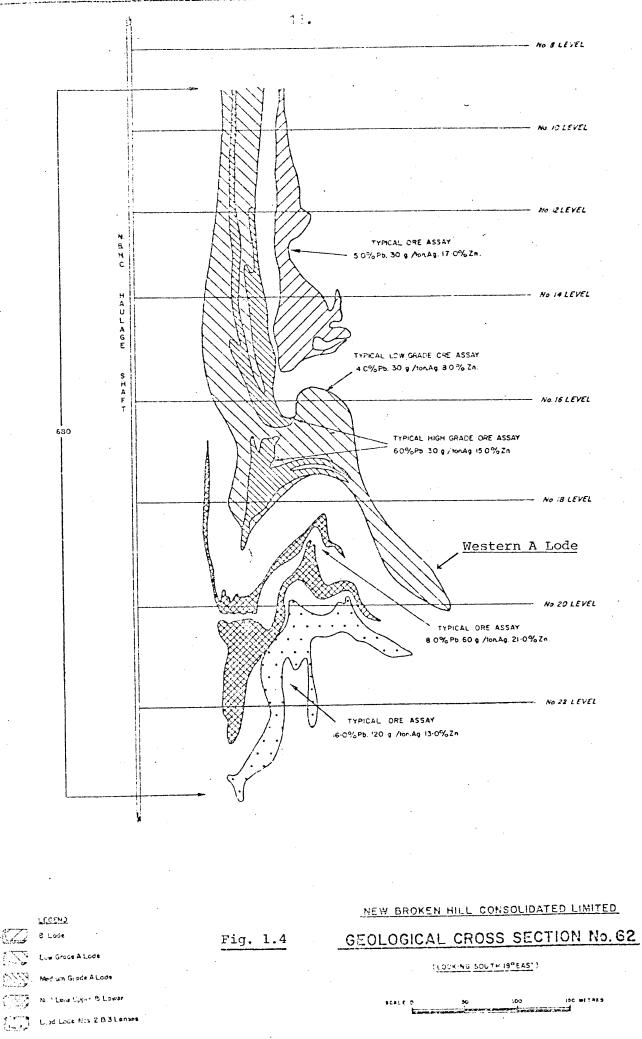
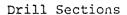
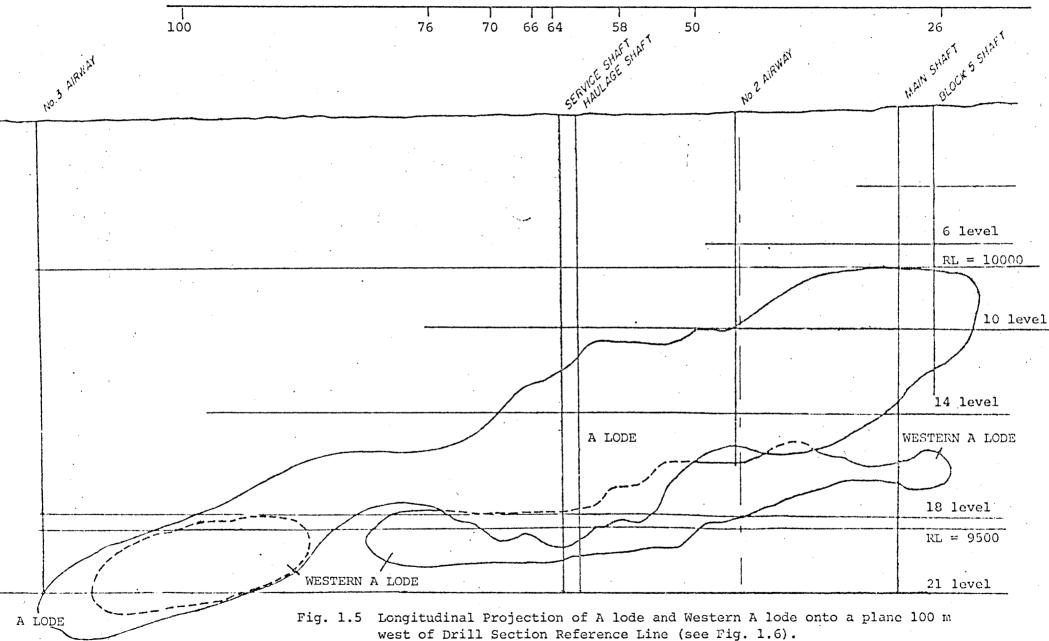






Fig. 1.3 A. Geological Map (Laing, et al, 1978), showing Fig. 1.6 B. Longitudinal cross section, looking NW (Laing et al, 1978) C. Stratigraphic sequence in mines area (Laing et al, 1980).







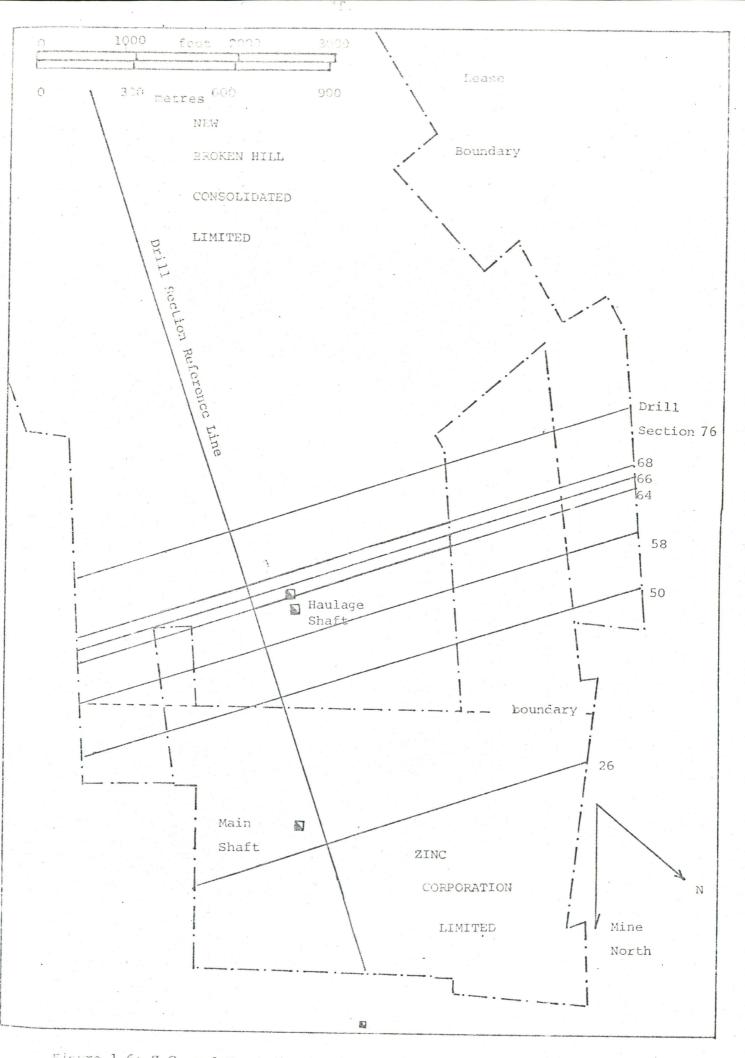



Figure 1.6: Z.C. and N.B.H.C. leases, showing drill sections used.

TABLE 1.1 A comparison of mineral assemblages used to define metamorphic zones in the Broken Hill Block (from Elliott, 1979).

|      | Binns (1964)                                                |                            | Phillips et al. (1976) |                                                                      |                                                                  |  |  |
|------|-------------------------------------------------------------|----------------------------|------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|--|--|
| ZONE | MAFIC<br>ROCKS                                              | PELITIC<br>ROCKS           | ZONE                   | MAFIC<br>ROCKS                                                       | PELITIC<br>ROCKS                                                 |  |  |
| A    | Amphibolite<br>with green<br>or blue-green<br>hornblende    | Sillimanite-<br>muscovite  | 1                      | Hornblende <del>-</del><br>Plagioclase                               | Andalusite-<br>muscovite                                         |  |  |
| В    | Amphibolite<br>with brown<br>or brown-green<br>hornblende   | Sillimanite-<br>orthoclase | 2                      | As above                                                             | Sillimanite-<br>muscovite <u>+</u><br>garnet                     |  |  |
| с    | Hornblende-<br>orthopyroxene-<br>clinopyroxene<br>granulite | As above                   | 3                      | Hornblende-<br>Plagioclase<br><u>+</u> orthopyroxene                 | Sillimanite-<br>muscovite<br>e ( <u>+</u> garnet,<br>cordierite) |  |  |
|      |                                                             |                            | 4                      | Orthopyroxene-<br>clinopyroxene-<br>( <u>+</u> hornblene,<br>garnet) |                                                                  |  |  |

•

high zinc content of many non-sulphide phases (gahnite, staurolite, ilmenite, biotite, etc.), and the unusual compositions of some rock-types.

This study endeavours principally to elucidate the mineralogical variation in the Western A-lode.

An attempt is made to determine from the lode's mineralogy: i) whether the variability is principally sedimentological or deformational in character;

ii) the effect of retrogression on the lode;iii) constraints on the genesis of the ores and wallrocks.

This investigation will assist the mining companies by: i) defining mineralogical criteria which may be useful in helping outline the WAL.

ii) provide information regarding the distribution of various sulphides within the WAL.

#### 1.2 General Geology

The metamorphosed stratabound Broken Hill ore deposit occurs in the Broken Hill Group of the Lower Proterozoic Willyama Supergroup (formerly Willyama Complex; Willis et al. 1983). The suites defined in the Willyama Supergroup by Willis, 1983, from earliest to latest, are:

- i) Clevedale Migmatites.
- ii) Thorndale Composite Gneiss.
- iii) Thackaringa Group: quartzofeldspathic gneisses and quartz-albite rocks.
  - iv) Broken Hill Group: pelitic metasediments, basic gneisses, garnetiferous quartzofeldspathic rocks and lode rocks.
  - v) Sundown Group: pelitic to psammitic metasediments.

-3-

vi) Paragon Group: graphitic metasediments and quartzites. Stevens et al. (1980) suggested that this stratigraphic sequence,
lacking obvious unconformities, represents a variation from immature
sandy sediments (suites 1-3) to more shaley sediments (suite 4),
shaley and mature sandy sediments (suite 5), and shallow water silty
to clayey sediments (suites 6-7). Volcanism reached a maximum
intensity in suites 3-4 and then virtually ceased with deposition of
the principal stratiform ore-bearing rocks. Stevens et al. (1980)
postulated that the sequence represents deposition with decreasing
depth and increasing maturity in a shelf environment.

This complex of highly deformed metasediments and metavolcanics has been subjected to varying grades of metamorphism ,the peak of which has been dated at about 1700 Ma (Pigeon, 1967; Shaw, 1968; Reynolds, 1971) with deposition of the original rocks postulated at 1800 Ma ago (Shaw, 1968). A more recent comparitive study of various isotopic dating methods by Gulson (1983) dated the two metamorphic peaks at 1580 and 1660 Ma.

The metamorphic history is complex and Binns (1962, 1964) defined four major deformations. The structural analysis of Laing et al. (1978), however, seems more generally accepted at present, and they recognised M1 and M2 as two prograde deformations of similar grade, and M3 as a retrograde deformation. They suggested that these may be all part of the one orogeny, the "Olarian Orogeny", with M3 probably commencing soon after M2, and continuing until about the emplacement of the Mundi granite at about 1500 Ma (Pigeon, 1967). The range in metamorphic conditions, according to Phillips (1980) is from 500°, 3kbar,  ${}^{P}_{H20} = 1$ , to 800°, 6kbar and  ${}^{P}_{H20} = 0.5 + 0.2$ . (Table 1.2).

Partial melting is often well developed, with migmatites being

-4-

| ú.i.      |                       |  |  |                     |            |    |        |      |          |      |
|-----------|-----------------------|--|--|---------------------|------------|----|--------|------|----------|------|
| Table 1.2 | Summary o<br>Elliott, |  |  | <b>metamorphi</b> c | conditions | at | Broken | Hill | (adapted | from |

|                                  | event after<br>Laing 1977           | P <sub>T</sub> kb | T°C         | <sup>Р</sup> н <sub>2</sub> 0                              | Method of Calculation                                                                                         |
|----------------------------------|-------------------------------------|-------------------|-------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Binns, 1964                      | M <sub>1-2</sub>                    | 5-10              | 750~800     | <sup>Р</sup> н <sub>2</sub> 9 <sup>&lt;&lt; Р</sup> т      | Reaction curves                                                                                               |
| Chenhall, 1973                   | M <sub>1-2</sub>                    | 3-5               | 680-800     | P <sub>H2</sub> 0 <sup>&lt;&lt; P</sup> T                  | Reaction curves                                                                                               |
| Hewins, 1975                     | <sup>M</sup> 1-2                    | -                 | 780-843     | -                                                          | Mg-Fe partitioning between<br>orthopyroxene and<br>clinopyroxene                                              |
| S. Lee<br>(pers. comm.,<br>1976) | M <sub>1-2</sub>                    | > 6               | 700-800     | <sup>р</sup> н 20 <sup>&lt; р</sup> т                      | Mg-Fe partitioning between cordierite and garnet.                                                             |
| Scott <u>et al</u> .<br>1977     | <sup>M</sup> 1-2                    | 7.8 av.<br>max.   | 650-800     | -                                                          | Partitioning of FeS,<br>between sphalerite and<br>hexagonal pyrrhotite                                        |
| Laing, 1977                      | Ml                                  | 5.2 - 6.9         | 650-750     | <sup>Р</sup> н <sub>2</sub> 0 <sup>&lt; Р</sup> т          | Reaction curves                                                                                               |
| Laing, 1977                      | M <sub>2</sub>                      | 5.5 - 7.0         | 600-750     | <sup>Р</sup> н <sub>2</sub> 0 <sup>&lt; Р</sup> т          | Reaction curves                                                                                               |
| Phillips,<br>1978, 1980          | M <sub>1-2</sub>                    | 4.9 - 5.5         | 710-770     | $^{4}H_{2}0=$<br>0.25 <u>+</u> 0.1                         | Reaction curves, Opx-<br>garnet, & cordierite-<br>garnet partitioning,<br>melting & dehydration<br>reactions. |
| Elliott, 1979                    | <sup>M</sup> 1 <sup>&amp; M</sup> 2 | 5.5 - 7.0         | 650-800     | <sup>P</sup> H <sub>2</sub> 0 <sup><p< sup="">T</p<></sup> | Reaction curves, geobaro-<br>metry & geothermometry<br>studies listed above.                                  |
|                                  | F                                   | REGIONAL RETR     | OGRADE META | MORPHISM                                                   |                                                                                                               |
| Chenhall, 1973                   | M <sub>3</sub>                      | 6.0 - 4.5         | 600-480     | <sup>P</sup> H <sub>2</sub> 0 <sup>≠ P</sup> T             | Reaction curves                                                                                               |
| Laing, 1977                      | M <sub>3</sub>                      | 6.0 - 3.0         | 750-450     | variable                                                   | Reaction curves                                                                                               |
| Elliott, 1979                    | M <sub>3</sub>                      | 5.5 - 3.0         | 650-450     | but high                                                   | Reaction curves.                                                                                              |

¢

•

## HICH GRADE METAMORPHISM

common in the higher-grade metamorphic facies (Corbett and Phillips (1981)). Phillips and Wall (1981) found evidence that CO2-induced crustal dehydration preceded the formation of the granulite facies terrain, and like Stevens et al. (1980) thought the high thermal gradient to result from upwelling of basic magma or mantle material. There is a general trend of increasing metamorphic grade from northwest to southeast, first described by Binns (1962, 1964), and more accurately defined by Phillips (1978 & 1980) (Fig. 1.1 and Table 1.1). The latter author mapped four metamorphic zones, showing that the isograds were both folded and faulted by later retrograde deformational events, and considered that the Broken Hill ore bodies had been subjected to metamorphism of the two – pyroxene zone of the granulite facies.

The Complex is transected by numerous M3 retrograde shear zones (RSZ) as described by Vernon and Ransom (1971), Corbett and Phillips (1981) and Etheridge and Cooper (1981). These also increase in metamorphic grade to the southeast and, as noted by Chenhall (1973), and Corbett and Phillips (1981), the presence of kyanite and staurolite in some RSZ is indicative of comparatively high pressure. Kyanite is unknown in the Willyama Complex outside of the two-pyroxene zone (Corbett and Phillips, 1981). Fine-grained muscovite, biotite, garnet and sillimanite are typical minerals of the RSZ. Widespread incipient migmatization was thought by Corbett and Phillips to be accompanied by incipient retrogression in surrounding rocks, but the RSZ seem unrelated to migmatites (Etheridge and Cooper, 1981). The latter workers explain the retrogression in RSZ as being due to meteoric fluids penetrating down to about 10 km !, and exceptionally large amounts of fluid (1,000-10,000 x rock volume) were postulated to

-5-

account for the large amount of muscovite/sericite, and loss of silica. Isotopic evidence shows that the RSZ probably represent a long series of deformational events during and following M3, from about 1490 to about 460 Ma (Etheridge and Cooper, 1981).

Stevens et al. (1980) postulated a rift-environment origin for the ore deposit, associated with hotspots and, although neither modern continental or island arc settings are strictly compatible, favoured a frontal - arc basin setting similar to the Green Tuff region of Japan. Willis et al. (1983) similarly inferred a setting within an active rift zone in a subsiding extensional shelf-like environment, but noted the lack of evidence for pre-existing continental crust to the east, and the absence of coarse pyroclastics and conglomerates in the sequence. They suggest that the Broken Hill Block lay towards the continental margin, and postulate a broad, marine, ensialic back-arc basin behind a continental margin as a possible setting.

#### 1.3 Geology of the Mines Area

#### 1.3.1 Lithology

Carruthers and Pratten (1961), recognized a sequence of rocks in these Broken Hill Mines area which they termed the "Mine Sequence" (Fig. 1.3). This has been discussed in detail by Johnson and Klingner, (1975), Laing et al. (1978) and Laing, (1980). In their recent subdivision of the Willyama Supergroup, Willis et al. (1983) placed most of the Mine Sequence within the Broken Hill Group, and the major mineralisation within the Hores Gneiss, Purnamoota Sub-group. Johnson and Gow (1975) have shown that most other major Broken Hill-type mineralization in the Willyama Complex is associated with this

-6-

sequence. It should be noted however, that the Pinnacles Mine (the second largest deposit within the Willyama Complex c.f. Turner, 1927) and numerous small stratiform deposits, occur within the Thackaringa Group, slightly older than the Broken Hill Group, and are of Broken Hill-type (Barnes, 1980; Leyh & Larsen, 1983).

The Mine Sequence consists principally of a range of pelitic to psammitic and feldspathic gneisses, commonly migmatized. Concordant iron-rich amphibolite horizons are common, but minor, units. An essentially massive, coarse-grained, leucocratic, quartzo-feldspathic gneiss has been termed the "Granite Gneiss" (Carruthers and Pratten, 1961), "Felsic Gneiss" (Plimer, 1979) and Rasp Ridge Gneiss (Willis et al. 1983). Several units of a distinctive garnet-plagioclaseorthoclase-biotite gneiss, within the Hores Gneiss (Willis et al. 1983) are termed the "Potosi Gneiss" (Carruthers & Pratten, 1961) and have a close relationship to the orebodies.

The Mine Sequence probably originated as a mixed volcano-sedimentary succession (Johnson and Klingner, 1975). Plimer (1979), using field relationships, relict textures and structures, and geochemical data, showed that the felsic gneiss, Potosi Gneiss and amphibolites are probably of igneous origin. The progenitors were suggested to be an altered acid pyroclastics, a rhyodacitic tuff, and a basaltic tuff, respectively. Willis et al. (1983), suggested that the associated metasediments were derived by subaerial weathering, erosion and redeposition of this volcanic material.

The orebodies consist of a series of lenses, conformable with the general stratigraphy, known as the "lode horizon" (Carruthers and Pratten, 1961) (Figures 1.3 and 1.4). These lodes have a complex and variable composition (Tables 1.3 and 1.4), and are separated by a

-7-

# TABLE 1.3 PRINCIPAL ORE LENSES AT ZC/NBHC MINES

\_\_\_\_\_

Lead Lodes 2 lens (stratigraphic top/structural base) 2 lens 1 lens upper 2 inc Lodes A lode B lode (stratigraphic base/structural top)

# TABLE 1.4PRINCIPAL GANGUE MINERALOGY AND TYPICAL MINING GRADES OFTHE BROKEN HILL OREBODIES (adapted from Johnson and<br/>Klingner, 1976; Plimer, 1979).

|          |                                                |     | <u></u>        |       |
|----------|------------------------------------------------|-----|----------------|-------|
| Orebody  | Gangue                                         |     | Typical mining | grade |
|          |                                                | %₽b | g/t Ag         | %Zn   |
| 3 lens   | rhodonite, fluorite, quartz,                   | 15  | 300            | 13    |
| (NE end) | garnet, gahnite, apatite                       |     |                |       |
|          | pyroxmangite, amphiboles.                      |     |                |       |
| 3 lens   | quartz, fluorite, rhodonite,                   | 11  | 200            | 15    |
|          |                                                | ΤΤ  | 200            | 10    |
| (SW end) | garnet.                                        |     |                |       |
| 2 lens   | <u>calcite</u> , <u>rhodonite</u> , bustamite, | 14  | 100            | 11    |
|          | manganoan hedenbergite, tephroite,             |     |                |       |
|          | quartz, garnet, orthoclase, micas.             |     |                |       |
| l lens   | quartz, calcite, bustamite.                    | 8   | 50             | 20    |
| 1 10.15  | orthoclase, apatite, gahnite.                  | U   | 50             | 20    |
|          | orthoclase, apactie, gamme.                    |     |                |       |
| A lode   | rhodonite, pyroxmangite, quartz,               | 4   | 40             | 10    |
|          | manganoan hedenbergite, garnet.                |     |                |       |
|          | gahnite, calcite, apatite,                     |     |                |       |
|          | orthoclase.                                    |     |                |       |
|          |                                                |     |                |       |
| B lode   | quartz, orthoclase, garnet, apatite            | • 5 | 40             | 17    |

siliceous sillimanite gneiss which commonly shows some interlayering and gradation with lode rocks, and may contain layers rich in quartz, garnet, sulphides and/or other lode-indicative minerals. Feldspathic and/or migmatitic layers are common.

Quartz, sulphides, garnet, gahnite, calcite, fluorite, pyroxenoids, pyroxenes, orthoclase, plagioclase, fluorapatite, amphiboles and micas are all locally abundant, and most are widely distributed throughout the lodes. Most of these can be major phases, sometimes locally forming almost monominerallic rocks. Many different lode rock types were described and classified by Spry (1973) and Billington (1979), the most persistent being "quartz-gahnite", which occurs along about 300 km strike-length (Plimer (1979) and Fig 1.2), but "garnet quartzite" is also common. These rocktypes were thought by Spry (1973) to have formed from zinc and manganese oxide rich sediments respectively. The lode horizon has great lateral continuity despite the discontinuous nature of component rock bodies, and occurs in nearly all parts of the Willyama Complex (Stevens, 1980).

"Banded Iron Formation" (BIF) is a term given by Carruthers and Pratten (1961) to well-layered horizons consisting principally of garnet, quartz, magnetite and apatite with sulphides and gahnite as common accessories. Eight such horizons have been recognized.

## 1.3.2 Stratigraphy and Environment of Deposition of the Orebodies

There are six principal lodes at Broken Hill (Tables 1.3 and 1.4) and also some weak stringer mineralization stratigraphically below the B lode at ZC, which has been referred to as "C lode" (Spry, 1978). Typical cross-sections of the lodes in the ZC-NBHC area are shown in Figures 1.3 and 1.4.

-10-

The reference lines and coordinates used in these sections are an arbitary but well established system unique to Broken Hill and developed by the Broken Hill mining companies. The base line is defined as 0 = 10,000 metres below sea level, and ground level at Broken Hill is thus at about 10,280 metres on these coordinates. The mine levels are about 50 metres apart.

The felsic gneiss lies stratigraphically above the orebodies, while units of Potosi Gneiss may lie above, below and stratigraphically equivalent to the ore lenses in the east (Hawkins, 1968a; Plimer, 1979). The BIF's lie above or in stratigraphically equivalent horizons on opposite sides of Potosi Gneiss bodies to the sulphides lenses (Plimer, 1979). In general, thinning of Potosi Gneiss bodies is related to the deposition of the major sulphide bodies (MacKenzie and Gow, 1970). The latter authors suggested that ridges of Potosi Gneiss separated the reducing environment of sulphide deposition from the oxidizing environment of BIF deposition. Eight principal BIF's (1-3 metres thick) are present in the mine area, but only four show significant continuity, with the principal horizon extending for 15 km.

Facies variations in the Willyama Complex are very common (Thomas, 1960), and especially so within the mines sequence (Hawkins, 1968; Plimer, 1979). The ore lenses occur within relatively homogenous sillimanite gneiss, but influxes of chemical sediments (now largely represented by quartz, garnet and sulphide-rich rocks) produced extremely rapid facies variations. Billington (1979) suggested that changes from oxide to silicate to sulphide facies occurred during deposition.

Penecontemporaneous faulting probably occurred during deposition of

the Broken Hill Group sediments and Leyh (1982) indicated that retrograde shear zones may have been active during sedimentation in an area 18 km NE of Broken Hill. Evidence of the latter also exists near the main NBHC shaft and in the southern extensions of the orebody (Johnson and Klingner, 1975), and may result in a dramatic cut-off in sulphide thickness (T. Jackson, pers. comm.). The orebody lies near the intersection of two major lineaments, and lies parallel to the Darling Lineament (O'Driscoll, 1968, 1983).

Despite some structural attenuation, the orebodies have a length/breadth ratio of about 8:1. MacKenzie (1968) and Johnson and Klingner (1975) postulated a long, narrow, fault-bounded sea-floor depression and Plimer (1979) additionally envisaged distal volcanic centres.

Stevens et al. (1980) thought the mine sequence to have been deposited following a period of rifting-induced volcanism in a deep, but shallowing, basin with low detrital influx.

## 1.3.3 Structure in the region of the Orebodies

The structure of the mines area is very complex and is still in some dispute with different structural models having been proposed by Hobbs (1966), Johnson and Klingner (1975), Hodgson (1975a) and Laing et al. (1978). The model of Laing et al. is perhaps the one most generally favoured, and these workers were the first to prove that the orebodies have been overturned and recognized an earlier deformation event to that which produced the prominent structures of the Broken Hill area. Aspects of this model are shown in Figure 1.7.

The first generation of folding is represented by very large scale, commonly recumbent, folds throughout the area, and the orebodies occur

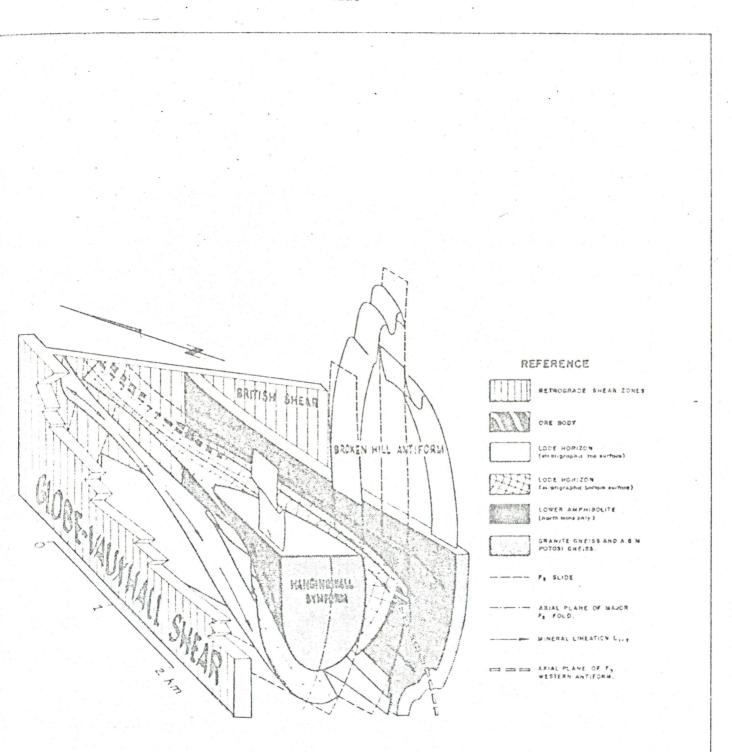



Fig. 1.7 Block diagram of the southern mines area, showing interpreted relationships between the main marker units and the main structures. For simplicity the Globe-Vauxhall shear and British shear are shown dipping vertically and the Broken Hill synform is omitted. (Laing et al, 1978). on the overturned limb of one of these. This folding (F1) was synchronous with the first high-grade metamorphism (M1); the second high grade metamorphism (M2) was associated with large scale tight F2 folding. The third major deformation (F3), responsible for small scale folds and crenulations in the orebody, was synchronous with retrograde metamorphism (M3). F2 and F3 folds are frequently coaxial (Johnson and Klingner, 1975).

Shearing is common in the area, and the principal retrograde shear zones are shown in Figures 1.3 and 1.7. These commonly are oriented NNE, often parallel to S3. Incipient retrogression outside these zones is very common, and frequently seems related spatially, and perhaps also genetically, to migmatization (Corbett and Phillips, 1981).

The orebodies are apparently thickened in F3 fold hinges in the NBHC and ZC mines, and Laing et al. (1978) suggested that some movement of sulphides into F2 and F3 fold hinges may have occurred. Hopwood (1978) showed that intrafolial folds were common in orebodies, and are perhaps due to syntectonic hydrothermal activity, related to metamorphism or mineralization. Vokes (1968, 1971) described how sulphides can be mobilized to a few metres under high grade regional metamorphism, and such mobilization at Broken Hill was described by Maiden (1975). The consistency of stratigraphic relations was used by Matthias (1973), Stanton (1976) and Plimer (1979) as evidence for the overall insignificance of such movement or transposition. The orebody therefore seems to have had an original linear shape.

# 1.3.4 Wallrock Alteration

Wallrock alteration at Broken Hill is generally assumed to be minor

-13-

and insignificant (Johnson and Klingner, 1975) and Plimer (1975 and 1979), Stanton (1976d) and Elliott (1979) describe geochemical variations that indicate that premetamorphic hydrothermal alteration probably did occur on a small scale. Plimer (1979) suggested that the geochemical variations principally represent premetamorphic sericitization shown mainly by areas of high K, Si and Rb. Sericite-schist zones bordering sulphides were suspected of being an alteration feature, but probably just indicate differential movement of sulphide ore with respect to the surrounding rocks (Plimer, 1979).

# 1.3.5 Metamorphism and synmetamorphic metasomatism in the lodes

The orebodies have been metamorphosed to the 2-pyroxene zone of lower granulite facies (Phillips, 1980) during M1 and M2, along with the enclosing rocks (Maiden, 1975). Partial melting of silicates and sulphides was probably contemporaneous (Plimer, 1976a and Lawrence, 1967).

Most geologists have assumed that essentially isochemical metamorphism occurred in these rocks, as sedimentary structures and chemical stratigraphy have been preserved - locally at least (Matthias, 1974, Glen and Laing, 1975, Stanton and Williams, 1978 and Plimer, 1977 and 1979). There is, however, considerable evidence for allochemical reactions in many rocktypes. Garnet and/or biotite-rich rims on amphibolite dykes (Stillwell and Edwards, 1956; Segnit, 1961; Plimer, 1979), and garnet-rich alteration rims to orebodies (Jones, 1968; Maiden, 1972; Spry, 1978; Billington, 1979) are common, indicating significant element mobility. The abundance of anhydrous silicates, including garnets, pyroxenes, pyroxenoids and sillimanite, indicate the loss of volatiles, principally H2O and CO2 (Plimer, 1979). Ahmad and Wilson (1982) proposed hydrogen metasomatism to explain fibrolite formation and movement of U and B in sillimanite gneisses at Broken Hill. Quartz-rich veins have also been interpreted to be indicative of metasomatism (Dewar, 1968; Phillips, 1980).

Desulphurization has been proposed by Wall et al. (1976) and Plimer (1977a) to account for the lack of pyrite and abundance of gahnite in these lodes, but Spry (1978) and Plimer (1977b) found no evidence for sulphur loss, and suggested that the lodes were originally sulphur-poor. Wall and England (1979) showed that sphalerite should re-equilibrate at high temperature and pressure with Fe-Mg-Al silicates, producing gahnite in equilibrium with H2S-rich fluid.

Saxby (1981) thought that the rarity of graphite at Broken Hill (Ramdohr, 1950) resulted from synmetamorphic oxidation by H2O or Fe2O3. Synmetamorphic oxidation and reduction seems, however, poorly understood at present (Mueller, 1967, Klein, 1973, Speer, 1981 and Haase, 1982). Methane leaks out of the Broken Hill ore ( I. Plimer, pers. comm.) and thus may be an important component of intergranular fluids and may have been derived from original graphite (Saxby, 1981).

The low permeability of various rocktypes may preclude metamorphic equilibration (Rumble et al. 1982), and may explain the lack of element mobility in BIF's (Stanton and Williams, 1978).

# 1.3.6 Retrogression of the Orebodies

Despite the early recognition of the presence and significance of the RSZ (The Geological Subcommitee of the late Scientific Society of Broken Hill, 1910; Andrews, 1922) little detailed study of the effects of retrogression on the lodes has been undertaken. Scott et al. (1977) suggested that the sulphides had undergone post-metamorphic or

-15-

retrograde re-equilibration. This is most important for pyrrhotite, which exhibits several breakdown reactions from the original hexagonal pyrrhotite, including exsolution of troilite, and formation of monoclinic pyrrhotite, pyrite and marcasite. Spry (1978) noted some retrograde zoning in garnet, gahnite and loellingite, and breakdown of loellingite to arsenopyrite.

The retrogression appears to have significantly mobilized a number of elements, some on quite a large scale. Silver, lead, copper, iron, manganese, mercury, arsenic and antimony are among the most important of these and their mobilization into RSZ apparently resulted from an influx of aqueous fluid (Ryall, 1979a; Plimer, 1980c). Jones (1968), thought that the garnet sandstones resulted from large scale manganese metasomatism related to the RSZ.

# 1.3.7 Zoning and Variability in the Orebodies

The lode horizon appears to be quite continuous throughout the Willyama Complex (Johnson and Klingner, 1975) but, as described above, can have a very variable lithology. A number of attempts have been made to study the variation within this formation, and especially within the sulphide-rich rocks, mostly involved relating any apparent zoning to various origins.

Burrell (1943), Garretty (1943), Gustafson et al. (1950), Hawkins (1968a) and Stanton and Richards (1961) described the variations in base metal ratios in the lodes. Each lode has comparatively constant and characteristic ratios, enabling distinction of lodes even in close contact. King and O'Driscoll (1953), King and Thompson (1953) and Carruthers (1965) cited these ratios in support of a syngenetic origin, but they could not provide a satisfactory explanation for

-16-

their variation.

Plimer (1968) studied the variability of the lodes, and concluded that the complexity was due to both original depositional variability, and several types of tectonic mineral redistribution.

Burford (1972) studied the B lode, and found evidence for a weakly defined lateral zoning, as indicated by variations in Cu, Pb, Zn, Ag and Bi, all opposite in trend to other volcanogenic deposits, and which he thought to indicate overturning of this orebody. The copper-rich zone on the hanging wall was also noted by Hawkins (1968).

Mackenzie (1968) noted that a pyrrhotite-rich zone envelops the lead lodes but could find no explanation for it.

Stanton (1976a, b, c, d) and Stanton et al. (1978) discussed the geochemical variation within the lodes and the BIF's and the interrelations of various components. A general zonation was not found in the sulphide lodes but the BIF's show consistent zoning down to fine bands. This latter fact was used as evidence for isochemical metamorphism and for lack of any mobilization in the area, although Rutland et al. (1979) thought this conclusion very debatable, the BIF being an unusual lithology. Stanton (1976a,b,c,d) thought of the BIF as an oxide facies variant of the sulphide lodes, deposited in the closing stages of ore deposition.

Plimer (1975) detected a minor alteration zone, potassium-rich and sericitized, about the ore deposit, and he ascribed this to retrograde alteration. Fluid ascent along sulphide-silicate boundaries was thought to be responsible.

Stanton (1976c) compared the vertical distribution of the major metal in these lodes with other stratiform sulphide orebodies, where Cu-Zn-Pb-Ag is the usual order of deposition. The opposite trend

-17-

appears in the Broken Hill orebodies, both within each lode and over the whole lode sequence, and this he interpreted as indicating inversion of the lodes, a hypothesis supported by the structural work of Laing et al. (1978) and now generally accepted.

Plimer (1977 and 1979) reconsidered the alteration zone and showed that most aspects of it could have been due to pre-metamorphic hydrothermal alteration. Similarities were shown between this alteration zone and those near known submarine exhalative ore deposits. In the latter paper Plimer proposed that elemental zoning (Fig. 1.8) within and between the lodes is related to this alteration. Elliott (1979) discussed these geochemical haloes in greater detail and found them to be stratigraphically controlled originating. from primary chemical precipitation as well as hydrothermal alteration.

Billington (1979) discussed variations within the orebodies and associated quartzites, which suggested variation from oxide to silicate to sulphide facies.

Ryall (1979a) noted a general increase in mercury towards the stratigraphic tops of most lodes, but no relation between lodes. This vertical variation is consistent with other stratiform ore deposits (Ryall, 1979b), but is complicated by mobilization due to partial melting, plastic flow and retrograde shear zones. It was shown that a much greater number of samples would be required for adequate determination of distribution of any components. Most studies of geological and geochemical variability at Broken Hill have similarly been on a broad scale, with indefinite results.

1.4 <u>Methods of Investigation</u> used in this study. The Western A lode is not exposed on the surface and at present has

-18-

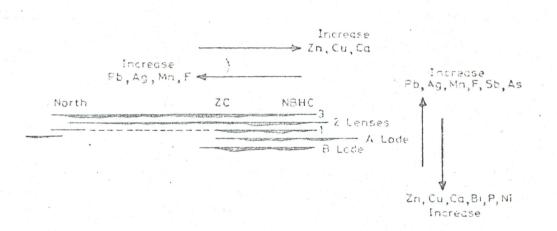



Fig. 1.8 Schematic unfolded longitudinal section of Broken Hill orebodies from northern to southern (ZC and NBHC mines) part of field showing elemental zonation observed along and across strike (from Plimer, 1979). only minor exposures in underground workings. There has, however, been extensive diamond drilling of the lode, as 23mm diameter core. Most sampling was thus done on this core, aided by several trips underground.

Significant sections of selected drill holes were logged, and the resulting cross-sections are described in Chapter 2. The results are generally similar to the NBHC core logs, despite some incompatibility in style due mainly to more detailed logging with somewhat different aims.

Samples have been taken at various intervals, depending on lithology and mineralogy, in order to obtain representative samples of major units or rocktypes, as well as of many anomalous units and unusual assemblages. Sampling sometimes was needed at 10 cm intervals or less due to the extremely patchy nature of much of the lode.

Logging likewise was initially attempted at 1 m intervals, determining average mineralogical compositions, but has reverted to logging of rocktypes, from 10 cm thickness upwards. This fine-scale logging has still not produced a well defined correlation between holes, although some trends are obvious. Several hundred samples have thus been gathered, and polished thin sections were made of most, for the study of sulphides and oxides as well as silicates, and for microprobe analysis.

Mineral phases were analysed by X-ray Diffractometry to positively confirm their identity. This proved to be a necessity for many of the pyroxenoids.

About 500 Electron Microprobe analyses were conducted on most important silicate and oxide phases.

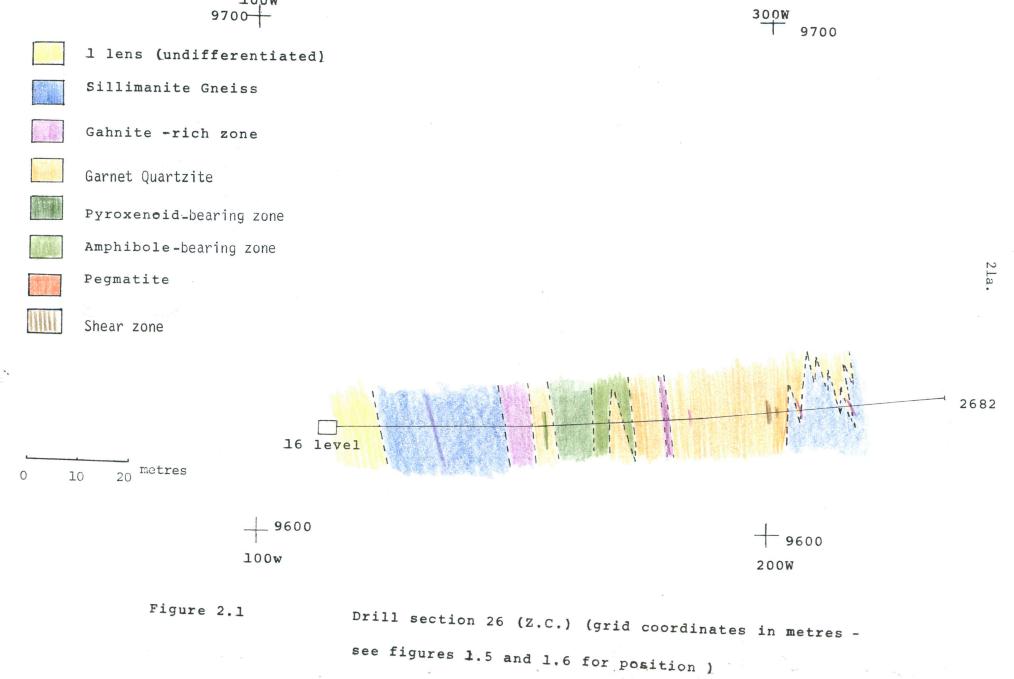
NBHC has provided access to their analytical data, which usually

comprised Pb, Zn, Ag and Cu with occasional Fe, As and Bi analyses. Whole-rock and some trace element analyses were also provided by NBHC for selected sections of one drillhole. A large number of whole-rock analyses of most common units around the lodes are available from other sources, so this aspect was not stressed in this thesis; particular aspects of whole rock chemical variation have been described in great detail by Stanton (1972), Plimer (1979) and Elliott (1979).

## Chapter 2. Stratigraphy & Structure

## 2.1 Introduction

The WAL is a western extension of the A lode (Tables 1.3, 1.4; Fig 1.4 ), being overturned and dipping steeply to the Northwest. The A lode proper is similar in nature and complexity to the WAL but, due to sulphide concentration in an F2 fold hinge, has a higher economic grade. Examples of the mineral distributions on which the lode is subdivided for this study are shown on Fig. 2.10.


Relogging of WAL drillcore has produced good evidence for broad zoning into several distinct horizons (Fig. 2.1 – 2.6). The boundaries between the various zones are often difficult to define however, due to frequent intercalation, intergradation and shearing. Microscopic investigation was necessary to define most boundaries, although the major parts of most zones are easily identified mesoscopically. The various zones are discussed below.

#### 2.2 Sillimanite Gneiss

The lode is enclosed within a pelitic gneiss, locally termed the sillimanite gneiss. This is principally a siliceous biotitesillimanite gneiss, but may include minor lenses of garnet, quartz, biotite and feldspar-rich gneisses and quartzites, rarely more than a few metres thick. Minor patches of lode rocks, e.g. garnet quartzite or gahnite-rich rock, often sulphide-bearing, may occur. Quartzo-feldspathic zones are probably principally anatectic, and are described in section 3.4.4.

The gneiss is commonly retrogressed, resulting in a sericite gneiss or sericite schist where this has been most extensive.

# loow 9700-



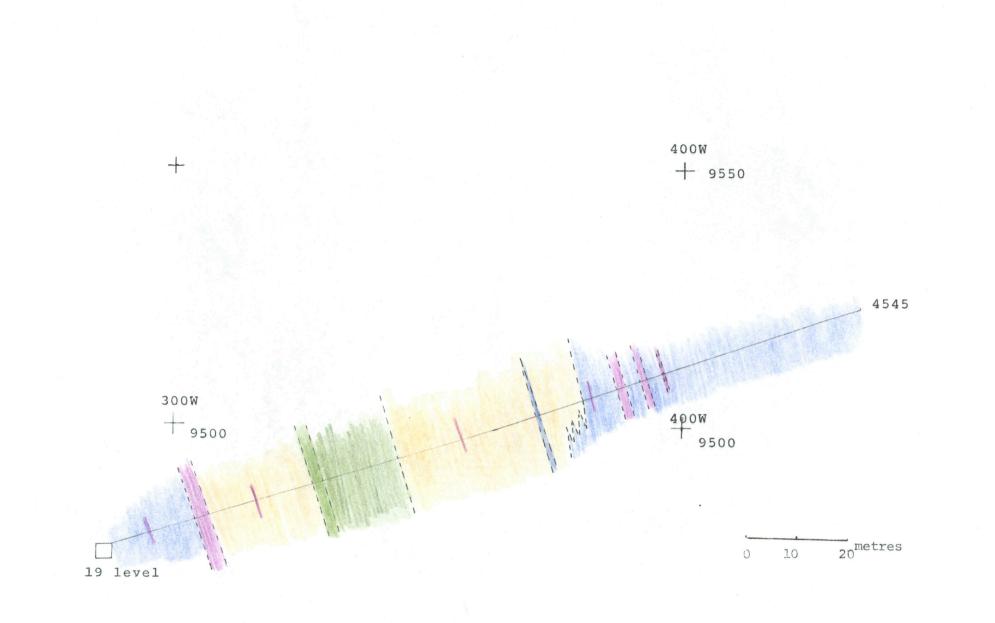



Figure 2,2

Drill Section 50, NBHC. Legend as for Figure 2.1

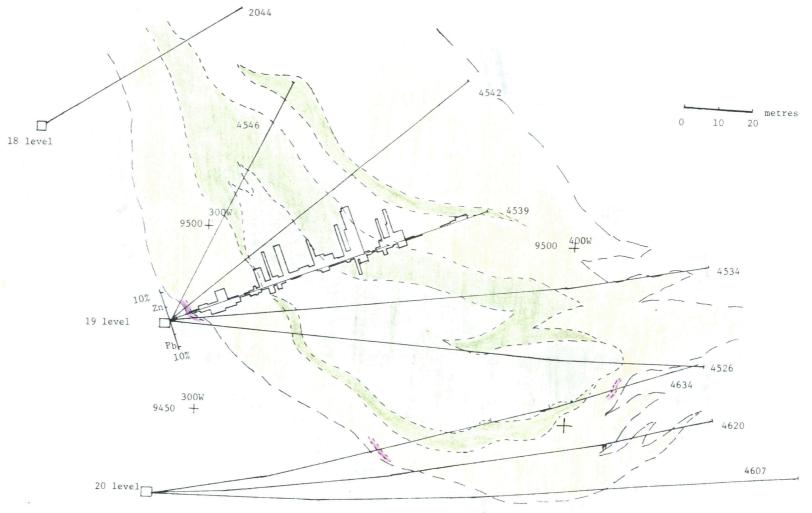



Fig. 2.3. Drill section 58, NBHC, showing interpreted structure.

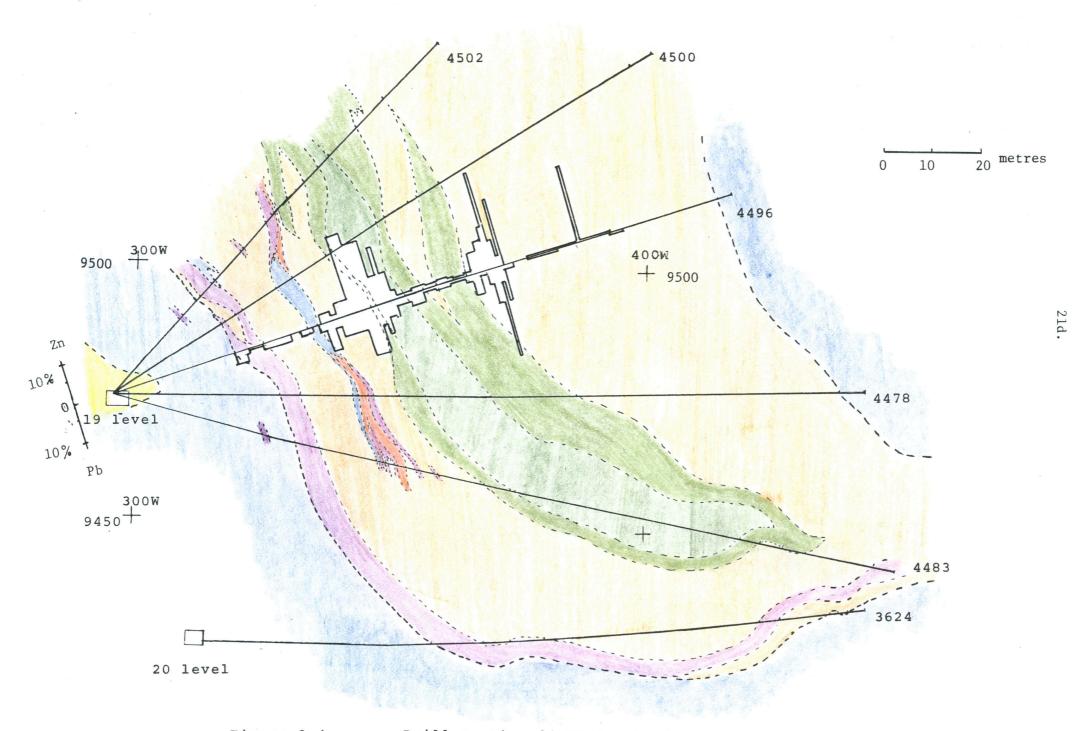
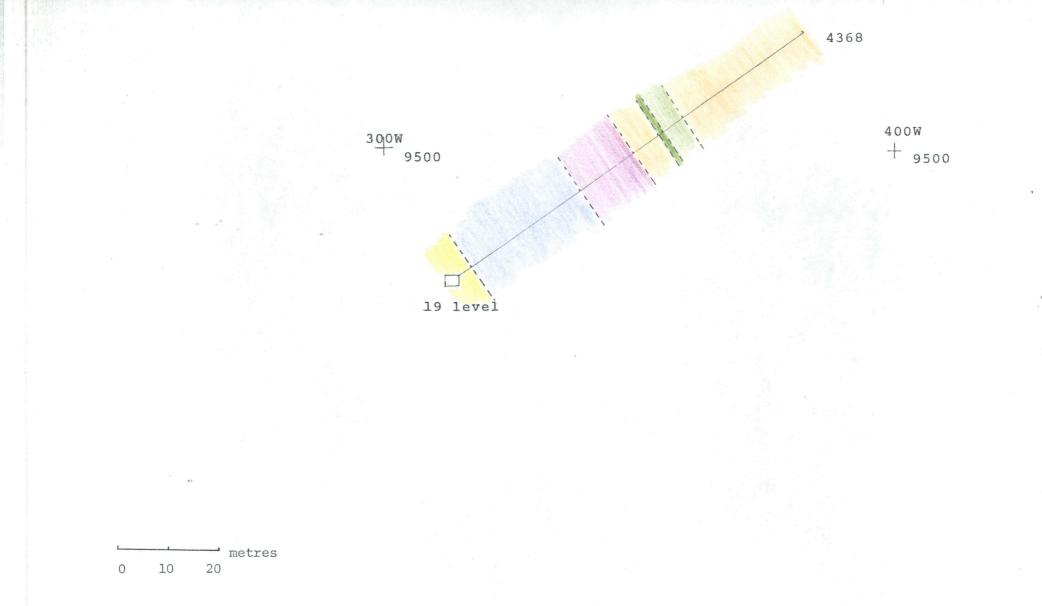




Figure 2.4 Drill section 64,NBHC, showing interpreted structure.



300W + 9400 400W + 9500 21e

Figure 2.5

Drill section 66, NBHC

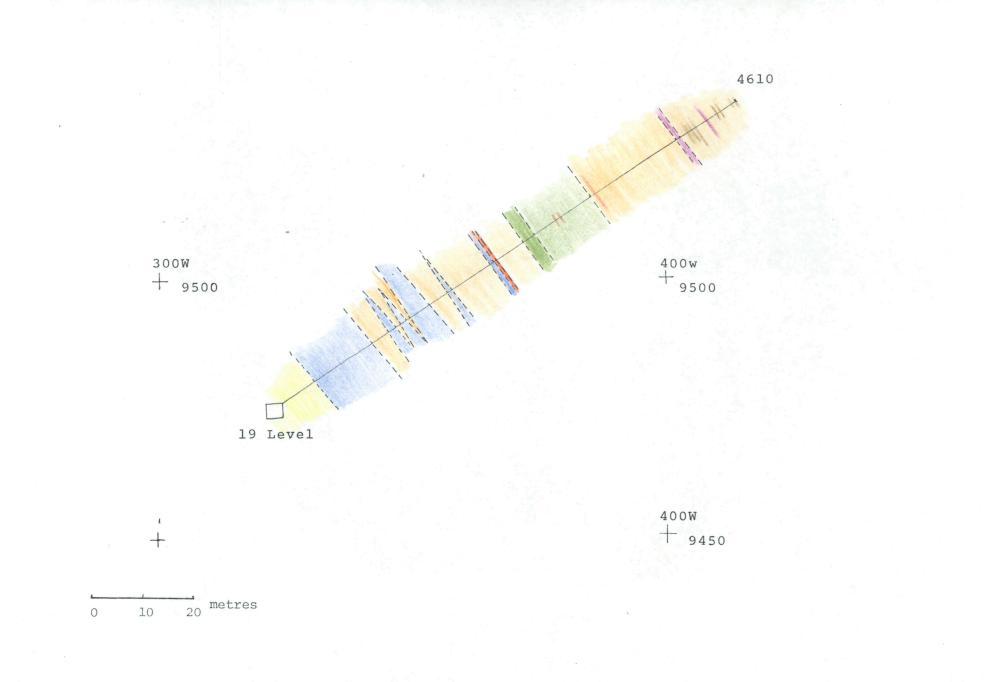
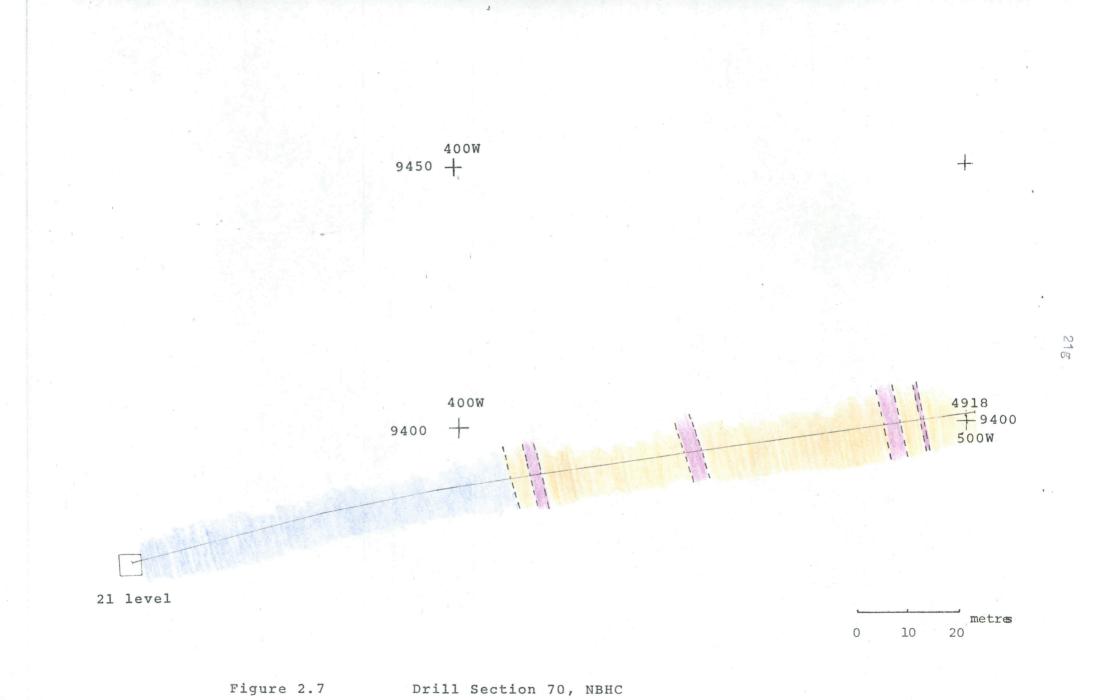




Figure 2.6



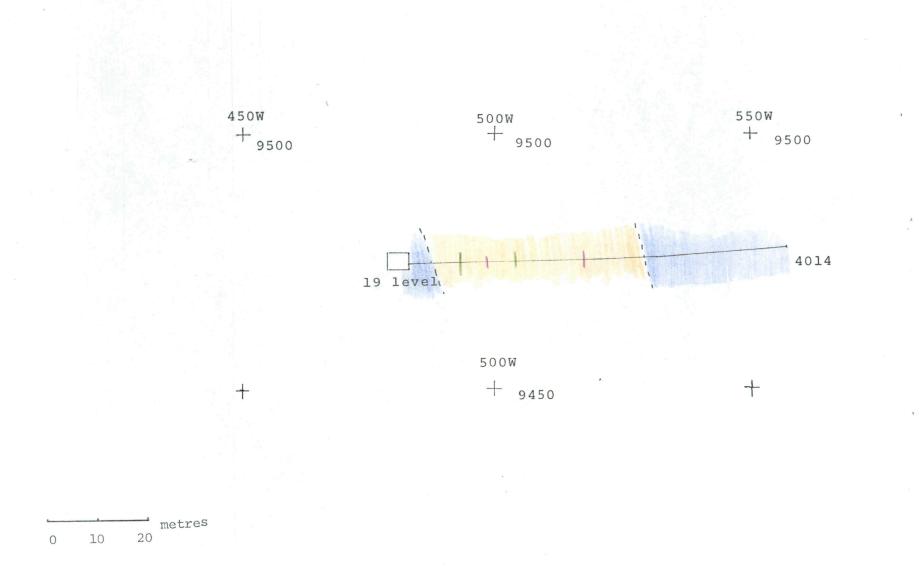
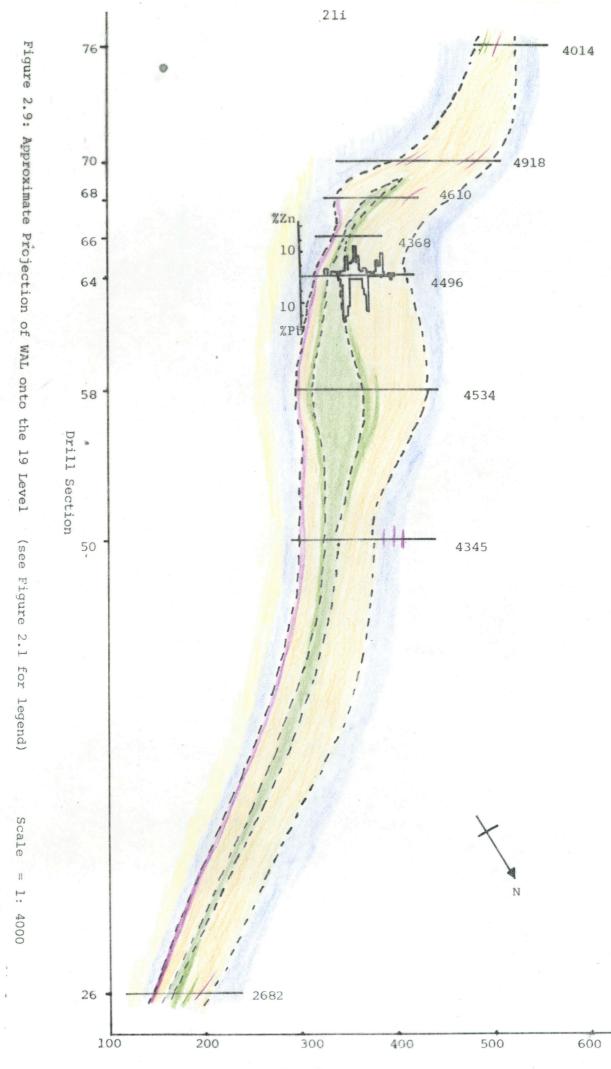




Figure 2.8

Drill Section 76, NBHC

21h



Metres west of Drill Section Reference line.

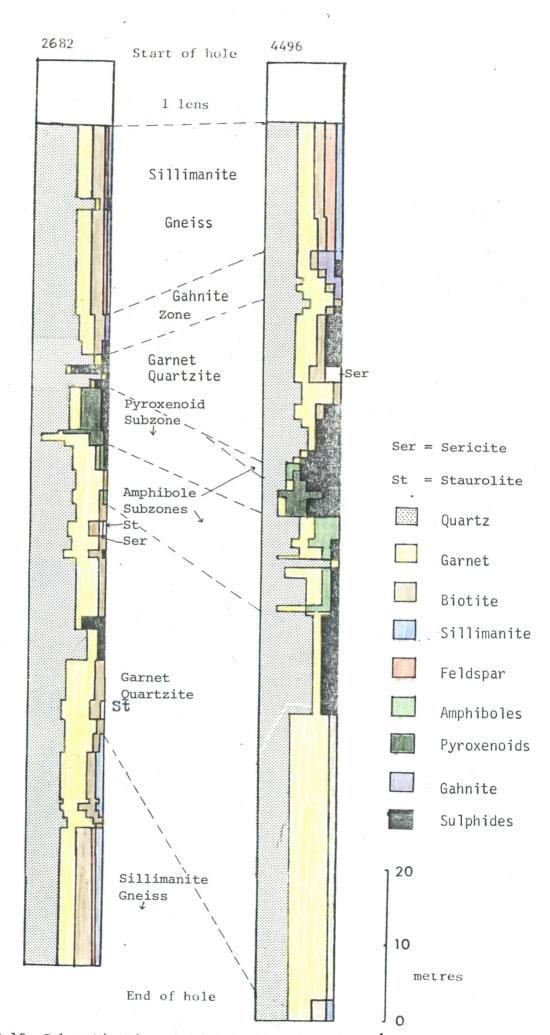



Fig. 2.10 Schematic Mineral Distribution in Drillholes 2682 and 4496

21j

# 2.3 Gahnite-rich Zone

This subdivision is normally the uppermost zone in the WAL stratigraphy. Gahnite is not uncommon in the garnet quartzites or sillimanite gneisses, but is volumetrically insignificant there. This zone is defined to average more than 5 vol.% of gahnite, which is not always visible in hand specimen. This zone has a high variability, comprising lithologies varying from gneisses to garnet quartzites, with abundant, but erratically distributed, sulphides and gahnite. Quartzo-feldspathic rocks may occur, but are minor. Spinels (gahnite and hercynite), biotite, garnet (almandine), quartz, pyrrhotite, and galena are the most common phases.

Coarse-grained blue quartz <u>+</u> gahnite veins are common in this zone, and these may also contain biotite or garnet (seldom both).

This zone has a variable size and gahnite content, apparently related to the sulphide content and as it is insignificant in some sulphide-poor areas it has not been shown on all sections. It normally separates the gneiss from the garnet quartzites but may occasionally lie within either lithology. Banerjee (1974) described a similar gahnite-rich selvage (also containing quartz-gahnite veins) between zinc-rich sulphide ore and aluminous wallrocks in the Geco Mine, Canada, as being of metamorphic origin.

## 2.4 Upper Garnet Quartzite

Stratigraphically below the major gahnite-rich zone are quartzites of widely variable composition ( the 'quartzite envelope' of Billington, 1979). In the WAL they are principally garnet quartzites with variable sulphide and biotite contents, but minor gahnite-bearing, and staurolite-bearing horizons may occur. A zone of

-22-

quartzofeldspathic rocks <u>+</u> sillimanite gneiss <u>+</u> quartz - gahnite rocks, all commonly extensively sericitized, is widespread but cross cutting in this zone (Figure 2.4), and is related to shearing and pegmatite intrusion. Blue and white quartz veins, breccias (garnet quartzite in quartz veins) and coarse-grained garnet - sulphide quartz patches are probably related to the "remobilized garnet quartzites" of Spry (1978) and occur throughout the garnet-rich lithologies. Quartz and sulphides tend to show a general antipathetic relation to garnet and biotite, giving rise to the "biotite - garnet quartzites" and "sulphide quartzites" of Billington (1979), the latter lithology being most common near the base, and the former near the top of this zone (Fig. 2.7).

#### 2.5 Pyroxenoid-Amphibole Zone

This zone lies approximately in the central, most sulphide-rich, part of the lode and is defined to include all pyroxenoid and most of the significant amphibole occurrences (>5 vol.%) of the WAL. The major minerals include pyroxmangite, rhodonite, spessartine, quartz, amphiboles, sphalerite, pyrrhotite and galena. Bustamite, frequently mentioned in N.B.H.C. mine logs, is a misidentification of cummingtonite – group amphiboles or other pyroxenoids. Clinopyroxenes (principally manganoan hedenbergite) are locally abundant.

The pyroxmangite usually occurs in irregularly – shaped coarse-grained, almost monominerallic pods several metres across, (similar structures in the Broken Hill lodes were described by Maiden (1975) as boudins). Amphibole – rich garnet quartzites tend to envelope these pyroxenoid – rich rocks with little overlap, and thus amphibole and pyroxenoid subzones may be recognised.

-23-

Sulphide-rich quartzites are common in this zone, and grade into pyroxmangite and/or garnet-rich rocks.

"Garnet Sandstone" (a local term for a fine - grained spessartine - rich rock, c.f. Andrews, 1922), is present in small patches throughout, but rarely outside, this zone. Jones (1968) and Hodgson (1975c) considered these rocktypes to be metasomatic in origin, however the genesis is unclear.

Garnet quartzites, amphibole - garnet quartzites and, rarely, biotite - garnet quartzites occur towards the outer parts of this zone. Fluorapatite - rich quartzites are minor but intriguing lithologies often present in this zone. These litholigies can be either massive or layered, and presumably indicate original sedimentary phosphate accumulations.

#### 2.6 Lower Garnet Quartzite

Stratigraphically this is the lowermost, and most westerly, zone of the WAL. It closely resembles the upper garnet quartzite, but is usually considerably thicker, with biotite perhaps less common. Gahnite may be locally abundant near the stratigraphic base, but the gahnite – rich zone is discontinuous.

A fracture zone, up to 5m thick may occur here, and grades from vughs filled with unconsolidated sandy and clayey material, through chlorite + calcite veins to chloritized garnet quartzites.

### 2.7 Sillimanite Gneiss

This gneiss, stratigraphically underlying the lodes, appears similar to the overlying gneiss, but little data is available on it due to insufficient drillhole intersections.

-24-

#### Chapter 3. Petrography

#### 3.1 Introduction

The WAL has undergone a complex metamorphic history, as described for the general area in Chapter 1. The present textures are usually at least partly retrograde in nature but there seems evidence for greater retrogression in gahnite-bearing and amphibole-bearing rocks than in other rocktypes. The major mineralogical constituents and grainsizes are shown in Tables 3.1 and 3.2. The rocktypes described below are related to, but not necessarily equivalent to, the zones described in Chapter 2, which usually comprise many different lithologies.

#### 3.2 Textures

Throughout most of the lode rocks there is a tendency towards a granoblastic texture due to contemporaneous recrystallization of silicates, sulphides and oxides at high metamorphic grade (Lawrence, 1973). Lawrence (1973) showed that polygonization in sulphides may also occur during recrystallisation following retrograde metamorphism and shearing and is particularly evident at Broken Hill. This tendency towards polygonization, dependent on relative surface energies (Spry, 1969) has also been described in these rocks by Stanton (1964).

A linear fabric may be present, due to alignment of prismatic minerals such as sillimanite and amphibole with fold axes or shear directions. Pyroxmangite may also rarely show a weak alignment in recrystallised fractures in pyroxenoid bodies.

A strong planar fabric is occasionally present within schistose biotite or muscovite-rich horizons and is common in RSZ, due to sericitization. Gneissic biotite and/or sillimanite-rich layers are

-25-

| Table 3.1: | Approximate                                                                                                      | Grainsize | Ranges | (mm) |
|------------|------------------------------------------------------------------------------------------------------------------|-----------|--------|------|
|            | and the second |           |        |      |
|            |                                                                                                                  |           |        |      |

| Mineral                      | Prograde   | Remobilized/Pegmatitic | Retrograde |
|------------------------------|------------|------------------------|------------|
| Quartz                       | 0.5 - 2    | 0.5 - 20               | 0.1 - 0.5  |
| Garnet                       | 0.1 - 1    | 0.5 - 20               | 0.1 - 0.5  |
| Biotite                      | 0.1 - 5    | -                      | 0.1 - 1    |
| Sillimanite                  | 0.2 - 2    |                        | 0.02 - 0.4 |
| Staurolite                   | -          | -                      | 0.1 - 4    |
| Gahnite                      | 0.1 - 2.5  | 0.5 - 15               | -          |
| Muscovite                    | -          | 0.1 - 1                | 0.01 - 1.5 |
| Orthoclase                   | 0.5 - 10   | 10 - 100               | -          |
| Plagioclase                  | 0.1 - 1    | 0.1 - 0.5              | -          |
| Chlorite                     | -          | -                      | 0.01 - 1.5 |
| Cummingtonite<br>series      | -          | -                      | 0.1 - 10   |
| Actinolite                   |            | -                      | 0.1 - 2    |
| Rhodonite/<br>Pyroxmangite   | 1 - 15     | 5 - 50                 | -          |
| Manganoan<br>Hedenbergite    | 1 - 10     | _                      | -          |
| Fluorapatite                 | 0.1 - 0.5  | -                      | -          |
| Ilmenite                     | 0.01 - 0.2 | -                      | <0.02      |
| Sphalerite                   | 0.1 - 10   | 0.2 - 50               | <0.1       |
| Galena                       | 0.1 - 10   | 0.2 - 50               | <0.2       |
| Pyrrhotite                   | 0.1 - 10   | 0.2 - 50               | -          |
| Chalcopyrite                 | 0.1 - 2    | 0.2 - 5                | -          |
| Arsenopyrite/<br>Loellingite | 0.2 - 5    | -                      | 0.2 - 2    |

# Table 3.2: AVERAGE MODAL COMPOSITIONS OF IMPORTANT ROCK TYPES

# (Visual estimates from polished thin sections)

| Rock type                 | Sillimanite<br>Gneiss | Gahnite-rich<br>rœks | Garnet<br>Quartzite | Amphibole-Garnet<br>Quartzite | Pyroxenoid<br>-rich rocks | Sulphide<br>Quartzite |
|---------------------------|-----------------------|----------------------|---------------------|-------------------------------|---------------------------|-----------------------|
| No. of thin sections used | 6                     | 27                   | 31                  | 20                            | 23                        | 13                    |
| Quartz                    | 48 (21*)              | 36 (27)              | 65 (23)             | 48 (31)                       | 23 (22)                   | 59 (17)               |
| Garnet                    | 20 (10)               | 9 (10)               | 26 (16)             | 30 (25)                       | 13 (14)                   | 9 (9)                 |
| Biotite                   | 14 (6)                | 11 (16)              | 5 (6)               | tr                            | tr                        | 4 (6)                 |
| Sillimanite               | 3 (5)                 | 1                    | tr                  | -                             | -                         | tr                    |
| Staurolite                | 3 (4)                 | 4 (10)               | tr                  | -                             | -                         | -                     |
| Gahnite                   | tr                    | 22 (20)              | tr                  | -                             | -                         | 1                     |
| Muscovite                 | 12 (2)                | 4 (11)               | 1                   | -                             | -                         | 3 (5)                 |
| Orthoclase                | tr                    | 3 (9)                | tr                  | -                             | -                         | -                     |
| Cummingtonite series      | -                     | -                    | tr                  | 13 (11)                       | 5 (10)                    | tr                    |
| Pyroxenoids               | -                     | -                    | -                   | -                             | 45 (30)                   | tr                    |
| Mn-Hedenbergite           | -                     | -                    | -                   | -                             | 6 (15)                    | <b>—</b>              |
| Sphalerite                | -                     | 1                    | 1                   | 5 (8)                         | 3 (5)                     | 12 (10)               |
| Galena                    | -                     | 2 (3)                | tr                  | tr                            | 1                         | 1                     |
| Pyrrhotite                | tr                    | 7 (8)                | 1                   | 4 (8)                         | 3 (6)                     | 11 (13)               |
| Arsenopyrite/Loellingite  | -                     | 2 (4)                | tr                  | tr                            | tr                        | 1                     |

\* Standard Deviation

often present in the sillimanite gneiss, gahnite-rich zone, and garnet quartzites.

Local remobilization is indicated by quartz – rich veins and pegmatite veins (which can be either quartzofeldspathic or sulphide rich). Late stage shearing is indicated by microfaulting in garnet and gahnite (Fig. 3.1), as well as by amphibole-rich and sericite-rich veins.

#### 3.3 Petrography of Principal Rock types.

#### 3.3.1 Pelites (Sillimanite Gneiss).

The principal prograde assemblage in this lithology is quartzsillimanite- biotite - garnet - orthoclase. Orthoclase, and rarely minor plagioclase, occur in quartzo-feldspathic segregations which grade into pegmatites. Orthoclase is also commonly present as poikiloblastic porphyroblasts or 'augen', especially stratigraphically immediately below the WAL. Sillimanite, garnet, biotite, and quartz rich layers are all locally abundant.

Chloritic alteration of biotite is common, but such replacement rarely goes to completion. Sericitisation along grain boundaries and cleavages is common in sillimanite and feldspars, and rare about garnet and biotite.

# 3.3.2 Gahnite-rich rocks.

This zone is complex and variable, but the stable prograde assemblage is usually quartz - gahnite - biotite + garnet + sillimanite + galena + pyrrhotite. Similar rock types have been described from Broken Hill by Segnit (1961). Sillimanite segregations




Fig. 3.1 Microfaulted garnet in quartz (4502/62.8). PPL.



0.5 mm

Fig. 3.2 Exsolution of ilmenite and rutile in and about biotite (4502/36.4) Q = quartz, B = biotite, G = garnet, I = ilmenite. PPL. Rutile closely resembles ilmenite in this photograph. and garnet layers occur and, with biotite, define a weak foliation. Quartzo-feldspathic segregations are locally present, but commonly transect this foliation. Gahnite-quartz veins, similar to those described by Banerjee (1974), are locally abundant.

Biotite is commonly present as a selvage about gahnite, although not normally appearing to replace it, and they may be genetically related. Where intergrown with fine staurolite about gahnite (c.f. Sections 4.7 and 4.10), it may however be a reaction product. Most biotite is partly chloritized, and may show exsolution lamellae or coronas of rutile and ilmenite (Figure 3.2). This corona may be partly incorporated within the biotite grain, indicating retrograde recrystallization. It resembles the coronas produced by partial fusion of biotite, but lacks the glass, magnetite, and anhydrous silicates usually formed from such breakdown (Le Maitre, 1973; Busch et al., 1974; Brown, 1979).

Staurolite commonly replaces gahnite, as described in sections 4.7 and 4.10, but is usually in textural equilibrium with muscovite, garnet, biotite and sillimanite, indicating complete retrograde recrystallisation of these rocks.

## 3.3.3 Garnet Quartzite

The general prograde assemblage of this rocktype is quartz - garnet - biotite +\_sphalerite +\_galena +\_pyrrhotite +\_sillimanite +\_gahnite +\_ amphibole but is commonly almost pure quartz and garnet. Where biotite and/or gahnite are abundant, these rock types may grade into the gneissic or gahnite-rich units, or with increasing sulphides into sulphide quartzites. Amphiboles (mainly of the cummingtonite group, but also actinolites) are rare, and are usually restricted to near the

· -28-

amphibole subzones. They do not coexist with sillimanite or gahnite but rarely coexist with biotite. Small anhedral grains of monazite, rutile and allanite are local accessories and euhedral ilmenite is frequently abundant. Minor scheelite has been recently noted in garnet quartzites from the A-lode (D. Milton, pers. comm.) but was not found in this study.

Macro and meso-bands, down to about 2mm thick, are defined mainly by variations in contents of quartz, garnet, biotite and /or sulphides, and are not uncommon.

Retrogression has not greatly affected this rocktype, except for partial chloritization of biotite, locally abundant staurolite (sometimes as fine cross-cutting veinlets) in the outer parts of this zone (Figure 3.3), and minor amphiboles present in the inner parts of this zone.

## 3.3.4 Pyroxenoid-rich rocks

The common prograde assemblage is quartz - garnet - pyroxmangite rhodonite - sphalerite - pyrrhotite - galena +\_ chalcopyrite +\_ manganoan hedenbergite + fluorapatite + loellingite + biotite. By definition the pyroxenoids are restricted to, and biotite practically absent from, the pyroxenoid subzone which may, in places, be almost monominerallic.

The pyroxenoids in the WAL are pyroxmangite and rhodonite, both (Mn, Fe, Ca)SiO3, which are present in approximately equivalent amounts (see Appendix for analyses). Any pyroxmangite discussed below may, in part, be rhodonite, as they are very difficult to distinguish (see Section 4.9). Manganoan clinopyroxenes, near hedenbergite in composition, but with significant but variable johannsenite

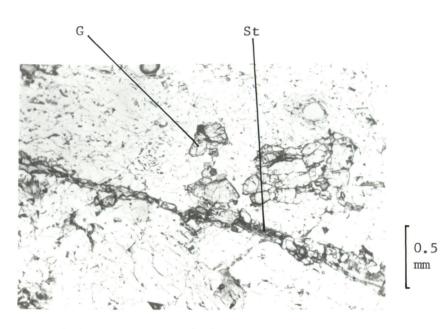
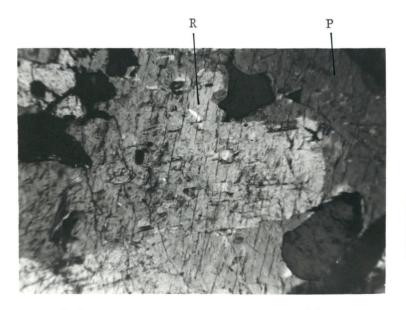




Fig. 3.3 Staurolite (St) vein in quartzite with garnet (G). (4918/85.3). PPL.



0.5 mm

Fig. 3.4 Intergrowth of rhodonite (R) and pyroxmangite (P). (2/9A). XPL.

 $(CaMnSi_2O_6)$ , diopside and kanoite  $(MnMgSi_2O_6)$  components, are locally common and, being closely associated with the pyroxenoids are, for simplicity, commonly included as such in this thesis.

The pyroxenoids commonly occur in massive granoblastic aggregates, sometimes quite pure but usually with some interstitial sulphides, garnet and quartz. Intergrowths of rhodonite, pyroxmangite and hedenbergite are quite common (Figures 3.4 & 3.5). Occasional subplanar zones of finer pyroxmangite seem to represent healed fractures in massive pyroxenoids.

Fine to coarse-grained amphiboles\* (cummingtonite and actinolite groups) are common as a direct replacement of pyroxmangite (Figures 3.6 & 3.7), preferentially along grain boundaries and cleavages, but are not always directly associated.

Pyrosmalite and manganpyrosmalite are less common retrograde alteration products of pyroxmangite, usually closely associated with very fine to coarse, apparently remobilised, galena (Figures 3.8 & 3.9). 'Sturtite', a poorly defined, non-crystalline, neotocite-like phase (Hodge-Smith, 1930; Portnov et al. 1978; Clark et al. 1978), is a much later stage alteration product of pyroxmangite.

Manganoan stilpnomelane is another uncommon retrograde phase found intergrown with sulphides within massive pyroxenoids (Figure 3.10). Allanite, sphene and biotite are other rare accessories in this zone.

#### 3.3.5 Amphibole-rich units

The amphiboles are uncommon within garnet quartzites and pyroxenoid - rich rocks, but are most abundant in the selvage (amphibole subzones) between these two lithologies. The amphibole frequently occurs as patches, veins and small aggregates in garnet quartzites.

\* Dannemorite  $(Mn_2Fe_5Si_8O_{22}(OH)_2)$  is usually the dominant end-member

-30-

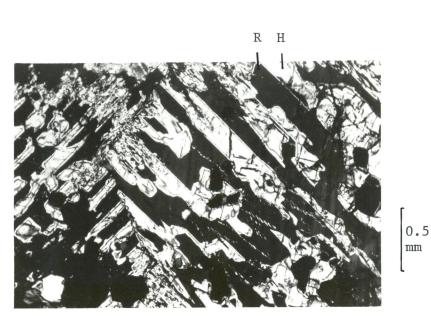



Fig. 3.5 Intergrowth of rhodonite (R) and hedenbergite (H) (4478/68.1) XPL.



0.5 mm

Fig. 3.6 Dannemorite (D) replacing pyroxenoid (P) along grain boundaries, fractures and cleavages, with quartz (Q), garnet (G) and sulphides (S). (4634/73.0). XPL.

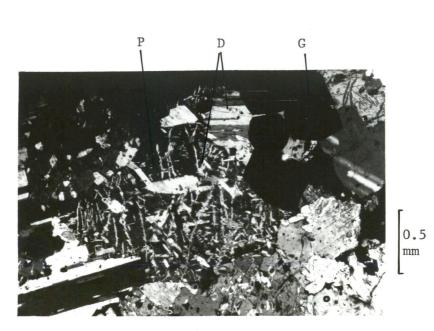



Fig. 3.7 Dannemorite (D) replacing pyroxenoid (P) along fractures and cleavages, with coarse dannemorite and garnet (G). (2/1B). XPL.

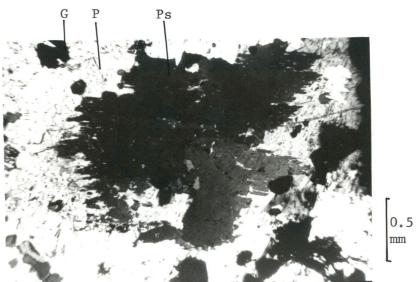



Fig. 3.8 Ragged pyrosmalite (Ps) crystal replacing pyroxenoid (P) with garnet (G) and sulphides (S). (2/9B). XPL.

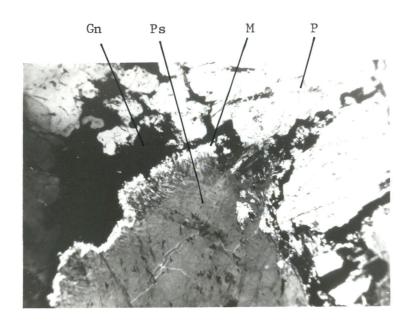



Fig. 3.9 Alteration of pyroxenoid (P) to pyrosmalite (Ps) with a fine-graded selvage of manganpyrosmalite (M) and galena (Gn). (2/9BA). XPL.

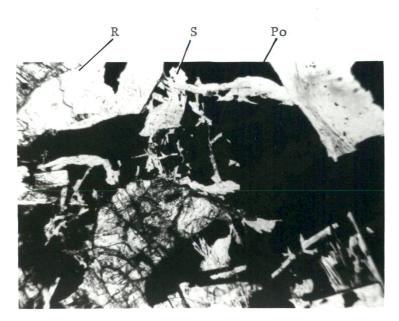



Fig. 3.10 Manganoan stilpnomelane (S) in pyrrhotite (Po) with rhodonite (R) (4483/116.1). PPL.

0.2 mm

0.5 mm

Garnet, biotite and rarely chlorite occur locally in equilibrium with the amphiboles but pyroxenoids are rare, and are usually highly altered, within this rock type. Amphiboles may occur in 'tension gashes' as fibrous aggregates with sulphides, which probably indicate late stage metasomatic activity related to shearing and fracturing (Figure 3.11). These associated sulphides are predominately sphalerite and pyrrhotite, but include minor galena and chalcopyrite. Small amphibole selvages separating garnet - rich and quartz - rich lithologies could also represent zones of shearing. Some irregularly shaped amphibole-sulphide (mainly sphalerite and pyrrhotite) aggregates in quartz are possible replacements of original pyroxmangite grains (Fig.3.13). Some amphiboles appear to have also replaced sulphides (predominantly sphalerite and pyrrhotite) (Figures 3.14 & 3.15). Some exhibit several generations of formation (Figures 3.16 - 3.18), as is shown by a variation in colour, grainsize or number of inclusions.

## 3.3.6 Sulphide Quartzite

These lithologies comprise the major sulphide bearing rocks of the A lodes and are most common in, or near, the amphibole – pyroxenoid zone. The most economically viable sections of the lode are thus dependant on the abundance of these sulphide quartzites. The major assemblage is quartz – sphalerite – galena – pyrrhotite <u>+</u> garnet <u>+</u> arsenopyrite / loellingite. They show signs of remobilisation into coarse grained veins and "pegmatites", as described by Lawrence (1967) and Maiden (1975), and are extremely inhomogenous. They grade into garnet quartzites, amphibole – rich or pyroxenoid – rich units, with increasing garnet, amphibole and pyroxenoid contents respectively.

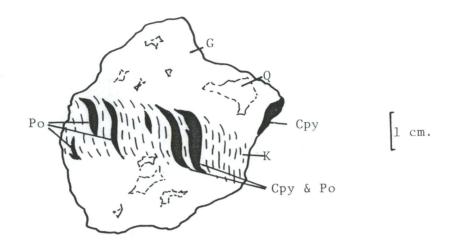



Fig. 3.1L Vein of cummingtonite/dannemorite (K), with chalcopyrite (Cpy) and pyrrhotite (Po), in coarse grained, remobilised garnet (G) and quartz (Q).

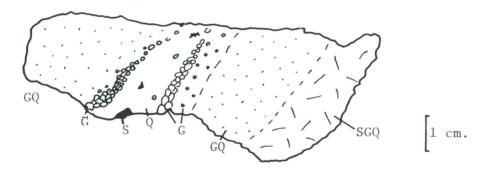



Fig. 3.12. Quartz vein (Q) with remobilised sulphides (S) and coarse grained garnet-rich selvages, in garnet quartzite (GQ), with sulphide--garnet quartzite (SGQ).




Fig. 3.13 Aggregate of dannemorite in quartz. (2/4A). XPL.

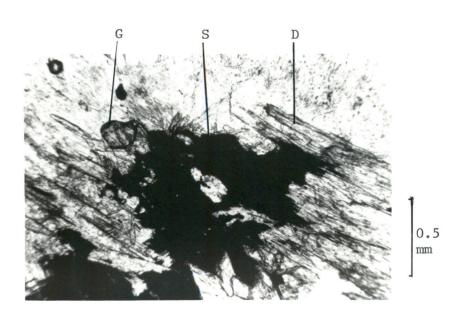
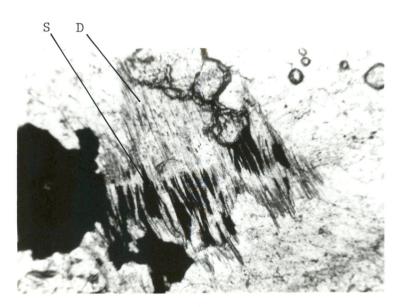




Fig. 3.14 Dannemorite (D) replacing sphalerite (S) with garnet (G). (2/3A). PPL.



0.25 mm

Fig. 3.15 Sphalerite (S) intergrown with dannemorite (D). (2/3A). PPL.

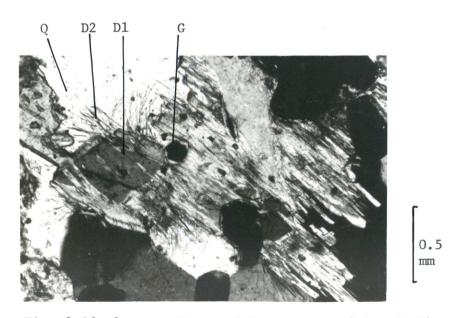
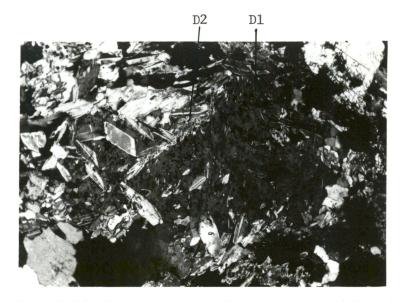




Fig. 3.16 2 generations of dannemorite (D1 and D2) with garnet (G) and quartz (Q). (4502/65.1A). XPL.



0.5 mm

Fig. 3.17 2 generations of dannemorite (D1 and D2) with quartz (Q) and sphalerite (S). (4502/65.1B). XPL.

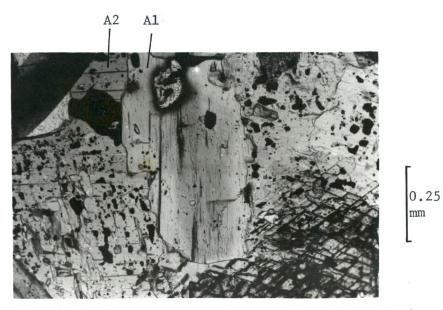



Fig. 3.18 2 generations of actinolite (Al and A2) with sulphide inclusions and a pleochroic halo about allanite (top centre). (4478/85.8). PPL.

These rocktypes show good polygonal textures, indicative of annealing after high-grade metamorphism. Stanton (1964) and Lawrence (1973) have discussed the textures of the Broken Hill sulphide minerals, of which these are quite typical, in some detail.

#### 3.4 Petrography of Minor Rocktypes

#### 3.4.1 Introduction

Although few geologists still favour an epigenetic, hydrothermal origin for the orebodies (Johnson and Klingner, 1975) a limited amount of metasomatism is known to have occurred in close spatial association with them (Segnit, 1968; Hodgson, 1975; Phillips, 1973; Plimer, 1979). Many of the following minor rock types may result from such local metasomatism.

Pegmatoid rocktypes are a common, but minor, phase in these rocks. They appear to be principally anatectic in origin, but some metasomatism was probably involved in their formation (Plimer, 1976a).

Retrogressive lithologies, probably also partly metasomatic, are also discussed here.

## 3.4.2 Quartz-rich veins

Small veins rich in quartz (generally bluish, but sometimes white) are common throughout the lodes. They are mentioned by Dewar (1968), who found them to grade into the pegmatites and described them as metasomatic. These veins may be pure quartz, but commonly contain coarse sulphides <u>+</u> gahnite <u>+</u> garnet. Quartz-gahnite veins (Phillips, 1980) and "remobilised garnet quartzites" (Spry, 1978) are varieties. Blue and white quartz veins cutting garnet quartzites may result in

-32-

coarse garnet at the vein edges (Figure 3.12) (a phenomenon discussed by Walther and Orville, 1982) but these veins do not appear to have remobilised material to any great extent. Blue quartz is common in most lode rocks at Broken Hill, and was thought by some geologists to represent original chert ( D. Milton, pers. comm.). Dewar (1968) however, showed blue quartz veins to be remobilised some distance from lode rocks, and found them to transect the stratigraphy. The blue and white forms of quartz are discussed in section 4.2.

# 3.4.3 Garnet Sandstone

'Garnet Sandstone' (see also section 2.5) consists of between 50 -95 vol.% garnet, with quartz, sulphides and amphiboles, and grades into garnet quartzite. This rocktype is not nearly as well developed in they WAL as in the lead lodes, where its abundance is related to the higher Ca and Mn there, and where it is correspondingly richer in Ca and Mn (Spry, 1978). Scheelite was not noted in garnet sandstones from the WAL, despite its abundance in garnet sandstones of the lead lodes and minor presence in the A lode garnet quartzites ( D. Milton, pers. comm.).

Banding is usually absent, but quartz veins may be present. The rock is frequently quite friable. The lithology is restricted within, or close to, the sulphide - pyroxenoid - amphibole zone and varies from 5 cm to 1 m thick.

# 3.4.4 Quartzo-feldspathic rocks

This rock type, also termed lode pegmatite by mine geologists, migmatite or pegmatoid rock, is present in most drillholes in this lode. It most frequently occurs in the sillimanite gneiss and gahnite

-33-

rich rocks, but may occur in the garnet quartzites. Plimer (1976a) described similar lithologies, including veins, lenses, concordant and irregular masses, as being anatectic in origin, although Billington (1979) considered that they derived, in part, from acid pyroclastics. Phillips (1978) considered that this anatectic fluid resulted from biotite breakdown, perhaps instigated by an influx of CO<sub>2</sub> - rich fluid (Phillips and Wall,1982) and Plimer (1976a) suggested that the sulphides may form an impermeable barrier to these pegmatite fluids, localizing the pegmatite into "stratigraphic" horizons. Dewar (1968) and Hodgson (1975b) found that some of the pegmatites graded into quartz veins, but there is no evidence for this in the WAL.

The pegmatites found in this study show cross-cutting relationships to the WAL and thus it is postulated that the pegmatites derive from anatexis in the garnet - quartzite and sillimanite gneiss, the anatectic fluid being somewhat localized by the relatively impermeable sulphide-rich rocks.

## 3.4.5 Apatite - rich Rocks.

These unusual rock types are occasionally found as small bodies within the pyroxenoid-amphibole zone. They are quite variable in composition but a common assemblage is quartz – garnet – fluorapatite  $\pm$  pyroxenoids  $\pm$  biotite  $\pm$  galena, and they closely resemble garnet quartzites.

Their genesis is uncertain, but Stanton (1976e) found a strong correlation between P and S in the Broken Hill lodes. Fluorapatite is quite common throughout the WAL (Birch et al. 1983), and is considered to represent sedimentary apatite accumulations derived from phosphate-rich ore - bearing fluids.

-34-

## 3.4.6 Remobilised Sulphides

This is a minor, but important and widespread, rock type throughout the WAL. It is usually coarse grained, and has galena – sphalerite – pyrrhotite – quartz  $\pm$  garnet  $\pm$  pyroxmangite  $\pm$  chalcopyrite as a common assemblage.

Macroscopic structures and textures indicate that this rocktype derived from metamorphic remobilization (principally mechanical but aided by fluid activity) of disseminated sulphides similar to the process described by Rui and Bakke (1973).

# 3.5 Petrography of Retrograde Lithologies

The effect of retrogression is highly dependent on the nature and composition of the various rock types. Small shear zones may be present throughout the lode, but seldom completely obliterate the original mineral assemblage or texture. They grade from chlorite +\_ calcite <u>+</u> pyrite in joints, to highly sericitized or amphibolitized zones up to 3 m thick (section 3.3.5). Attempts by mine geologists and the author to define the limits of a RSZ in the western part of the WAL, and relate it to the mineralogical zones defined here, proved inconclusive. Retrogression is quite pervasive through the WAL, however, and can be identified in practically all major rocktypes, as described above.

The pegmatites are extensively sheared and sericitized, and are commonly closely related to shear zones. Partial melts could conceivably exploit such intermittently active zones of weakness, or alternatively, shearing could be promoted by the locally high fH20 (Griggs, 1967) present during cooling and crystallization of the

-35-

pegmatites. Various breccias, often associated with these quartzo-feldspathic rocktypes, were thought by Billington (1979) to have a sedimentary or pyroclastic origin but no evidence was found in this study for such an origin, and they seem more likely to be syn-deformational, formed by brittle deformation and metasomatism during shearing.

Gahnite rich rocks may be almost completely retrogressed to quartz - sericite - chlorite over a few metres. Large thicknesses of amphibole-rich rock appear to originate from retrogressed pyroxmangite, and some gradations can be seen on a macroscopic scale.

The patchy retrogression with partial replacement of prograde minerals is typical of retrograde metamorphism (Yardley, 1981a) and is due to widely variable fH20.

## Chapter 4. Mineralogy.

#### 4.1 Introduction.

The mineralogy of the major gangue minerals in the WAL was studied by transmitted and reflected light microscopy, electron microprobe analysis, and x-ray diffraction. Methods of chemical analysis are described in Appendix I, the microprobe analyses are listed in Appendix II, and average analyses are listed in Table 4.1.

All Fe determined in the microprobe analyses was calculated as  $Fe^{2+}$ , as  $Fe^{3+}$  was assumed to be negligible.  $Fe^{2+}/Fe^{3+}$  varies from about 20 to 60 in WAL garnets, if the assumptions described in Section 4.3 are considered to be valid.  $Fe^{2+}/Fe^{3+}$  was shown by Plimer (1977b) to average 19 in metasediments between the Broken Hill lodes, 12.9 in wallrock metasediments, 8.7 in wallrock biotites and 11.5 in wallrock garnets.

All percentages are quoted as weight percent unless otherwise stated.

#### 4.2 Quartz.

Quartz is the most abundant mineral present in the WAL and surrounding rocktypes. It can be subdivided into blue and white varieties by appearance in hand specimen.

Most of the coarser, prograde quartz tends toward an opalescent blue colour, with a waxy or greasy lustre. The blue colour can only be observed in reflected light but, in thin section, undulose extinction and microfracturing are seen to be very abundant. A fine, diffuse cross - hatching is commonly seen, indicating a mosaic structure to be present, with domains of about 10 to 50 microns (Figure 4.1). This

| Mineral                        | Ilmenite | Chlorite | *Green<br>Biotite | Muscovite /<br>Phengite | Paragonite     | Pyrosmalite | Manganpyrosmalite | Greenalite | Berthierine? | Sturtite/<br>Hisingerite | Stilpnomelane |
|--------------------------------|----------|----------|-------------------|-------------------------|----------------|-------------|-------------------|------------|--------------|--------------------------|---------------|
| No. analyses                   | 4        | 5        | 6                 | 4                       | 2              | 5           | 2                 | 1          | 2            | 4                        | 2             |
| SiO <sub>2</sub>               | .01      | 23.38    | 33.24             | 47.64                   | 45.88          | 34.34       | 32.05             | 29.35      | 28.09        | 40.34                    | 45.68         |
| TiO <sub>2</sub>               | 51.95    | .03      | .09               | .17                     | .01            | .00         | .00               | .00        | .00          | .01                      | .03           |
| Al <sub>2</sub> O <sub>3</sub> | .00      | 22.11    | 18.26             | 32.81                   | 36.67          | .02         | .03               | 8.91       | 16.13        | .10                      | 4.66          |
| FeO                            | 44.55    | 32.95    | 26.15             | 2.88                    | 2.42           | 28.24       | 22.64             | 35.90      | 33.44        | 22.40                    | 30.73         |
| MnO                            | 2.70     | .34      | .25               | .09                     | .18            | 23.27       | 26 <b>.</b> 88 ·  | .90        | .74          | 18.89                    | 9.88          |
| MgO                            | 0.41     | 7.80     | 5.62              | .77                     | .17            | .46         | .25               | 3.97       | 6.84         | .31                      | 1.12          |
| CaO                            | .00      | .01      | .00               | .01                     | .18            | .08         | .14               | .53        | .16          | 0.43                     | .00           |
| Na <sub>2</sub> O              | .00      | .01      | .10               | .12                     | 6.51           | .04         | .00               | .02        | .03          | 4.62                     | .04           |
| K <sub>2</sub> O               | .00      | .01      | 8.80              | 10.53                   | 1.39           | .01         | .00               | .10        | .07          | .12                      | 4.15          |
| ZnO                            | .12      | .24      | .00               | .16                     | .10            | .01         | .01               | .05        | .13          | .03                      | .04           |
| Total                          | 99.74    | 86.89    | 93.83             | 95.17                   | 93.52          | 86.47       | 82.01             | 79.73      | 85.63        | 87.24                    | 96.33         |
| Si                             | .003     | 5.208    | 5.367             | 6.387                   | 6.058          | 6.083       | 6.026             | 1.837      | 1.588        | .969                     | 11.908        |
| Ti                             | .991     | .004     | .011              | .018                    | .001           | .000        | .000              | .000       | .000         | .000                     | .007          |
| Al                             | .000     | 5.818    | 3.476             | 5.169                   | 5 <b>.7</b> 09 | .003        | .007              | .657       | 1.075        | .003                     | 1.431         |
| Fe                             | .945     | 6.180    | 3.532             | .333                    | .265           | 4.185       | 3.545             | 1.879      | 1.581        | .458                     | 6.699         |
| Min                            | .058     | .068     | .035              | .010                    | .020           | 3.494       | 4.290             | .048       | .035         | .379                     | 2.182         |
| Mg                             | .016     | 2.551    | 1.353             | .154                    | .034           | .122        | .071              | .370       | .576         | .013                     | .434          |
| Ca                             | .000     | .003     | .001              | .002                    | .026           | .016        | .029              | .035       | .010         | .011                     | .000          |
| Na                             | .000     | .002     | .032              | .032                    | 1.692          | .006        | .001              | .003       | .003         | .096                     | .021          |
| К                              | .000     | .002     | 1.813             | 1.816                   | .236           | .001        | .000              | .008       | .005         | .002                     | 1.381         |
| Zn                             | .001     | .039     | .000              | .016                    | .010           | .001        | .002              | .002       | .005         | .001                     | .008          |
| 0                              | 3        | 28       | 22                | 22                      | 22             | 20          | 20                | 7          | 7            | 3                        | 36            |
| No. atoms                      | 5.014    | 47.875   | 37.992            | 35.935                  | 36.051         | 33.908      | 33.970            | 11.840     | 11.879       | 4.932                    | 60.071        |

- 1

Table 4.1 Average analyses of various mineral phases in the WAL

\* Includes 0.74%  $\text{Cl}_2\text{O},$  0.58%  $\text{F}_2\text{O},$  0.166 atoms Cl, 0.208 atoms F

.

Table 4.1 (Cont.)

| Mineral                        | *Fluorapatite | Sphene | Calcite | Almandine | Spessartine | Biotite | Sillimanite | Orthoclase | Anorthite | Gahn |
|--------------------------------|---------------|--------|---------|-----------|-------------|---------|-------------|------------|-----------|------|
| No. analyses                   | 2             | 5      | 2       | 14        | 14          | 14      | 5           | 5          | 5         | 26   |
| SiO <sub>2</sub>               | .74           | 30.82  | .04     | 36.81     | 37.02       | 37.35   | 37.33       | 63.57      | 43.44     | •(   |
| TiO2                           | .00           | 33.92  | .00     | .01       | .04         | 1.42    | .12         | .00        | .03       | .(   |
| Al <sub>2</sub> O <sub>3</sub> | .00           | 2.45   | .01     | 20.34     | 20.37       | 14.43   | 61.83       | 19.57      | 35.39     | 56.5 |
| FeO                            | .00           | 2.24   | 1.28    | 33.65     | 12.73       | 18.71   | .37         | •02·       | .02       | 12.  |
| MnO                            | •56           | .74    | 6.22    | 4.99      | 24.16       | .82     | .01         | .00        | .06       | •    |
| MgO                            | .32           | .27    | .11     | 2.65      | .38         | 11.83   | .00         | .00        | .08       | 1.   |
| CaO                            | 52.03         | 27.61  | 47.65   | •75       | 5.04        | .01     | .01         | .04        | 19.96     | •    |
| Na₂O                           | .20           | .10    | .01     | .01       | .05         | .12     | .01         | 0.45       | .38       | •    |
| K <sub>2</sub> O               | .00           | .01    | .00     | .00       | .01         | 9.30    | .00         | 15.59      | .05       | •(   |
| ZnO                            | .00           | .01    | .01     | .05       | .03         | .12     | .02         | • • • 00   | •00       | 28.8 |
| Total                          | 92.98         | 98.17  | 55.33   | 98.66     | 99.82       | 94.11   | 99.70       | 100.99     | 99.41     | 99.4 |
| Si                             | .062          | 1.028  | .001    | 3.017     | 3.016       | 5.765   | 1.012       | 2.946      | 2.028     | .1   |
| Ti                             | .000          | .848   | .000    | .001      | .003        | .165    | .001        | .000       | .001      |      |
| Al                             | .000          | .096   | .000    | 1.962     | 1.957       | 2.629   | 1.974       | 1.069      | 1.946     | 1.   |
| Fe                             | .000          | .044   | .019    | 2.286     | .868        | 2.417   | .008        | .000       | .001      | •    |
| Mn                             | .042          | .020   | .091    | .343      | 1.669       | .107    | .000        | .000       | .003      | •    |
| Mg                             | .042          | .013   | .003    | .324      | .046        | 2.722   | .000        | .000       | .006      |      |
| Ca                             | 4.744         | .983   | .886    | .063      | .439        | .001    | .000        | .002       | .978      |      |
| Na                             | .051          | .008   | .000    | .002      | .007        | .036    | •000        | .041       | .035      | •    |
| К                              | .000          | .000   | .000    | .000      | .001        | 1.833   | .000        | .922       | .003      | •(   |
| Zn                             | .000          | .000   | .000    | .003      | .002        | .014    | .000        | .000       | .000      | •(   |
| 0                              | 12            | 5      | 1       | 12        | 12          | 22      | 5           | 8          | 8         | 4    |
| No. atoms                      | 19.773        | 8.040  | 1.999   | 20.002    | 20.007      | 37.689  | 7.995       | 12.980     | 13.001    | 6.9  |

\* (includes 38.97% P2O5, 0.06% Cl, 2.809 atoms P, 0.010 atoms Cl)

\*\* (includes 1.75% PbO)

37b

.

.

Table 4.1 (Cont.)

••

| Mineral                        | *Hercynite | Cummingtonite<br>& Dannemorite | Actinolite | Tirodite | Low - Mg<br>Pyroxmangite | Magnesian<br>Pyroxmangite | Rhodonite      | Hedenbergite | Kanoite | Staurolite |
|--------------------------------|------------|--------------------------------|------------|----------|--------------------------|---------------------------|----------------|--------------|---------|------------|
| No. analyses                   | 5          | 12                             | 7          | 5        | 6                        | 5                         | 10             | 11           | 6       | 8          |
| SiO <sub>2</sub>               | .03        | 48.33                          | 50.44      | 52.48    | 47.48                    | 49.05                     | 46.54          | 49.54        | 49.60   | 27.90      |
| TiO2                           | .00        | .02                            | .09        | .01      | .01                      | .01                       | .01            | .01          | .01     | .31        |
| Al <sub>2</sub> O <sub>3</sub> | 57.45      | .10                            | 1.22       | .20      | .01                      | .01                       | .01            | .11          | .09     | 51.84      |
| FeO                            | 22.19      | 29.46                          | 21.65      | 17.41    | 21.14                    | 17.81                     | 16.94          | 17.70        | 17.79   | 11.29      |
| MinO                           | .14        | 9.31                           | 2.60       | 10.39    | 26.13                    | 27.16                     | 27.80          | 8.22         | 19.62   | .13        |
| MgO                            | 1.44       | 6.07                           | 8.92       | 12.93    | 1.44                     | 2.88                      | .65            | 4.88         | 10.00   | 1.38       |
| CaO                            | .00        | 1.37                           | 10.66      | 3.30     | 3.78                     | 4.31                      | 6.82           | 18.19        | 2.61    | .00        |
| Na₂O                           | .00        | .03                            | .06        | .07      | .02                      | •01 a                     | .01            | .04          | .04     | .10        |
| Κ₂Ο                            | .01        | .01                            | .12        | .02      | •00                      | .00                       | .01            | .01          | .01     | .00        |
| ZnO                            | 18.02      | .14                            | .23        | .21      | .20                      | .22                       | .20            | .11          | .27     | 3.54       |
|                                |            |                                |            |          |                          |                           | ж <sup>1</sup> |              |         |            |
| Total                          | 99.40      | 94.86                          | 95.98      | 97.03    | 100.21                   | 101.45                    | 99.00          | 98.79        | 100.03  | 96.49      |
| <u>.</u>                       |            |                                | -          |          |                          |                           |                |              |         |            |
| Si                             | .001       | 7.915                          | 7.808      | 7.949    | 1.009                    | 1.014                     | 1.002          | 2.008        | 1.999   | 7.909      |
| Ti                             | .000       | .002                           | .010       | .001     | .000                     | .000                      | .000           | .000         | .000    | 0.067      |
| Al                             | 1.985      | .020                           | .216       | .037     | .000                     | .000                      | .000           | .005         | .005    | 17.326     |
| Fe                             | .546       | 4.094                          | 2.824      | 2.205    | .376                     | .308                      | .305           | .604         | •600    | 2.676      |
| Mn                             | .004       | 1.291                          | .347       | 1.335    | .471                     | .476                      | .507           | .283         | .670    | .032       |
| Mg                             | .063       | 1.457                          | 2.034      | 2.919    | .046                     | .089                      | .021           | .290         | .601    | .583       |
| Ca                             | .000       | .239                           | 1.767      | •537     | •086                     | .095                      | .158           | •793         | .113    | .000       |
| Na                             | .000       | .006                           | .009       | .010     | •000                     | .000                      | .000           | .001         | .001    | .055       |
| К                              | .000       | .001                           | .012       | .002     | .000                     | .000                      | .000           | .000         | .000    | .000       |
| Zn                             | .390       | .028                           | .026       | .023     | •003                     | .003                      | .003           | .003         | •008    | .745       |
| 0                              |            | 22                             |            | 22       | 2                        | 2                         | 2              | <u>,</u>     |         | 16         |
| 0                              | 4          | 23                             | 23         | 23       | 3                        | 3                         | 3              | 6            | 6       | 46         |
| No. atoms                      | 6.989      | 38.053                         | 38.053     | 38.019   | 4.991                    | 4.986                     | 4.997          | 4.988        | 9.997   | 75.393     |

37c

•

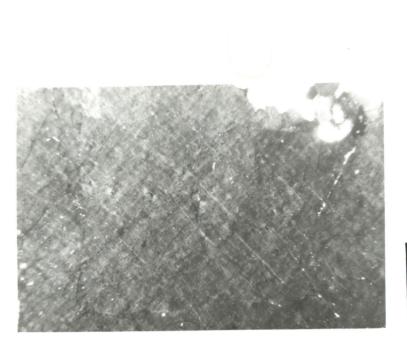
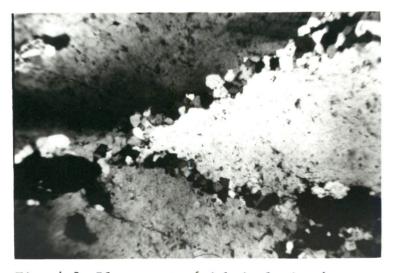




Fig. 4.1 Blue quartz, showing a fine crosshatching, and some recrystallisation (top right). XPL.



0.5 mm

0.2 mm

Fig. 4.2 Blue quartz (with inclusions) recrystallised along grain boundaries (4502/20.4).

could be related to fine twinning resulting from inversion of  $\alpha$  to  $\beta$  quartz during cooling (similar textures were observed by the author in some volcanic quartz). Various inclusions are commonly abundant but are usually difficult to identify due to their size – usually less than 5 microns and often less than 1 micron, but also up to 250 microns. These appear to include rutile, sulphides (principally pyrrhotite and sphalerite), biotite, amphiboles, gahnite, garnet, sericite and, most abundantly, fluid inclusions. Stringers or planar zones of inclusions, often sulphides, probably represent Boehm lamellae (Dietrich, 1971), and are locally common. These lamellae are due to movement of material into small fractures or cleavages in quartz, followed by the healing of these structures. The blue quartz commonly shows signs of retrograde recrystallization along fractures and grain boundaries to white quartz (Figure 4.2). White quartz is finer grained (Table 3.1), less strained, and has

fewer inclusions. It varies from milky to clear, depending upon the abundance of fluid incusions.

Wise (1981) attributed the colour of blue quartz to three principal causes :

I. Scattering of light by closely spaced microfractures.

II. Scattering or partial reflection from inclusions.III. Colouration by titanium.

i) Jayaraman (1939) showed that the size of the domains produced by microfracturing must be of similar orders of magnitude to the wavelength of light (ie. 0.2 to 0.5 microns) in order to produce scattering or partial reflection of light (the Tyndall effect).

ii) Colloidal sized inclusions of rutile, tourmaline, ilmenite, magnetite, zoisite, apatite and bubbles have all been cited as

possible causes of colouration by scattering or partial reflection of light (Dietrich, 1971). Rutile is usually one of the most abundant inclusions, and has been noted in much blue quartz from Broken Hill by Ramdohr (1950), Stillwell (1957), Segnit (1961) and Spry (1978) although little blue quartz studied by the author contained rutile. Some white quartz was also found to contain fine rutile and other similar inclusions to those found in blue quartz.

iii) At high temperatures quartz may contain considerable titanium in solid solution (Ramdohr, 1950), and this is largely exsolved on cooling, often as reticulated needles of rutile (Wise, 1981). Plimer (pers. comm. to Billington (1979)) and the author failed to detect Ti in quartz by electron microprobe analysis. Fe, in contrast, is variable but can be up to 0.1% FeO in blue quartz, suggesting the possibility of blue colouration by Fe2+ - Fe3+ charge transfer, as in blue kyanite (Faye & Nickel, 1969), and blue sillimanite (Rossman et al. 1982).

As no evidence exists for Ti in the lattice, and inclusions are not ubiquitous, an origin either from scattering of light by microfractures, or from an Fe-doped colour centre, is feasible.

#### 4.3 Garnet

The garnets in and around the WAL are basically solid solutions of almandine and spessartine, with relatively small grossular and pyrope contents (Figs. 4.3 & 4.4 & Table 4.1). Average analyses indicate a small Al deficiency and, assuming : i) that this is not a systematic error in calculation, ii) that stoichiometry should be perfect, iii) that this deficiency is all due to Fe3+ substitution for Al, then

-39-

Fig. 4.3 Composition of Garnets. Triangles represent samples from the pyroxenoid subzone, asterisks the amphibole subzone, circles the garnet quartzite, squares the gahnite zone and crosses the sillimanite gneiss. Molecular %.

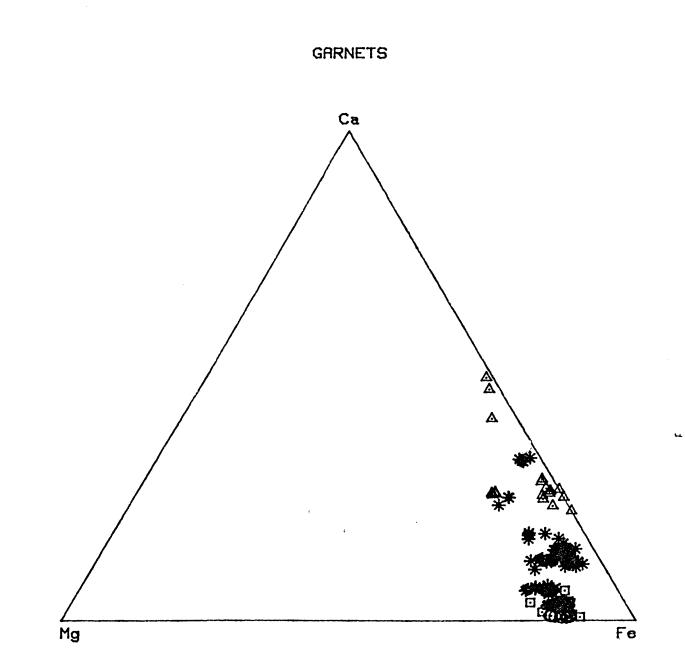
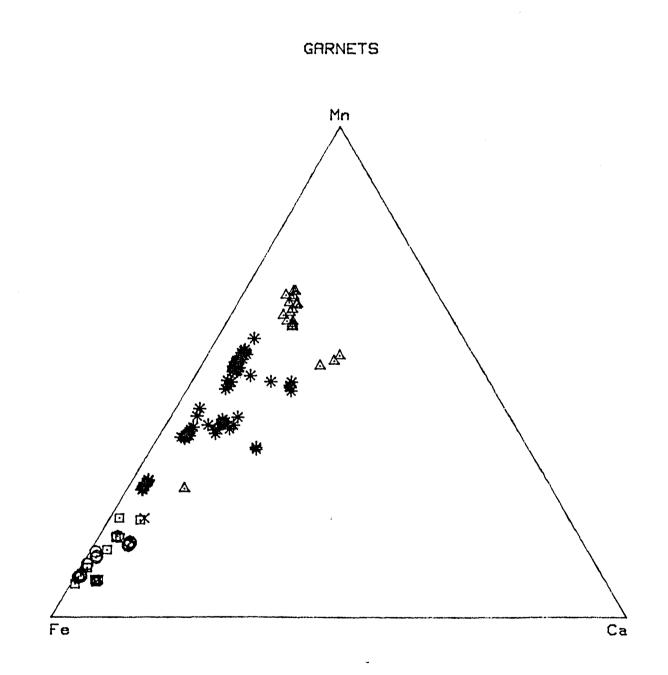




Fig. 4.4 Composition of Garnets. Triangles represent samples from the pyroxenoid subzone, asterisks the amphibole subzone, circles the garnet quartzite, squares the gahnite zone and crosses the sillimanite gneiss. Molecular %.



Fe<sup>2+</sup>/Fe<sup>3+</sup> could be calculated as c.60 in almandine and 20 in spessartine. Mn<sup>3+</sup> was assumed to be negligible, as Mn has a lower oxidation potential than Fe, and thus the calderite  $(Mn_3Fe_2(SiO_4)_3)$  component was ignored. Using the method of Rickwood (1968), almandine was found to be the major component of most WAL garnets, comprising up to 90 mol<sup>2</sup>, but spessartine can be up to 68 mol<sup>2</sup>, grossular up to 23 mol<sup>2</sup> and pyrope up to 18 mol<sup>2</sup>. Figures 4.3 and 4.4 indicate almost constant ratios of Mn/Ca and Mg/Fe. A small schorlomite component, indicated by a minor Ti content, is locally present, but Cr and the uvarovite component was not detected in the few samples tested. A small amount of Zn, up to .14 wgt<sup>2</sup> ZnO is present in some garnets.

Zoning is a common feature of these garnets and an example of the chemical variation is shown in Fig. 4.5. Mn is nearly always enriched in the garnet rims, while Mg shows a corresponding depletion. Mg-rich rims were found only once. Ca and Fe are more variable, but most commonly show depletion in garnet rims. This zoning, with high Mn rims, is typical of that termed reverse, retrograde growth, or diffusion zoning, and is commonly found in garnets of high metamorphic grades (Bethune et al. 1975 ; Tracy, 1982). It usually indicates homogenization of original garnet growth zoning (normal zoning, (Hollister, 1966)), followed by later diffusion of components between the garnet rim and adjacent minerals (Grant & Wieblen, 1971; Tracy, 1982). In the WAL this reverse zoning appears to be better developed in amphibole – bearing rocks, and was probably formed by Mn – metasomatism and/or partial retrograde re-equilibration of garnets with amphiboles.

The garnets vary from pinkish orange to purplish pink in hand specimen and pale pink to colourless in thin section. Some garnets

-40-

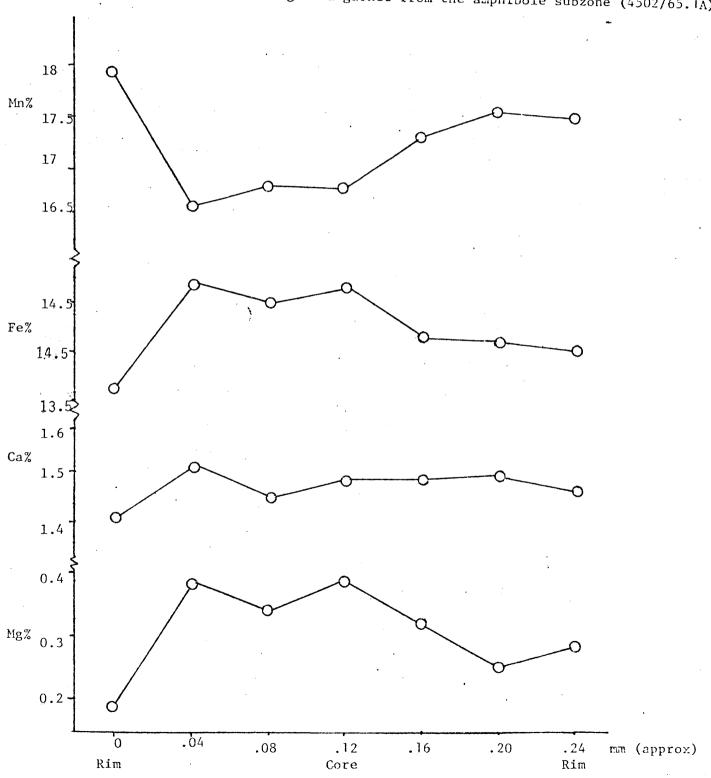



Fig. Composition zoning in a garnet from the amphibole subzone (4502/65.1A). 4.5

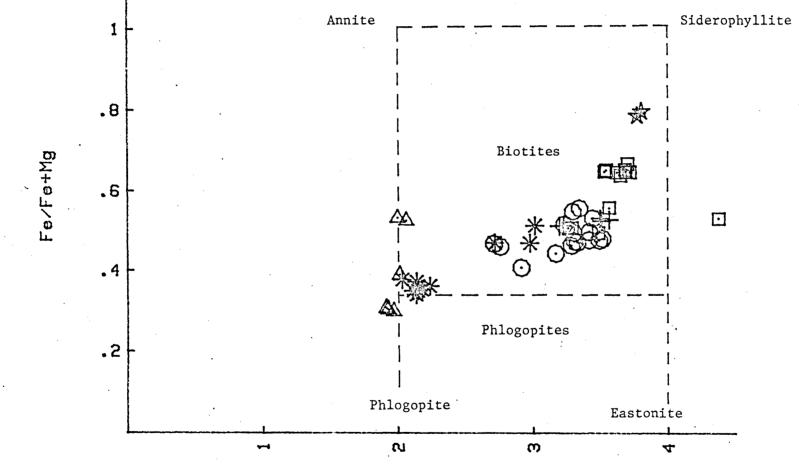
40a

exhibit colour zoning, but microprobe analysis failed to indicate consistent chemical correlation with this and so variations in oxidation states or trace elements may be involved.

The cores of medium to large garnets are commonly highly poikiloblastic, with a less poikiloblastic overgrowth formed more slowly than the cores (Spry, 1969). These garnets usually show slight reverse zoning, and this may indicate either: i) the overgrowth formed during retrogression or ii) the overgrowth formed during the second of the two high grade metamorphic events, with homogenization and later overprinting of reverse zoning during retrograde re-equilibration.

The presence of fine ilmenite inclusions within some garnet is indicative of replacement of Ti-rich biotite (Figure 4.32). The garnets are usually euhedral to subhedral, but may be quite amoeboid in texture when highly poikiloblastic, and fracturing and

In contrast to most other ferromagnesian phases of the lode, garnet very rarely shows any alteration, but instances of breakdown to chlorite and minor replacement by amphiboles and sericite were noted.


microfaulting, due to retrograde shearing, is common (Figure 3.1).

## 4.4 Biotites

Plots of trioctahedral micas indicate that they nearly all fall within the field of biotite, as defined in Deer et al (1966), although some are phlogopite (Figure 4.6). Some, including the phlogopites, fall slightly outside the normal range, showing less than 2 Al / formula unit (22 oxygens), but most have a high siderophyllite  $(K_2Fe_4Al_6Si_4O_{20}(OH)_4)$  content. An average biotite analysis is shown in Table 4.1. The manganese and zinc contents (indicative of a

-41-

Fig. 4.6 The relation between Fe/Fe + Mg and Al (atoms/22 oxygen) in biotites, showing the biotite field as defined by Deer et al. (1966). Crosses represent biotites from the sillimanite gneiss, squares are from the gahnite zone, circles the garnet quartzite, asterisks the amphibole subzone, triangles the pyroxenoid subzone and the five-pointed stars are green biotite.



4la

Al (atoms/22 oxygens)

hendricksite  $(K_2(Zn,Mn)_6Al_2Si_4O_{20}(OH)_4)$  component (Frondel & Ito, 1966)) are usually very low (up to 2.4% MnO and 0.33% ZnO). The Fe and Al contents show a positive correlation (Figs. 4.6 and 4.7), in contrast to whole-rock trends (Section 5.2.1). This could be due, in part, to instability of the annite component (Wones et al. 1977), but sulphurization of biotite, discussed further in Section 5.3.2, appears more important. Most biotite with Al < 2.5 is Mg-rich and coexists with amphiboles, into which Fe may be preferentially partitioned.

 $TiO_2$  is variable, ranging from 0 to 3.2%  $TiO_2$ , and this is reflected strongly in the colour and pleochroism. Ti-rich biotites are deep red-brown and strongly pleochroic, while Ti-poor biotites are pale yellow-brown, or rarely green, with slight pleochroism (green biotite is distinguished from chlorite by its higher birefringence). The Ti content is closely related to Fe/Mg + Fe (Figure 4.8), in contrast to the wholerock trends (Section 5.2.1), and is discussed further in Section 5.3.2.

Halogens were not routinely determined by the microprobe analysis programme used but the result of a few selected separate analyses are shown in Table 4.2. Fluorine is usually quite high, up to 3.0% F, while Cl is usually much lower, but the rare green biotites contain up to 0.8% Cl.

The low alkali contents of most of these biotites may be due to either volatilization under the electron beam, or perhaps some mixed layering of chlorite in biotite (Mohr & Newton, 1983). One such low alkali biotite contains 1.4 atoms of K per 22 oxygen and 1.3 wgt.% ZnO and still appears homogenous. Bachinski & Simpson (1984) found that this is not uncommon in even quite pure and homogenous Si-deficient biotite, due to substitution of divalent cations for K.

Ilmenite and rutile are very common as exsolution products in, and as coronas about, biotite grains (Figure 3.2) and they result from

-42-

Fig. 4.7 Relation between Mg, (Fe & Mn) and Al in trioctahedral micas, showing the compositional limits from Foster (1960). Biotites from the sillimanite gneiss are represented as crosses, from the gahnite-rich zone as squares, the garnet quartzite as circles, the amphibole subzone as asterisks and the pyroxenoid subzone as triangles. Green (retrograde) biotites are represented by diamonds. Molecular %.

:

42a

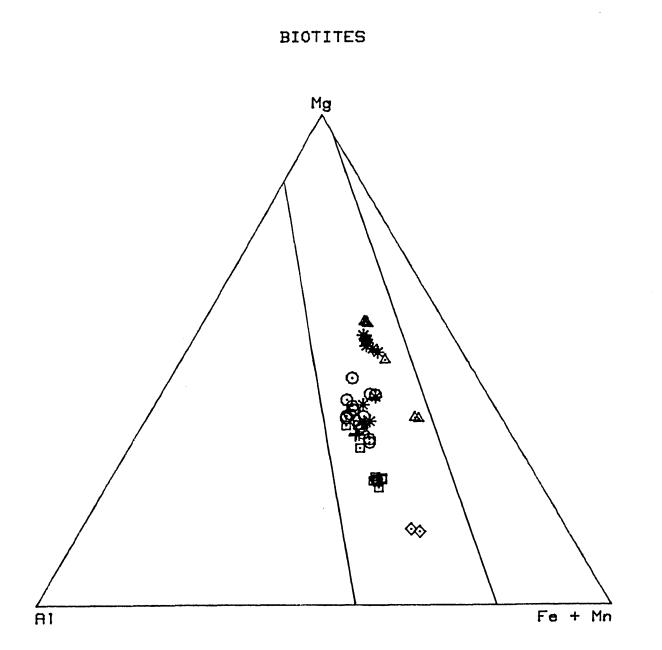
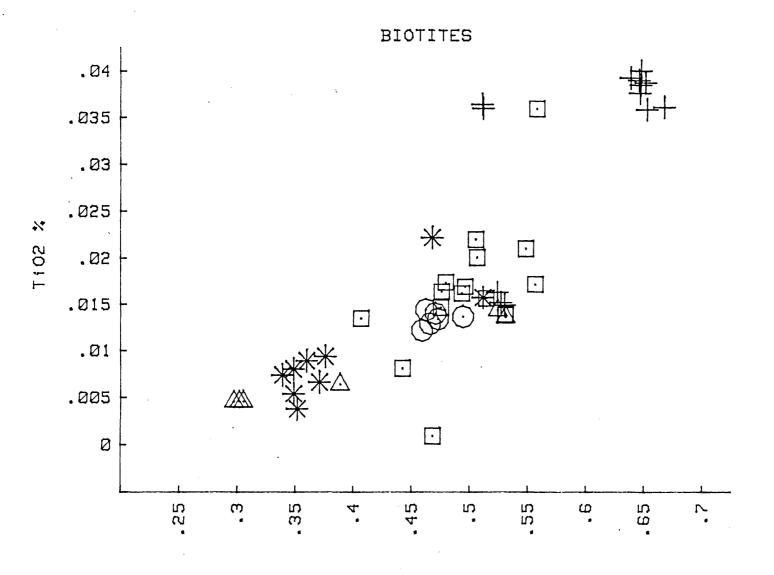




Fig. 4.8 The relation between Fe/Fe + Mg and TiO<sub>2</sub> in biotites. Biotite from sillimani<sup>+</sup>e gneiss is indicated by crosses, from the gahnite zone by squares, from the garnet quartzites by circles, from the amphibole subzone by asterisks, and from the pyroxenoid zone by triangles.



42b

Fe/Fe+Mg

| SAMPLE       | MINERAL       | % F   | 8 C1  |
|--------------|---------------|-------|-------|
| 4502 / 52.9  | Biotite 1     | 0.790 | 0.182 |
|              | 2             | 0.697 | 0.215 |
|              | 3             | 0.833 | 0.168 |
|              | 4             | 0.812 | 0.187 |
|              | 5             | 1.469 | 0.626 |
|              | 6             | 1.446 | 0.617 |
| 4502 / 47.1  | Biotite l     | 0.233 | 0.764 |
|              | (green) 2     | 0.216 | 0.769 |
| 4502 / 65.1A | Biotite 1     | 0 *   | 0.068 |
|              | 2             | 0.045 | 0.077 |
| 4545 / 42.8  | Biotite l     | 2.951 | 0.354 |
|              | 2             | 2.951 | 0.354 |
|              | Actinolite 1  | 0.638 | 0     |
|              | 2             | 0.846 | 0.111 |
| 2 / 9BA      | Actinolite 1  | 0.122 | 0.063 |
|              | 2             | 0     | 0.033 |
|              | Dannemorite 1 | 0     | 0.059 |
|              | 2             | 0.031 | 0.038 |
| 4502 / 65.1A | Dannemorite 1 | 0     | 0     |
|              | (coarse) 2    | 0     | 0.072 |
|              | (fine) l      | 0     | 0     |
|              | 2             | 0     | 0.076 |
| 4502 / 47.1C | Muscovite 1   | 0     | 0     |
|              | 2             | 1.63  | 0     |

Table 4.2 : Fluorine and chlorine in various phases

\* 0 = below limits of detection

.

retrograde recrystallization of biotite (the biotite lattice can accomodate more Ti at higher temperature: Serdyuchenko, 1948). The corona is commonly incorporated within the new biotite grain (Figure 3.2) or, not uncommonly, is some distance (<0.1mm.) from the present biotite grain. The coronas are not considered to represent prograde breakdown, which probably did occur to some extent (Phillips, 1980) as the other likely breakdown phases: magnetite, amphiboles, pyroxenes and olivines (Le Maitre, 1979; Busch et al., 1974; Brown, 1979) were not observed in the association. This fine ilmenite may however be incorporated into garnet, indicating some prograde biotite breakdown i.e. garnetization of biotite (Figure 4.32).

Retrograde chlorite commonly interleaves with, or partly envelops, many biotites and the enveloping chlorite may contain fine galena inclusions (Figure 4.9), indicating some sulphide remobilization during retrogression.

# 4.5 Sillimanite

An analysis of sillimanite (Table 4.1), indicates a small but significant Fe content (0.18% FeO). This could be present as Fe3+ substituting for Al (Plimer, 1977a). Sillimanite frequently shows partial replacement by sericite. As well as coarse prisms, some minor fibrolitic sillimanite is also present, indicative of Al mobility in late stage fluids (Ahmad & Wilson, 1981).

#### 4.6 Feldspars.

Five feldspars from the WAL were analysed by electron microprobe (Table 4.1), and three were found to be orthoclase  $(Or_{93}Ab_7 \text{ to } Or_{97}Ab_2An_1)$  while two were anorthite  $(An_{97}Ab_3)$ .

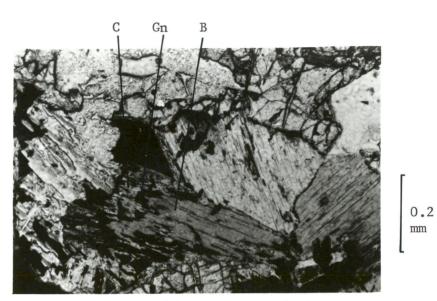
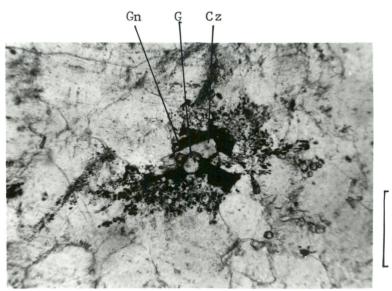




Fig. 4.9 Chlorite (C) and galena (Gn) replacing biotite (B). (4502/25.4). PPL.



0.5 mm

Fig. 4.10 Fine galena (Gn) inclusions in orthoclase, with a core of coarser galena about garnet (G) and clinozoisite (Cz). (4502/46.7B). PPL. The structural states of five alkali feldspars were determined by the high resolution X-ray diffraction method of Wright (1968), to range between orthoclase and intermediate microcline (Figure 4.11). The values of 20, and thus the position of feldspars on this diagram, are probably affected by substitution of Pb for K in the feldspar lattice. Optical examination revealed no evidence for the presence of the 'tartan twinning' characteristic of microclines and it is considered that most alkali feldspar from Broken Hill should be called orthoclase.

Plimer (1976a) found the green alkali feldspar from Broken Hill to be intermediate microcline, in contrast to Čech et al. (1971) who identified only orthoclase, Phillips (1978, 1980), who showed that the Broken Hill area was above the orthoclase isograd, and Fitzgerald and McLaren (1982) who, using transmission electron microscopy, found Broken Hill orthoclase to have only minor microcline inversion lamellae. Binns (1964), however, noted the occurrence of microcline in retrogressed rocks above the orthoclase isograd.

The feldspars range in colour from white to green to dark grey, or rarely pinkish. Lead is usually present, up to 1.2 % PbO (Čech et al. 1971; Plimer, 1976a), and was thought by Čech et al. (1971) to cause the green amazonite – like colouration common in hand specimens of Broken Hill alkali feldspar. Partial sulphurization of the lead during crystallization from anatectic melts is thought by G. Moh (pers. comm.) to cause a common fine graphic intergrowth of galena in orthoclase (Plate 4.10), giving the orthoclase a grey colour. Myriads of minute galena inclusions are centred about coarse galena <u>+</u> pyrrhotite +\_sphalerite +\_epidote / clinozoisite +\_gahnite +\_sericite, indicating either complex sulphide - silicate reactions during late -

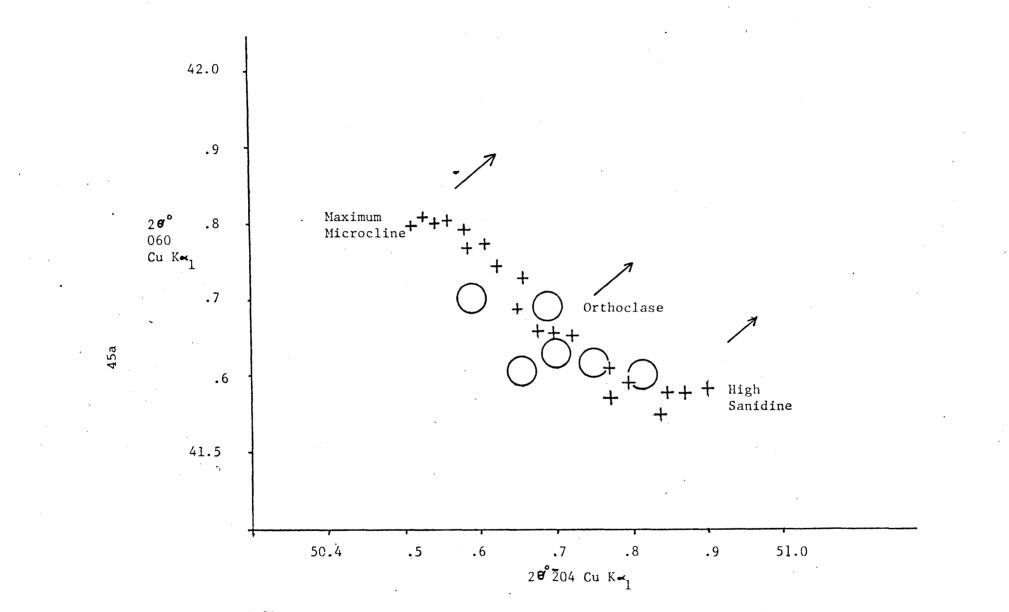
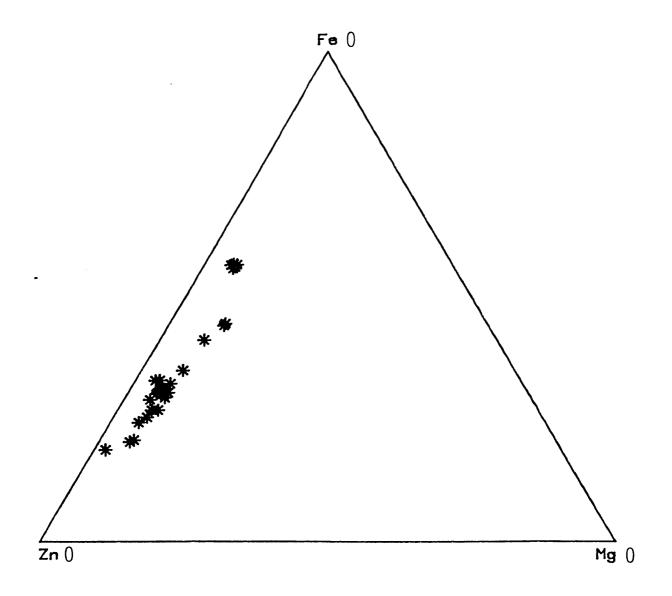



Fig. 4.11 Plot of structural states of WAL potash feldspars (circles), showing some near-end members feldspars from Wright (1968) (crosses) for comparison. The arrows indicate solid solution towards albite.

stage crystallization, or perhaps simply a nucleation effect. Graphic intergrowths of orthoclase with quartz are also common, and gahnite, garnet and biotite are locally abundant as inclusions.

Replacement of orthoclase by sericite along grain boundaries and cleavage planes is very common, but replacement by myrmekite, noted with other, Broken Hill orthoclases (Phillips et al. 1972), was not found in the WAL. Coarse muscovite – quartz – galena <u>+</u> sphalerite aggregates locally replace orthoclase.

The anorthite is colourless to white and is commonly sericitized. It is unusually Ca-rich, and may have originated from breakdown of calcite in clay, or perhaps from an original calcic zeolite such as laumontite (see Section 6.2.2).


# 4.7 Spinels.

The spinel is a green to greenish-black colour in hand specimen and a light to medium green colour in thin section. It is usually poikiloblastic, and is sometimes amoeboid in texture but may also be euhedral, especially when fine grained. It may contain inclusions of quartz, biotite, sulphides or rarely sillmanite and may have a biotite rim in apparent equilibrium.

Most analyses of the spinels from the WAL plot well within the gahnite field (Zn>Fe), but some are zincian hercynite (Fig. 4.12 and Table 4.1). The zincian hercynite has a cell dimension of 8.119 Å (refined from XRD powder data). The magnetite, galaxite (MnAl<sub>2</sub> O<sub>4</sub>) and spinel (MgAl<sub>2</sub>O<sub>4</sub>) components are low. Magnetite and jacobsite have been noted from Broken Hill by Segnit (1977) and Bottrill (pers. comm. (1981) in Birch et al. 1982), but have not been identified in the WAL. Microprobe analysis indicates that chemical zoning is common in

-46-

Fig. 4.12 The Composition of Zincian Spinels (Gahnites and Hercynite). Molecular %.



these spinels and, as with garnet, may have normal and reverse trends, the normal zoning indicated by zinc-poor rims and reverse zoning by zinc-rich rims (Spry, 1978). Reverse zoning is more prominent where the spinel has been partly replaced by retrograde phases (e.g. staurolite), as zinc is preferentially retained in gahnite during retrogressive breakdown (Bottrill, 1983a). A similar process occurs in other regions during the breakdown of zincian staurolite, as few other common rock-forming minerals can normally accomodate significant zinc (Kwak, 1974), so Mg and Fe are preferentially partitioned into other phases while Zn accumulates in staurolite. Some of the Fe in the gahnite rims has been sulphurized, perhaps also during retrograde re-equilibration, causing an outer zone rich in fine pyrrhotite (Figure 4.18). Similar partial sulphurization during retrogression affects leollingite (Section 4.12).

The gahnite shows almost ubiquitous, but highly variable, alteration to muscovite, chlorite, staurolite, paragonite, biotite or berthierine ((Fe,Mg)<sub>2-3</sub>(Si,Al)<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub>). (Figures 4.13 - 4.17). Some of the most likely reactions are:

$$3ZnAl_2O_4 + 6SiO_2 + 2K^+ + 4H^+ = 2KAl_3Si_3O_{10}(OH)_2 + 3Zn^{2+}$$
 (4.1)  
gabnite quartz muscovite

 $3\text{FeAl}_{2}\text{O}_{4} + 6\text{SiO}_{2} + 2\text{K}^{+} + 4\text{H}^{+} = 2\text{KAl}_{3}\text{Si}_{3}\text{O}_{10} (\text{OH})_{2} + 3\text{Fe}^{2+}$ (4.1a) hercynite quartz muscovite

$$32nAl_{2}O_{4} + 6SiO_{2} + 2Na^{+} + 4H^{+} = 2NaAl_{3}Si_{3}O_{10}(OH)_{2} + 3Zn^{2+}$$
(4.1b)  
gabnite guartz paragonite

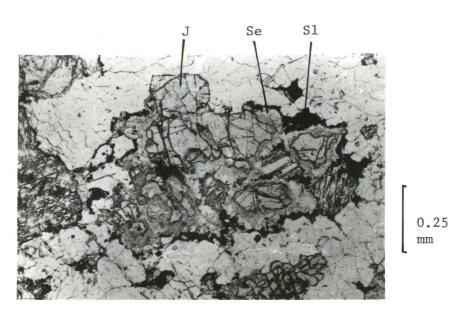
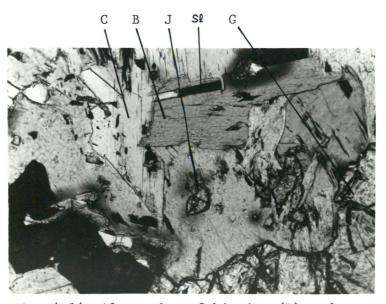




Fig. 4.13 Alteration of gahnite (J) to sericite (Se) with a sphalerite (S1) rim. (4502/91.6). PPL.



0.25 mm

Fig. 4.14 Alteration of biotite (B) and gahnite (J) to chlorite (C), with sphalerite (S1) and garnet (G). (2/13C). PPL.

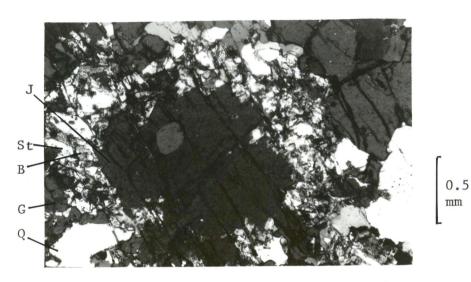



Fig. 4.15 Staurolite (St) alteration rim about gahnite (J), with garnet (G), biotite (B) and quartz (Q). (4500/2502). PXPL.

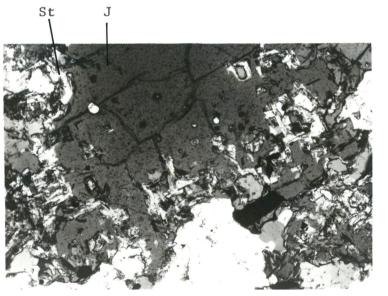



Fig. 4.16 Oriented replacement of gahnite (J) by staurolite (St). (4500/2502). PXPL.

0.5 mm

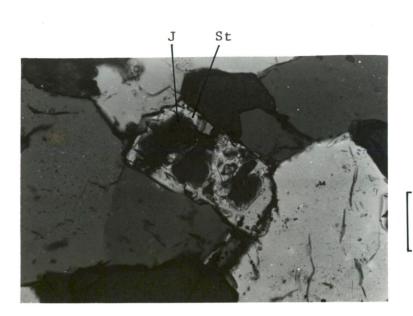
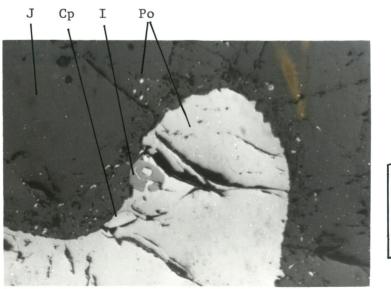




Fig. 4.17 Gahnite (J) partly replaced by a single crystal of staurolite (St). (4500/28.0). XPL.



0.2 mm

0.2 mm

Fig. 4.18 Fine pyrrhotite (Po) inclusions in gahnite (J) adjacent to coarse pyrrhotite, with ilmenite (I) and chalcopyrite (Cp). (1/3). Reflected light, XPL.

$$3ZnAl_2O_4 + 6SiO_2 + 2K^+ + 4H^+ + 3FeS = 2KAl_3Si_3O_{10}(OH)_2 + 3ZnS + 3Fe^{2+}$$
  
gabnite quartz pyrrhotite muscovite sphalerite (4.1c)

$$3FeAl_{2}O_{4} + 5.5SiO_{2} + 13H_{2}O + 5Fe^{2+} = Fe_{8}Al_{6}Si_{5.5}O_{20} (OH)_{16} + 10H^{+}$$
(4.2)  
hercynite quartz chamosite/berthierine

 $2\text{FeAl}_{2}\text{O}_{4} + \text{K}_{2}\text{Fe}_{6}\text{Al}_{2}\text{Si}_{6}\text{O}_{20}(\text{OH}) + 7\text{H}_{2}\text{O} = \text{Fe}_{8}\text{Al}_{6}\text{Si}_{5.5}\text{O}_{20}(\text{OH})_{16} + \text{hercynite} \qquad \text{annite} \qquad \text{chamosite/berthierine} \\ .5\text{SiO}_{2} + 2\text{K}^{+} + 2\text{OH}^{-} \\ \text{quartz} \qquad (4.2a)$ 

8.7FeAl<sub>2</sub>O<sub>4</sub> + 3.2KFe<sub>2</sub>Al<sub>3</sub>Si<sub>2</sub>O<sub>10</sub> (OH)<sub>2</sub> + 14.1SiO<sub>2</sub> + 1.4H<sub>2</sub>O =  
hercynite siderophyllite quartz  
$$1.4Fe_4Al_{17.3}Si_8O_{46}$$
 (OH)<sub>2</sub> + 3.2KFe<sub>3</sub>AlSi<sub>3</sub>O<sub>10</sub> (OH)<sub>2</sub> (4.3a)  
staurolite annite

$$4\text{FeAl}_{2}O_{4} + 4.7\text{Al}_{2}\text{SiO}_{5} + H_{2}O + 3.4\text{SiO}_{2} = \text{Fe}_{4}\text{Al}_{17.3}\text{Si}_{8}O_{46}(OH)_{2} \qquad (4.3b)$$
  
hercynite sillimanite quartz staurolite

$$3\text{FeAl}_{2}\text{O}_{4} + 4\text{SiO}_{2} + \text{Fe}^{2+} + 2\text{K}^{+} + 4\text{OH}^{-} = 2\text{KFe}_{2}\text{Al}_{3}\text{Si}_{2}\text{O}_{10} (\text{OH})_{2}$$
(4.4)  
hercynite quartz siderophyllite

These reactions are seldom simple, as they represent only a part of the retrograde re-equilibration of the mineral assemblages, which have not always behaved as closed systems. The compositions shown in reactions 4.1 – 4.4 generally represent end-member components, but the Al/Si/O ratios approximate the compositions found in the WAL. The spinel is represented by hercynite in most of these reactions as that component was less stable than the gahnite component during the retrogression as described above.

Gahnite appears particularly unstable in association with pyrrhotite, which is partly replaced by sphalerite. Complete breakdown of gahnite has occurred in some areas, resulting in rounded aggregates of sericite and chlorite (Figure 4.19), although small gahnite inclusions in unfractured crystals of nearby garnet or quartz may remain unaltered. Fine sphalerite is common in the fine sericite – chlorite alteration rim around gahnite, especially when in contact with, or close to, pyrrhotite grains. Some staurolite replaces the gahnite topotactically (Figure 4.16).

Sundblad (1982) suggested that the breakdown of iron silicates rather than sphalerite produces most iron – rich gahnite, and as the WAL gahnite is very iron – rich, grading to hercynite, this was a major factor in its formation. The wide Zn / Fe range suggests that reaction of sphalerite with aluminosilicates was an additional factor (Wall & England, 1979).

#### 4.8 Amphiboles.

¢

Quite a wide variety of amphibole compositions occur within the WAL - most within the cummingtonite series and some within the actinolite series (Figs.4.21, 4.22 and 4.22a ; Table 4.1). The cummingtonite series amphiboles are pale pinkish-brown in hand specimen, resembling bustamite and often described by mine geologists

-49-

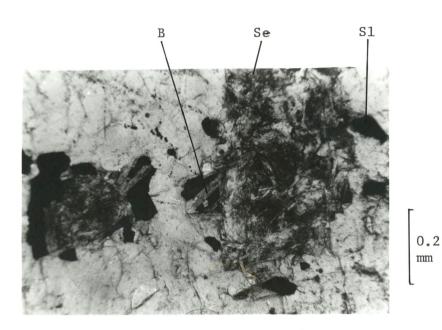
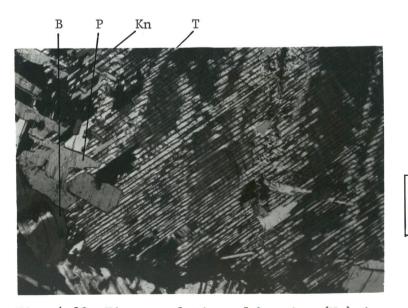




Fig. 4.19 Aggregates of sericite (Se) biotite (B) and sphalerite (S1), pseudomorphous after gahnite. (4502/47.0). PPL.



0.2 mm

Fig. 4.20 Fine exsolution of kanoite (Kn) in tirodite (T), with Mn-biotite (B) and pyroxmangite (P). (4526/90.6). XPL.

Fig. 4.21 Composition of Amphiboles, showing the compositional fields for cummingtonite group as defined by Leake (1978). Stars represent cummingtonite group minerals, and triangles actinolite group minerals. Molecular %. Dotted lines join coexisting phases.

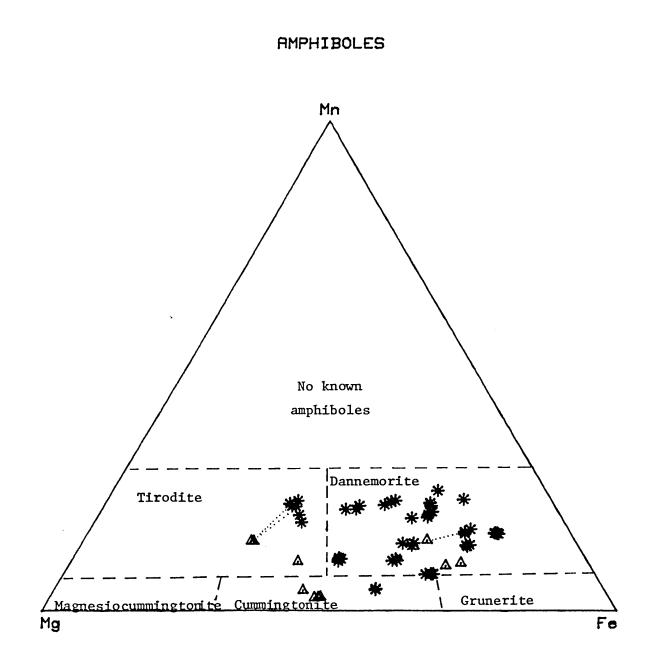



Fig. 4.22 Compositions of Amphiboles, showing the compositional fields for the actinolite group as defined by Leake (1978). Triangles represent actinolite group minerals, stars represent cummingtonite group minerals (those in the actinolite field are tirodites), and circled stars are fine aggregates, perhaps mixtures. Dotted lines join coexisting phases. Molecular %.

:

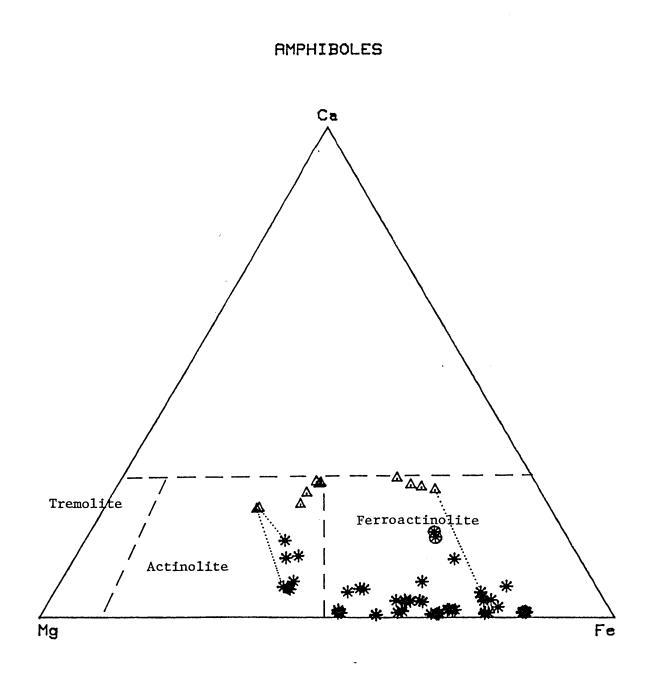
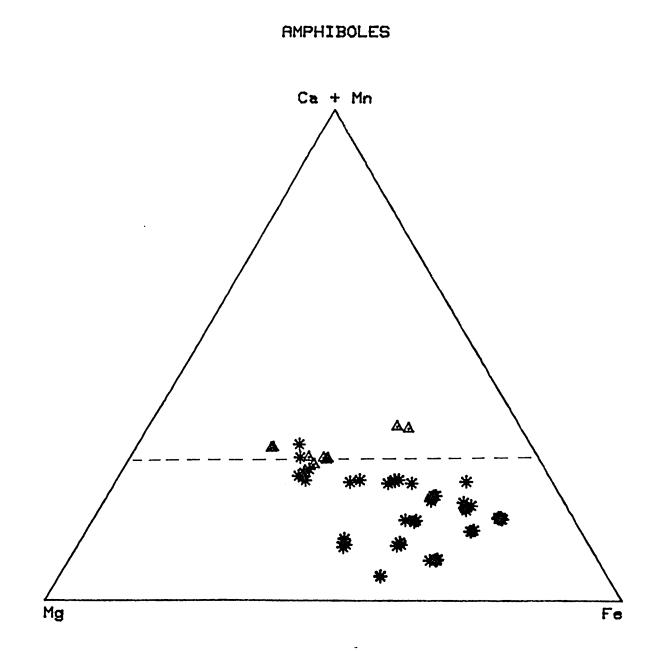




Fig. 4.22a Composition of Amphiboles (showing theoretical maximum limit of (Ca + Mn) (Robinson et al., 1982). Triangles represent actinolite group minerals and stars represent cummingtonite group minerals. Molecular %.



as such, and they are colourless in thin section. Actinolite group minerals are pale green to greenish-black in hand specimen, and are colourless to deep green in thin section. Multiple twinning is almost ubiquitous in cummingtonite series minerals, but is uncommon in actinolites. Tirodite is pale olive green in handspecimen and is almost colourless in thin section. It sometimes shows a bluish 'schillerization', due to diffraction of light by very fine exsolution lamellae.

The actinolite series amphiboles range from actinolite to ferroactinolite (Fe/(Fe + Mg) = 0.35 to 0.75) and are usually Mn - rich (up to 6.4 % MnO) and contain up to 3.3% Al2O<sub>3</sub>. Some analyses approach the actinolitic hornblende compositional field of Leake (1978). Robinson et al. (1982) indicate that in amphiboles, using their crystallographic notation, the site preferences for Ca are M4> M1-2-3> A, for Mn are M4>M1-2-3 and for Fe and Mg are M1-2-3 > M4, and Ca is preferred to Mn in M4 sites. Thus Mn in WAL amphiboles must be partly distributed through M1-2-3 as well as M4 sites, as (Ca + Mn)/(Ca + Mn + Fe + Mg) may be > 2/7 while Ca/(Ca + Mn + Fe + Mg) may be < 2/7 (the theoretical maximum for Ca + Mn in amphiboles) (Figures 4.21-4.23). These amphiboles may have some lattice distortion from accomodating these large ions in the small sites.

The cummingtonite series minerals are usually Mn-rich and fall principally within the dannemorite  $(Mn_2Fe_5Si_8O_{22}(OH)_2)$  and cummingtonite  $((Mg,Fe)_7Si_8O_{22}(OH)_2)$  fields, while tirodite  $(Mn_2Mg_5Si_8O_{22}(OH)_2)$  was a dominant component of amphiboles in one specimen only. Many members of this series were found to be slightly calcic (Fig 4.22) and this is possibly due to intergrowth with actinolite in some fine aggregates, but up to 2.5% CaO is present in coarse grained, homogenous dannemorite. Small amounts of Ca are typical of cummingtonite group minerals, and may be necessary for nucleation (Layton & Phillips, 1960; Cameron, 1975), but a maximum of only 2.2 % CaO has been previously recorded in cummingtonite series minerals (Vernon, 1962; Robinson et al. 1982), making this above mentioned specimen the most calcic cummingtonite group described. As in actinolites Ca + Mn/(Ca + Mn + Fe + Mg)may be > 2/7, indicating the presence of minor Mn in M1-2-3 sites. The tirodite contains fine exsolution lamellae of pyroxenoids and pyroxenes (Figure 4.20) which contribute to the spread in tirodite analyses.

Some amphiboles were analysed for halogens (Table 4.2), and the cummingtonites are quite halogen poor (<.03 % F, <.08 %, Cl ) while the actinolites have up to .85 % F and .06 % Cl. High halogen contents are typical of high grade amphiboles (Petersen et al. 1982).

In is only minor, (up to 0.27 and 0.65 % In cummingtonites and actinolites respectively) in contrast to the manganoan amphiboles of Franklin, New Jersey (Klein & Ito, 1968), containing up to 10.8 % InO. This is due to the much higher sulphide content of the Broken Hill lodes compared with the Franklin Pb-In deposits (Squiller and Sclar, 1980), causing most In in Broken Hill to be present as sphalerite (sulphides are almost ubiquitous in amphibole rich areas of the WAL).

Na, Ti and Al are usually very low, although some coarse actinolite has up to 3.3 % Al<sub>2</sub>O<sub>3</sub>.

Overgrowths of amphiboles were noted in a number of cases (Figures 3.16 - 3.18) although consistent chemical differences could not be detected. Some coarse grained actinolite is overgrown by actinolite richer in fine sulphide blebs (Figure 3.18). This could be due to either:

I. Increased growth rate.

II. Sulphurization of pre-existing grains.III. Sulphur influx into the fluid phase during retrograde growth.

The lack of distinct chemical difference between the core and rims supports the first hypothesis, but it is also quite possible that the amphibole grains re-equilibrated during retrogade metamorphism, and zoning was not preserved. Two distinct generations of cummingtonite series amphiboles may be present – the second generation commonly being very fine grained. As for the actinolites, no consistent chemical variation was detected.

Co-existing actinolite series and cummingtonite series minerals are rare, but one pair is plotted in Figure 4.22. The actinolite has a slightly greater Mg/Mg + Fe than the dannemorite, as Immega and Klein (1976) found to be general for most similar assemblages. The amphiboles frequently occur as replacements of the pyroxenoids, principally along cleavage planes and grain boundaries (Figures 3.6-3.7) and some aggregates in quartz may represent completely replaced pyroxenoids (Figure 3.13). Some amphiboles, however are found in shear zones (Figure 3.11) and other areas with no direct relationship to pyroxenoids. Some occurrences within pyrosmalite appear to have nucleated about sphene.

Pleochroic haloes were found about allanite inclusions in some actinolites (Figure 3.18).

# 4.9 Pyroxenes & Pyroxenoids.

The principal pyroxenoids present in the WAL are rhodonite and pyroxmangite both (Mn,Ca,Fe)SiO<sub>3</sub>, (Figures 4.24 – 4.27; Table 4.1).

-52-

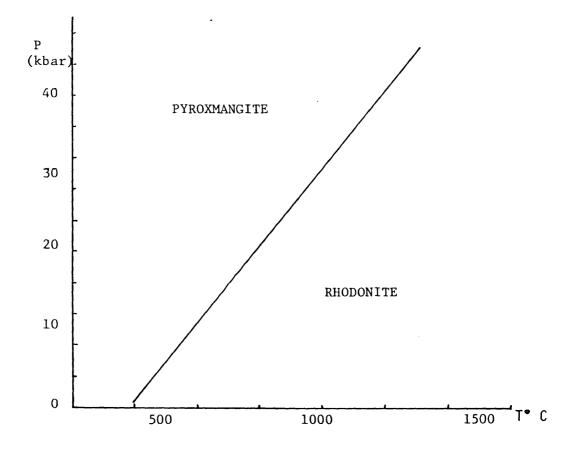



Fig. 4.23 Pressure-temperature curve for the rhodonite/ pyroxmangite transformation, for pure MnSiO<sub>3</sub>, adapted from Maresch & Mottana (1976).

Fig. 4.24 Composition of Pyroxenoids and Pyroxenes in Mg-poor samples, with approximate moderate to high temperature compositional fields adapted from Hodgson (1975) Peacor (1978), Brown et al. (1980) and Winter et al. (1981) Rhodonites are shown by A, pyroxmangites by X, and hedenbergites by I. Molecular %.

# PYROXENOIDS

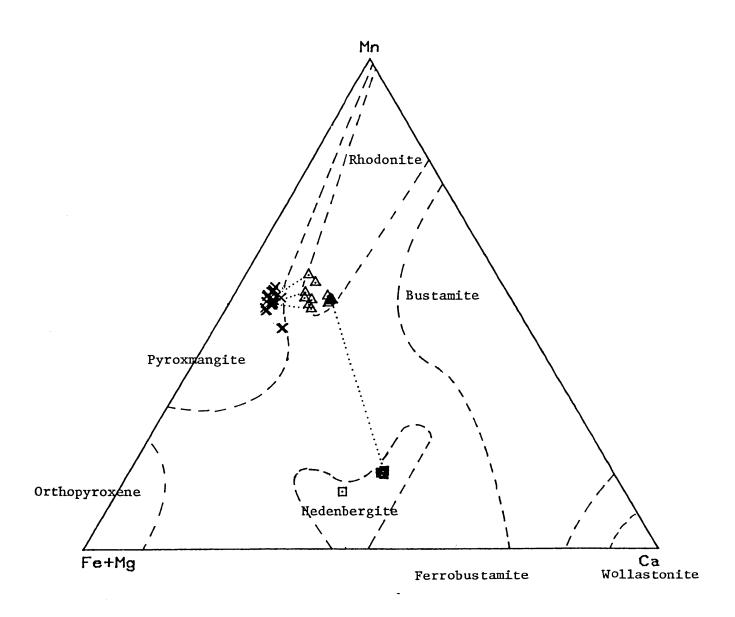



Fig. 4.25 Composition of pyroxenoids, pyroxenes and amphiboles in Mg-rich samples, with approximate compositional fields are adapted from Brown et al. (1980) and Leake (1978). Amphiboles are shown by asterisks, hedenbergite by squares, kanoites by triangles and pyroxmangites by crosses. Molecular %.

## MAGNESIAN PYROXENOIDS, PYROXENES & AMPHIBOLES

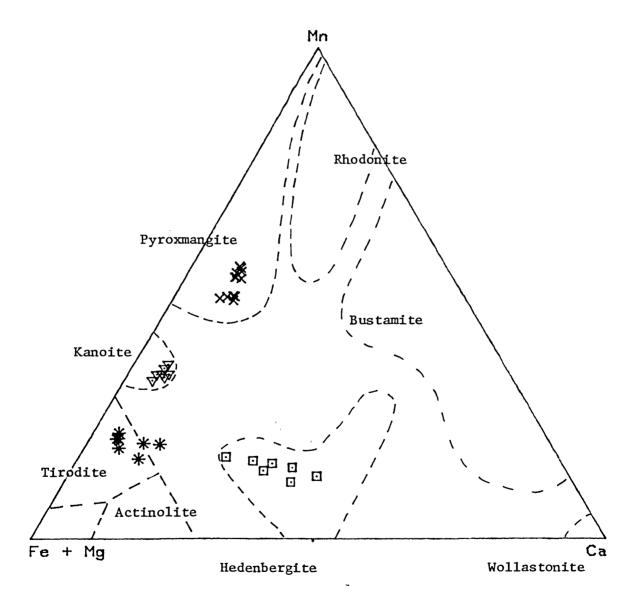
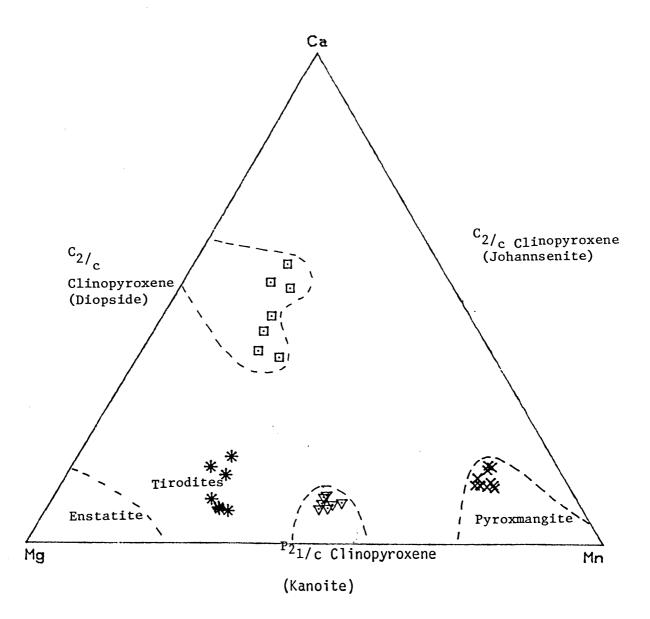



Fig. 4.26 Compositions of pyroxenoids, pyroxenes and amphiboles in Mg-rich samples, showing compositional fields adapted from Brown et al. (1980). Hedenbergites are shown as squares, tirodites as asterisks, kanoites as triangles and pyroxmangite as crosses. Molecular %.

MAGNESIAN PYROXENOIDS, PYROXENES & AMPHIBOLES



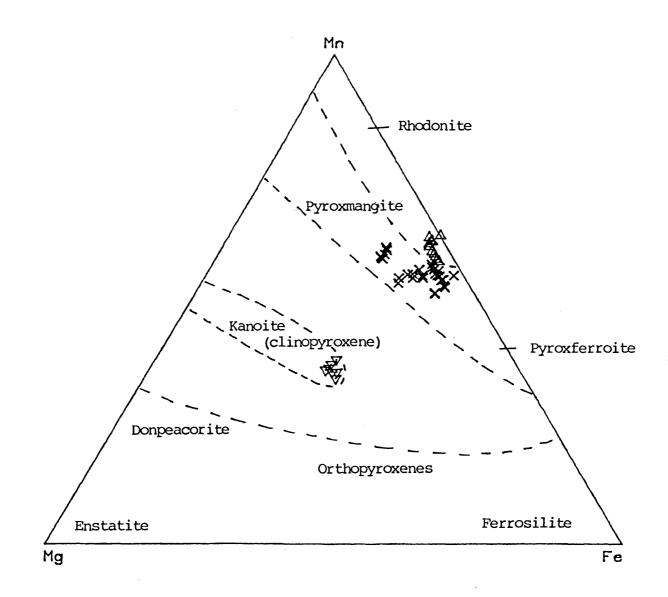



Fig. 4.27 Compositions of Pyroxenes and Pyroxenoids. Rhodonites are represented by A, pyroxmangite by X and kanoite by V. Compositional fields adapted from Petersen et al. (1984) Molecular %.





-53-

# TABLE 4.3: COMPARISON OF RHODONITE AND PYROXMANGITE

| (Data from | n Roberts | et al. | 1974) |
|------------|-----------|--------|-------|
|------------|-----------|--------|-------|

|                 | PYROXMANGITE            | RHODONITE                     |
|-----------------|-------------------------|-------------------------------|
| Composition     | (Mn,Fe,Mg,Ca)SiO₃       | (Mn,Ca,Fe,Mg)SiO <sub>3</sub> |
| Crystal system  | Triclinic               | Triclinic                     |
| Space group     | Pl                      | Pl                            |
| Z               | 14                      | 10                            |
| 3 Strongest     | 2.95(100)               | 2.772(100)                    |
| Diffraction     | 2.18(70)                | 2.980 (65)                    |
| Lines (Å)       | 3.12(60)                | 2.924 (65)                    |
| Optical consts. |                         |                               |
| α               | 1.726 - 1.748           | 1.711 - 1.738                 |
| β               | 1.728 - 1.750           | 1.716 - 1.741                 |
| Y               | 1.744 - 1.764           | 1.724 - 1.751                 |
| 2V              | 35 - 46° (+)            | 63 - 76° (+)                  |
| Colour          | Pale pink to dk. brown  | Pale pink to brown - red      |
| Hardness        | 5.5 - 6                 | 5.5 - 6.5                     |
| Specific        | 3.6 - 3.8 (meas.)       | 3.6 - 3.8 (meas.)             |
| Gravity         | 3.91 (calc.)            | 3.73 (calc.)                  |
| Cleavage        | { 110 } Perfect         | { 110 } Perfect               |
|                 | { 110 } Perfect         | {110} Perfect                 |
|                 | { 010 } Good            | { 001 } Good                  |
|                 | { 001 } Good            |                               |
| Twinning        | rare; lamellar & simple | not noted                     |

X-ray Diffraction analyses indicate that pyroxmangite may be slightly more abundant than rhodonite in the WAL (Appendix 5), although Burrell (1942) found pyroxmangite to be unimportant in the A lode compared with rhodonite. They are very difficult to distinguish and very detailed optical studies or X-ray analyses are necessary to confirm their identifications (Table 4.3). Maresch and Mottana (1979) showed that pyroxmangite is the high pressure equivalent of, and may invert to, rhodonite (Figure 4.23), but this is also composition-dependant.

Coexisting rhodonite and pyroxmangite were found in the WAL as relatively coarse exsolution intergrowths and are not uncommon (Burrell, 1942; Hodgson, 1975b; Maresch and Mottana, 1979; Aikawa, 1979 and Brown et al. 1980). Their compositions indicate stable coexistence of the two phases in a divariant field. The immiscibility gap is very limited, but shifts with changing temperature and pressure (Maresch and Mottana, 1979), and thus exsolution may occur. Plotting of analyses of the WAL pyroxenoids indicates clustering into two principal groups, (Figs 4.24 - 4.27) and thus the immiscibility gap is fairly well defined over a small compositional range in these samples. The rhodonite - pyroxmangite immiscibility gap is poorly defined at present (Mason, 1973; Aikawa, 1979; Brown et al. 1980; Winter et al. 1981), and is pressure and temperature dependent (Maresch & Mottana, 1979). Zn may be present up to 0.32 % ZnO in both pyroxmangite and rhodonite in the WAL.

•

Manganoan hedenbergite (often termed manganhedenbergite) is a less common phase in the WAL than rhodonite and pyroxmangite but is locally abundant. The composition is quite variable (Figure 4.24 – 4.27), but the hedenbergite (CaFeSi<sub>2</sub>O<sub>6</sub>) component is always greater than the johannsenite (CaMnSi<sub>2</sub>O<sub>6</sub>), kanoite (MnMgSi<sub>2</sub>O<sub>6</sub>) and diopside (CaMgSi<sub>2</sub>O<sub>6</sub>)

-54-

components. The Ca/(Fe + Mg + Mn) is guite variable also, showing that a large amount of Mn, Fe and perhaps Mg can substitute for Ca, and up to 0.3 % ZnO has been found in some hedenbergite. The large amount of Mn substitution for Ca is not typical of manganoan hedenbergite (Mason, 1973; Hodgson, 1975b), and indicates a kanoite component (MnMgSi $_{26}^{0}$ ). The spread of analyses (Figure 4.25) is partly due to the fine nature of some of the exsolution lamellae of hedenbergite in tirodite, making accurate analysis difficult.

The little work that has been done on the pressure - temperature dependence of Mn - pyroxenes and pyroxenoids indicates that with calibration they would probably make good geobarometers and/or geothermometers (Brown, 1980; Abrecht & Peters, 1980).

A kanoite-like phase (MnMgSi 0, a recently described clinopyroxene: Kobayashi, 1977) was found coexisting with tirodite in one sample from 90.6 metres, DH4526. The average formula is about  $^{Mn}0.7^{Mg}0.6 Fe_{0.6}^{Ca}0.1^{i}2^{0}6' or (^{Mn}0.7^{Fe}0.2^{Ca}0.1^{)}(^{Mg}0.6^{Fe}0.4^{i}2^{6}6')$ similar to some of the kanoite described by Brown et al.(1980) but with a much higher iron content. In several kanoite analyses Fe>Mg, suggesting the presence of an as yet undescribed  $MnFeSi_{2,6}^{0,0}$  endmember, but deficiencies in Ca and Mn indicate that Fe substites for these elements in the large A site (due to its smaller size Mg is unlikely to substitute in this site) and thus no conclusive evidence can be presented here for the existence of a new mineral. Kanoite occurs in the WAL as fine exsolution lamellae (<40 microns width) in tirodite (Plate 4.20). A similar habit is seen in its other two reported occurrences: as fine intergrowths with manganoan diopside (Brown et al. 1980) and as fine intergrowths with manganoan cummingtonite (Kobayasni, 1977). Further study, including x-ray diffraction and

-55-

transmission electron microscopy, is necessary to confirm the identity of this and other phases in this sample.

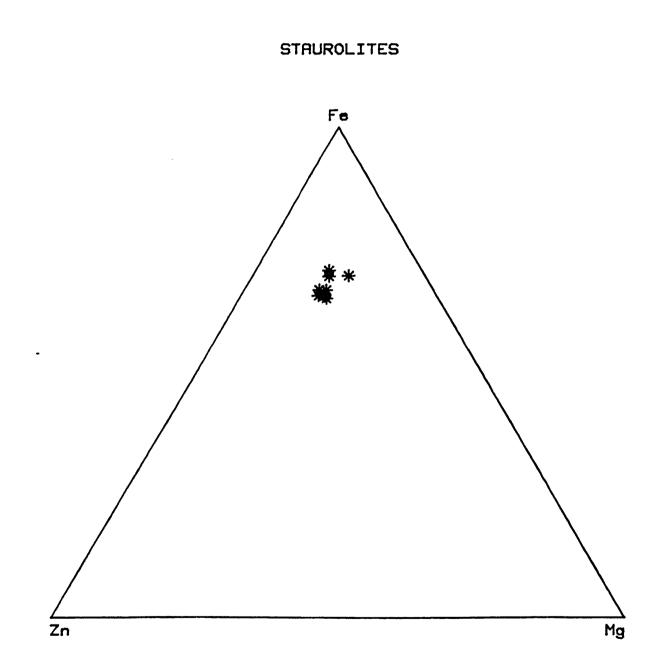
The pyroxenoids and pyroxenes are commonly euhedral (short prismatic) when enclosed in quartz or feldspar, but more commonly form massive granoblastic aggregates. In handspecimen hedenbergite is dark green, while rhodonite and pyroxmangite are deep red to orange – brown, and both are almost colourless in thin section. The pyroxenoids commonly show alteration to amphiboles (Figures 3.6-3.7), or less commonly pyrosmalite or manganpyrosmalite. The amphiboles preferentially replace pyroxenoids along cleavages, fractures and grain boundaries, while pyrosmalite appears to replace pyroxenoids more completely, and this is probably related to the difficulty in incorporating large amounts of manganese into the amphibole structure (Robinson et al. 1982).

## 4.10 Staurolite.

Staurolite occurs as euhedral to subhedral, prismatic crystals, light to medium brown in colour and is fine to medium grained. It may exist in equilibrium with muscovite, garnet, biotite and sillimanite, indicating complete retrograde recrystallization of these rocks, but locally shows signs of sericitization. It is commonly poikiloblastic, with inclusions of quartz (commonly fine and vermicular) and rarely fine ilmenite, which probably indicates that this staurolite has replaced biotite. Much staurolite has replaced gahnite, which occurs as relics within some euhedral staurolite crystals (Figure 4.17) or within fine staurolite aggregates (Figures 4.15 - 4.16). Some staurolite has replaced gahnite topotactically (Figure 4.16).

Staurolites in the WAL have all been found to be zincian, with

-56-


between 2.5 and 4.3%ZnO (Bottrill, 1983a). Up to 1.6% MgO, 0.15% MnO and 0.52% TiO<sub>2</sub> may also be present and the relation between Fe, Zn and Mg is shown in Figure 4.28. The Fe/Al/Si ratios are variable, and the formula is not simple, but can be represented on average as  $(Fe_{2.7} Zn_{0.7} Mg_{0.6})_4 Al_{17.3} Si_{7.9} O_{44} (OH)_2)$  (Table 4.1), closer to  $(Fe_4 Al_{17.3} (Si,Al)_8 O_{48}H_2 :$  Griffen, 1981) than that of  $(Fe_4 Al_{18}Si_{7.5}O_{44} (OH)_4 :$  Yardley, 1981b). Staurolite is one of the few common rock forming minerals to readily accommodate significant Zn, as the element prefers Fe accomodating sites of tetrahedral coordination, as in spinels, or sites of octahedral coordination with hydroxyl ligands (Wedepohl, 1972).

The breakdown reaction of gahnite to staurolite is complex (Reaction 4.3) with preferential retention of Zn in gahnite, and a common association of fine grained biotite with the staurolite indicates that this may be another product of the reaction. Biotite may, however, surround gahnite without staurolite, and is commonly in equilibrium. The biotite may help balance the gahnite-staurolite reaction by FeSi = A12 equilibria (Reaction 4.3a). Sillimanite may also be involved in the reaction as it is a not uncommon associate of gahnite and staurolite (Reaction 4.3b).

#### 4.11 Ilmenite.

Ilmenite is fine grained and usually opaque, but where it has exsolved from biotite (Figure 3.2) it is very fine grained, translucent and dark brown in transmitted light. This very fine grained ilmenite can be incorporated into garnet (Figure 4.32), indicating garnetization of biotite.

Microprobe analyses on a number of the coarser ilmenite crystals

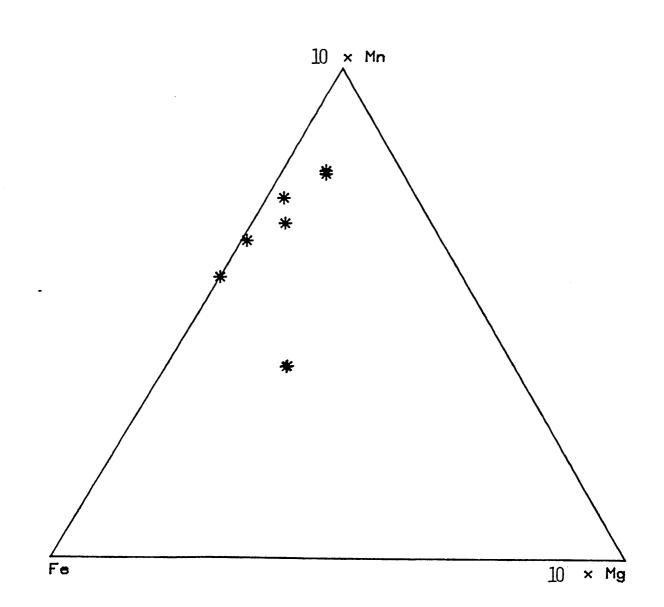


,

show that they are all manganese - bearing, with between 0.6 and 4.4% MnO (Figure 4.29 and Table 4.1), and small amounts of MgO (< 1.3%) are also present. ZnO was <.05% in all ilmenites analysed, so no significant solid solution towards the zinc analogue of ilmenite, found at Broken Hill by Brown et al. (1970) was detected.

#### 4.12 Sulphides.

Sphalerite, galena, cubanite (CuFe<sub>2</sub>S<sub>3</sub>), pyrrhotite, chalcopyrite, gudmundite (FeSbS), pyrite, arsenopyrite and loellingite were are all noted in polished sections and confirmed by qualitative electron microprobe analyses. Many detailed studies have been published on Broken Hill sulphide chemistry and petrology, including those by Ramdohr, 1950; Stillwell, 1953; Ramdohr, 1972; Lawrence, 1973; Both, 1973; Scott et al. 1977 and Spry, 1978. Most sulphides of the WAL seem little different to those described in these studies, thus only some of the most important factors are mentioned here.


Most sulphide minerals in the WAL are anhedral (except arsenopyrite and loellingite), tending towards coarse – grained polygonal aggregates with balanced surface tensions (Lawrence, 1973), and most inclusions have been forced towards grain boundaries. Many sulphides, especially galena and chalcopyrite, appear to have been squeezed into fractures and small shear zones. Sphalerite is rarely brecciated and cemented by chalcopyrite and galena. Most sulphides can be found as inclusions, often very fine, in some garnet and spinel. Arsenopyrite and loellingite, being more refractory than most sulphides, usually occur in well-formed eubedral crystals.

Some exsolution textures are present, and those noted in the WAL include troilite in hexagonal pyrrhotite (Figure 4.30), cubanite in

-58-

Fig. 4.29 Composition of Ilmenites (Molecular %)

ILMENITES



58a

.

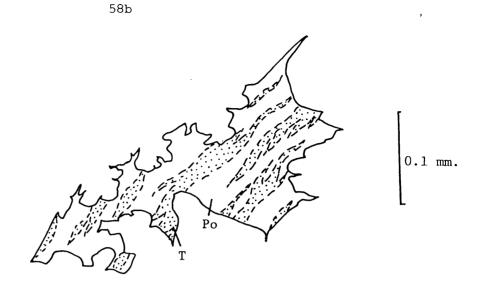



Fig. 4.30 : Pyrrhotite (Po) grain, enclosed in dannemorite, showing typical flame-like exsolution lamellae of troilite (T). (2/1B)

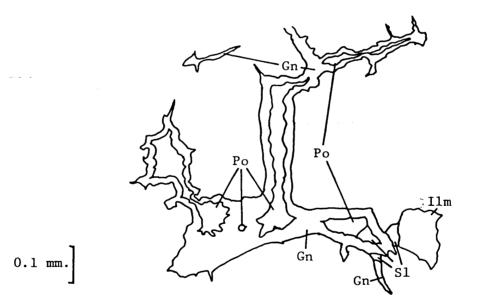



Fig. 4.31: Late stage sulphide vein in garnet quartzite, showing galena (Gn) replacing pyrrhotite (Po), with sphalerite (Sl) and ilmenite (Ilm).

pyrrhotite, chalcopyrite in cubanite and gudmundite in chalcopyrite.

The only definite evidence of alteration or replacement reactions observed were small aggregates of prismatic pyrite on pyrrhotite, and loellingite being replaced by arsenopyrite (Figure 4.34). The arsenopyrite has slightly lower Co and Ni than the loellingite, due to dilution by introduced Fe (e.g from FeO in silicates):

There is some evidence for replacement of pyrrhotite by galena in some late-stage veins (Figure 4.31).

Sulphides participate in retrograde replacement of some non-sulphide phases, noticeable in at least three intimate associations:

I. Fine galena within chlorite replacing biotite (Figure 4.9).
 II. Fine galena within manganpyrosmalite replacing pyroxenoids (Figure 3.9).

III. Fine sphalerite with sericite and chlorite replacing gahnite (Figs. 4.13, 4.14 and 4.19).

Many sulphides, especially sphalerite and pyrrhotite, are intimately associated with the amphiboles (Figures 3.14-3.15), and it is difficult to determine whether this is an original association or whether it represents a later chemical replacement or mechanical emplacement of more ductile sulphides into brittle silicates. Stilpnomelane also appears most abundantly within sulphide aggregates (Figure 3.10), and has a similar genetic relationship.

## 4.13 Retrograde Phyllosilicates.

A number of retrograde phyllosilicates occur in the WAL, including

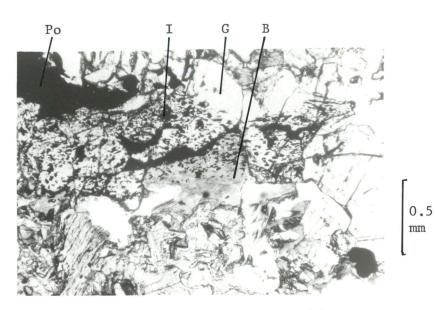
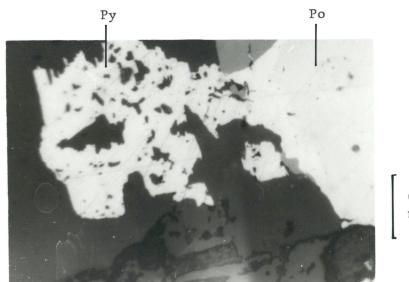




Fig. 4.32 Garnetisation of biotite (B), as evidenced by the presence of fine ilmenite (I) in both biotite and garnet (G), with coarse grained pyrrhotite (Po). (4500/25.2). PPL.



0.1 mm

Fig. 4.33 Pyrite (Py) overgrowth on pyrrhotite (Po). (2/5B). Reflected light, PPL.

59a

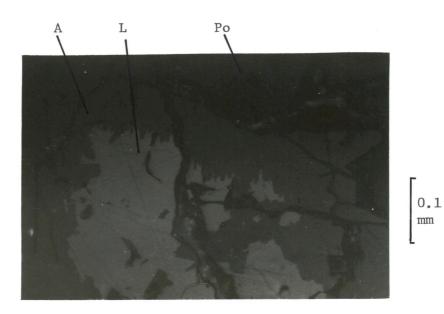
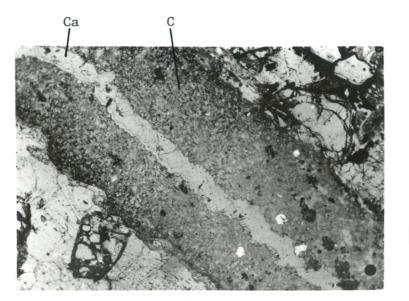
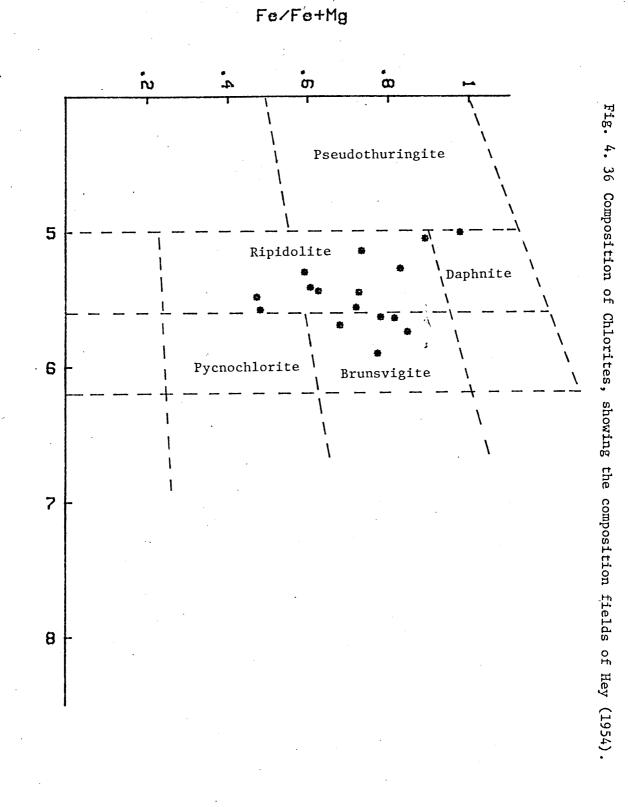




Fig. 4.34 Replacement of loellingite (L) by arsenopyrite (A), in pyrrhotite (Po). (2/5A). Reflected Light, XPL.



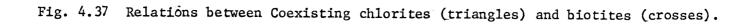
0.2 mm

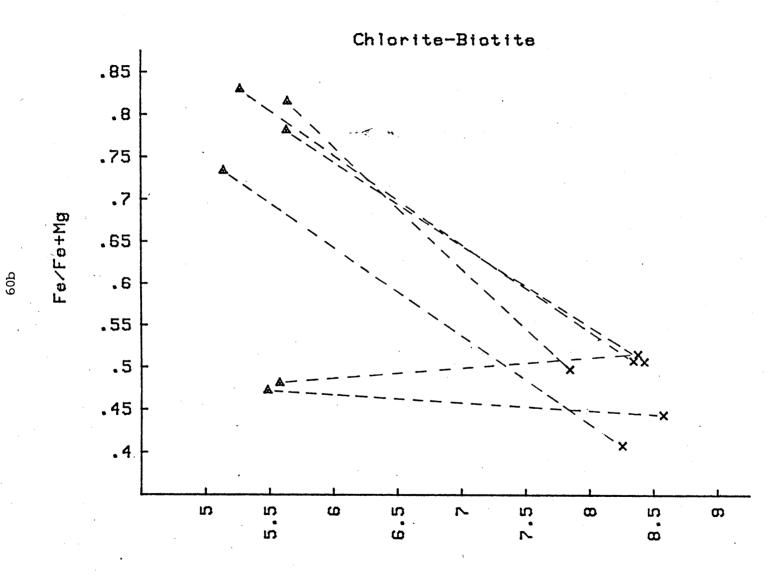
Fig. 4.35 Chlorite (C) - Calcite (Ca) vein in garnet quartzite. White spots indicate probe damage. (4502/48.7). PPL. Fine berthierine is interstitial to chlorite.


chlorite, some green biotites, sericite/muscovite, paragonite, pyrosmalite-group minerals, greenalite (?), berthierine, 'sturtite', and stilpnomelane. Average compositions are given in Table 4.4.

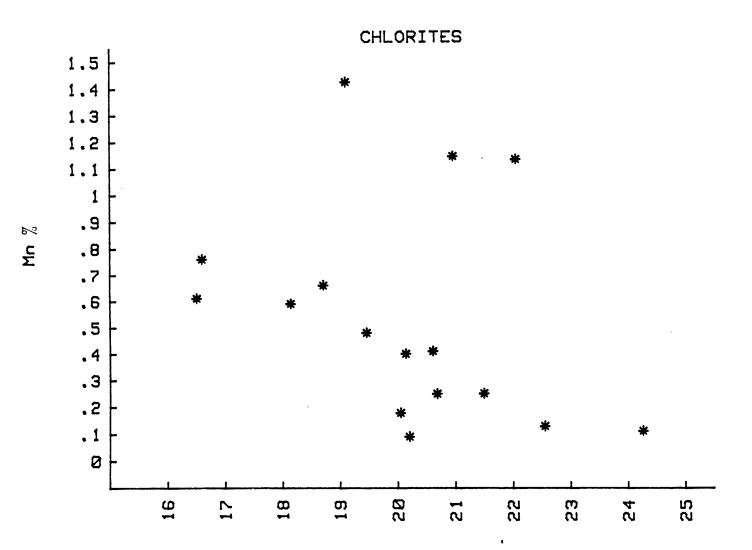
Chlorite is most commonly found replacing biotite, sometimes gahnite, and rarely garnet but some chlorite occurs in veinlets with manganoan calcite and berthierine (Figure 4.35). The chlorites vary from very fine to coarse grained, are green to greenish yellow in thin section, and commonly show the anomalous 'Berlin Blue' interference colours, typical of most Fe-rich chlorites and other chlorites where  $2V \simeq 0^{\circ}$  (Saggerson and Turner, 1982).

The chlorites are widely variable in composition, even on a microscopic scale. Using the nomenclature of Bayliss (1975) for chlorites, most are chamosite, and a few are clinochlore. Using the nomenclature of Hey (1954) or Foster (1962) most are ripidolite but some are daphnite or brunsvigite (Fig.4.36). Plots of coexisting chlorite and biotite (Fig.4.37) show variable non-equilibrium relationships, unlike the assemblages in equilibrium with iron sulphides described by Mohr & Newton (1983), where they are almost equal in Fe /Mg+Fe. The WAL chlorite usually has a higher Fe/Fe + Mg than the coexisting biotite, as a result of the release of Fe by simultaneous gahnite breakdown. The pennantite (Mn<sub>6</sub>Si<sub>4</sub>O<sub>10</sub>(OH)<sub>8</sub>) component is low (<1.1% MnO), and shows a slight negative correlation with Al (Figure 4.38), and the Zn chlorite component (Radke et al. 1978) is even smaller (<0.4% ZnO).


The sericite is usually found replacing gahnite, orthoclase, plagioclase or, rarely garnet and is generally very fine grained and colourless. Sericite (fine - grained muscovite) in the WAL has a small but variable celadonite component, but some has Mg + Fe  $\sim$  1, and Si =


-60-




Si (atoms/28 oxygen)

60a





Si (atoms/Formula weight)



60c



6.6 (for 22 oxygens) and could be classified as either phengite (Crowley & Roy, 1964), or ferrimuscovite (if all Fe is present as Fe  $^{3+}$ ). The paragonite component is low, and TiO<sub>2</sub> is quite variable.

Two paragonites analysed have variable but high muscovite contents, (about 12%) and moderate Fe and Mg contents (about 0.3 and .15 % respectively). The paragonite was found with chlorite and sphalerite in a replacement rim about gahnite. The sericite is commonly found replacing gahnite, orthoclase, plagioclase or, rarely, garnet, and is usually very fine and colourless.

Pyrosmalite was found in a few samples as replacements of rhodonite and pyroxmangite. The Mn / Mn + Fe ratio is about .45. A fine grained phase, intergrown with galena, is commonly found as a selvage (Figure 3.9) separating pyrosmalite from the pyroxenoids and Electron microprobe analysis indicated a composition like manganpyrosmalite, with Mn/Mn + Fe about 0.69. Friedelite, and other members of the pyrosmalite group, have much higher Mn/Mn + Fe ratios and extra X-ray diffraction lines (Donnay et al. 1980) which were not detected in any WAL samples.

A completely amorphous, black, hydrous, Fe-Mn-silicate is not uncommon as a late-stage alteration product of pyroxenoids, in joints, fractures and calcite veins in massive, quartz-poor pyroxenoid-rich rocks. Very similar material is widespread in other similar parts of the Broken Hill lodes, and was described by Hodge-Smith (1930) as 'sturtite', although this has Mn>Fe while the material analysed from the WAL has Fe>Mn. Fleischer (1980) equated 'sturtite' with neotocite (MnSiO<sub>3</sub>.nH<sub>2</sub>O: Clark et al. 1978) although Portnov et al. (1978) found them to have a different structure. The material is probably hisingerite (FeSiO<sub>3</sub>.nH<sub>2</sub>O: Whelan and Goldich, 1961; Lindqvist and

-61-

Jansson, 1962). Hisingerite and neotocite were considered by Whelan and Goldich (1961) and Brigatti (1981) to be smectite group minerals, but Lindqvist and Jansson (1962) thought that hisingerite could be a trioctahedral mica, as Portnov et al. (1978) suggested for 'sturtite'. The nature of these phases is in need of further study by Transmission Electron Microscopy, Differential thermal analysis and Thermogravimetric analysis.

Very fine - grained, brown, iron silicate phases are locally found as alteration products of gahnite or late-stage vein-fillings. Some have chlorite - like compositions, but also coexist with chlorite, and may thus be the septechlorite polymorph, i.e. berthierine ('chamosite'). Some are low in Al, and may be interlayered chlorite greenalite (Gole, 1980). Some are K-rich, and may be 'hydrobiotite' or consist of disordered interlayered chlorite  $\pm$  mica  $\pm$  stilpnomelane  $\pm$ greenalite, similar to some phases found by Gole (1980). One coarse grained 'biotite' is very low in K (7.1% K<sub>2</sub>O) and contains 1.3% ZnO, and may be incipiently chloritized, although this was not obvious in thin section.

Manganoan stilpnomelane is an occasional alteration product of pyroxenoids in the WAL (Figure 3.10). It occurs up to 0.3 mm. in size, is usually intimately associated with sulphides, and is colourless to pale brown in thin section. The pale colour is atypical for stilpnomelanes and is probably due to the unusually low Fe<sup>3+</sup> and/or Ti, or perhaps less defects in its crystal lattice.

## 4.14 Other minerals.

Fluorapatite is common in the WAL, as in the rest of the Broken Hill lode (Harada et al. (1974); Lawrence, 1968), and analyses

-62-

indicate up to 0.14% MnO. Pleochroic haloes about apatites in some biotites indicate local enrichment in U and/or Th. Plimer (1981) noted the presence of U in apatites from BIFs at Broken Hill and found a linear relationship between F and U.

Allanite is a minor phase in many specimens, and qualitative microprobe scans indicate high Ce and Nd, with lesser Sm, La and other rare earth elements. It is medium to dark brown, non-metamict and moderately pleochroic in thin section.

Clinozoisite/epidote type minerals were identified optically as inclusions within orthoclase. They are colourless to very pale yellow, have anomalous blue interference colours, and probably derive from retrograde breakdown of the anorthite component of the feldspar.

Sphene was found in only a few thin sections of WAL rocks, and is rich in Al and Fe with minor Mn, Mg and Zn. Al – enrichment of sphenes has been taken to indicate high pressure formation (Smith, 1980) but Barron & Barnes (1981) have shown that Al – rich sphenes from the Broken Hill area were formed at only moderate pressure, and were probably stabilized by F. Controls for substitution are complex (Coombs et al., 1976) and the principal substitution is (Al,Fe)(OH,F) = TiO with only minor substitution of Mn, and perhaps Mg, for Ca. The average composition is Ca(TiO.8,FeO.1,AlO.1)Si(OH,F)5. Dannemorite may nucleate about sphene.

Rutile is a common, very fine grained accessory, mainly occuring as exsolution in and about biotite.

Monazite and zircon are infrequent, minor, fine grained accessories. Carbonates are uncommon but two were analyzed - one with chlorite as a vein filling (Ca 0.85 Mn 0.13 Fe 0.12CO3) (Figure 4.35), and one with hedenbergite, actinolite and dannemorite as either a primary or

-63-

early retrograde phase  $(Ca_{0.85}Mn_{0.13}Fe_{0.12}CO_3)$ .

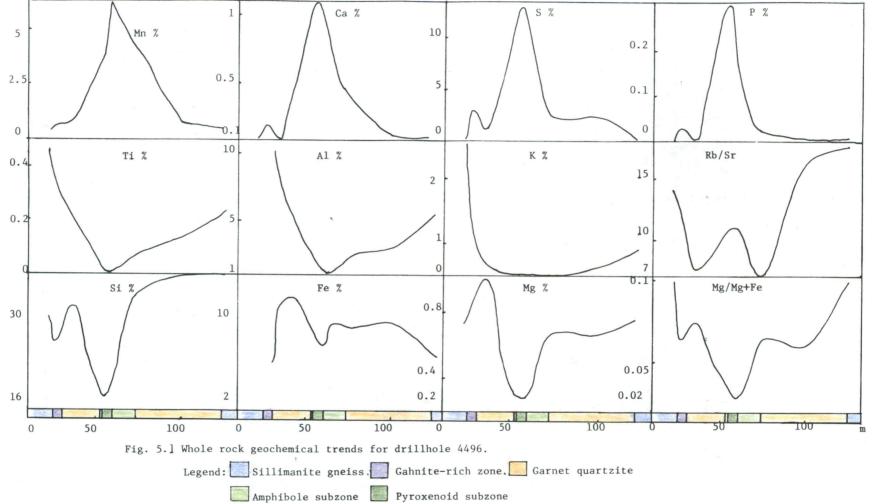
•

Rhodochrosite was verified by X-ray diffraction from a late-stage association with a 'sturtite'-like phase.

## Chapter 5. Mineral and whole - rock chemical variability.

#### 5.1 Introduction.

In this chapter the major chemical trends (whole-rock and mineral variation) across the WAL are discussed. Detailed studies of whole-rock variations in and around the Broken Hill lodes have been conducted by Walker (1964), Plimer (1975c & 1979), Stanton (1976a) and Elliott (1979) and Plimer (1977a) studied the mineral chemistry in the wallrocks within about 500 metres of the orebodies. This study attempts to combine both approaches, but differs in scale - being restricted to a detailed investigation of part of one lode (the WAL) and the wallrocks within about 30 metres of this. It was thought that a more detailed study was necessary to properly define the present and original nature and variation within the lode.


#### 5.2 Whole - rock chemistry.

Nine samples of split core from NBHC drill hole DH4502, intersecting the WAL, were selected as representatively as possible, and analysed for the major and some minor elements. Twenty-one elements were determined: Si, Ti, Al, Fe, Mg, Mn, Ca, K, Na, Ba, Pb, Cu, Ni, Zn, S and P by XRF, Rb and Sr by AAS, and B, Ga and Li by Emission Spectroscopy. Analytical techniques are described in Appendix 1. In accordance with the assumptions discussed in Section 4.1, all Fe is assumed to be present as FeO. The results are shown in Table 5.1, down hole variations are illustrated in Appendix IV, summarized in Figure 5.1, and are discussed below.

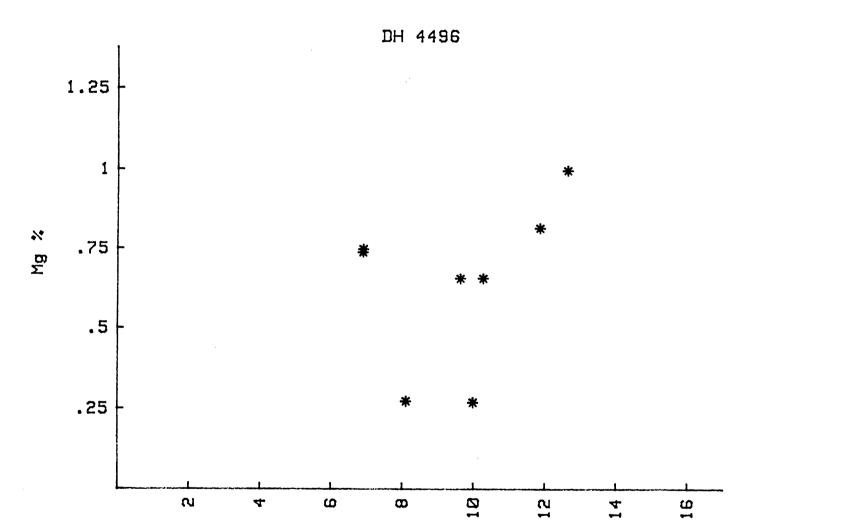
| NBHC Sample No. | 293055      | 293056    | 293060    | 2293069       | 293071     | 293079    | 293095     | 293168      |
|-----------------|-------------|-----------|-----------|---------------|------------|-----------|------------|-------------|
| Mineralogical   | Sillimanite | Gahnite   | Garnet    | Pyroxenoid-   | Pyroxenoid | Amphibole | Garnet     | Sillimanite |
| zone            | Gneiss      | zone      | Quartzite | amph. zone    | subzone    | subzone   | Quartzite  | Gneiss      |
| Interval (m)    | 21.7-24.7   | 24.7-27.1 | 33.6-36.8 | 53.6-56.5     | 58.0-58.8  | 72.2-73.5 | 98.1-100.7 | 124.3-125.6 |
| Si %            | 29.09       | 25.92     | 31.14     | 17.85         | 19.72      | 33.28     | 35.18      | 35.67       |
| Al %            | 10.05       | 7.91      | 5.17      | 1.043         | 1.062      | 2.48      | 3.08       | 5.35        |
| Fe %            | 6.91        | 11.87     | 12.65     | 8.11          | 9.99       | 9.64      | 10.28      | 6.92        |
| Mg %            | 0.738       | 0.815     | 0.998     | 0.273         | 0.269      | 0.653     | 0.632      | 0.748       |
| Ca %            | 0.129       | 0.199     | 0.107     | 1.098         | 1.073      | 0.450     | 0.140      | 0.105       |
| Na %            | 0.131       | <0.01     | <0.01     | <0.01         | <0.01      | <0.01     | <0.01      | <0.01       |
| K %             | 3.94        | 1.810     | 0.258     | 0.063         | 0.033      | 0.018     | 0.159      | 0.804       |
| Ti %            | 0.453       | 0.329     | 0.220     | < 0.01        | <0.01      | 0.071     | 0.136      | 0.226       |
| Ρ%/             | <0.01       | 0.024     | <0.01     | 0.301         | 0.180      | 0.019     | <0.01      | <0.01       |
| Mn %            | 0.441       | 0.646     | 0.811     | 3.89          | 6.43       | 4.29      | 0.756      | 0.498       |
| S %             | 0.166       | 2.85      | 0.892     | 13.06         | 11.42      | 2.32      | 2.38       | 0.138       |
| РЬ %            | 0.219       | 3.36      | 1.884     | 11.91         | 7.81       | 0.667     | 0.124      | 0.081       |
| Zn %            | 0.299       | 1.263     | 0.348     | 16.71         | 13.84      | 1.207     | 0.934      | 0.067       |
| Cu %            | <0.01       | 0.101     | 0.025     | 0.081         | 0.073      | 0.083     | 0.028      | <0.01       |
| Ba %            | 0.052       | 0.031     | <0.01     | <0.01         | <0.01      | <0.01     | <0.01      | 0.021       |
| Rb ppm          | 300         | 190       | 45        | 130           | 75         | 7         | 16         | 70          |
| Sr ppm          | 22          | 15        | 6         | 12            | 7          | <2        | ≺2         | 4           |
| Li ppm          | 30          | 15        | 20        | <b>&lt;</b> 1 | <1         | <1        | 8          | 15          |
| B ppm           | 3           | < 3       | <3        | < 3           | <3         | <3        | <3         | <3          |
| Ga ppm          | 25          | 30        | 30        | 10            | 7          | 15        | 25         | 25          |
|                 |             |           |           |               |            |           |            |             |

.

٠



The centre of the WAL is approximately the pyroxenoid subzone on this and following figures.


65b

## 5.2.1 Chemical Variation.

Considerable local depletion towards, or within, the WAL, is shown by Al, Ti, Mg and K (Figure 5.1). Al shows a particularly well defined trend, varying from about 10% in the sillimanite gneiss and gradually decreasing to about 1% near the centre of the WAL and is closely parallelled by Ti ( 0.45% to 0.005%). The K concentrations, in contrast, drop rapidly from about 4% in the sillimanite gneiss to below 0.5% within the garnet quartzite envelope but intermediate values occur in the gahnite - bearing zone. K appears to be lower below than above the centre of the WAL, which does not conform with the potassic hydrothermal footwall alteration hypothesis of Plimer (1979) although the difference in scale of these studies makes meaningful assessment difficult. The Mg trend is less well defined, but has comparitively low values (c.0.3% cf. c.0.8%) within the pyroxenoid subzone. The Mg/Mg+Fe trend is, however, better defined, and is more closely related to the Al and Ti trends. There is no obvious relation between Mg and Fe (Figure 5.2). The Si content is relative low (c.19%) within the amphibole-pyroxenoid zone and is moderately constant elsewhere (c.30%), although the slight increase from east to west (hanging wall to footwall) conforms to the footwall silicification hypothesis of Plimer (1979). This increase has a significance of about 90% in Spearman and Kendall correlations (Section 5.2.2). Other elements depleted within the WAL include Ba, Li and Ga.

Many elements are strongly enriched within the WAL, including Ca, Mn, P, S and, of course, the chalcophile elements, especially Pb, Zn and Cu. Ca is most abundant within the pyroxenoid subzone and, except for some enrichment within the amphibole subzone, is comparatively low

-66-



-



66a

Fe %

elsewhere (c.1% cf. c.0.1%). Mn is also enriched within the pyroxenoid - amphibole zone (c.5% cf. c.0.6%), but exhibits a greater halo. P and S are enriched only in the pyroxenoid subzone (c.0.2% and c.12%), have moderate values in most other lode rocks (c.0.015% and c.2%), and are very low in the sillimanite gneiss (c.0.005% and c.0.15%). The base metal variations are discussed in more detail in section 5.2.4.

Some elements show no distinct trends with respect to the centre of the WAL, and these include Fe (which is fairly constant - c.10%, Rb and Sr. Rb and Sr are both variable but show an overall decrease from east to west across the WAL (>95% significance: see Section 5.2.2). The Rb/Sr trend is on too small a scale (c.100 m) to exhibit the Rb/Sr trends of ore deposits noted by Plimer and Elliott (1977), which were based on a scale of about a kilometre.

The sillimanite gneisses which were analysed differ slightly in composition, with the lower gneiss having higher Si and lower K, Al and base metals than the upper gneiss. The two garnet quartzites are fairly equivalent in composition, although the upper one is higher in Pb and Al, and lower in S and Zn, than the lower garnet quartzite.

# 5.2.2. Correlation coefficient analysis.

Spearman and Kendall correlation coefficients were calculated using the SPSS statistical program at the University of NSW, and the results are summarised in Tables 5.2 and 5.3.

Most of the elements analysed fall within one of two groups. Group A includes most of the normal major elements enriched in detrital sediments, namely Ti, Al, Mg and K, as well as the minor elements Li, Ba and Ga. Group B elements are those more closely associated with the Broken Hill orebodies, specifically Ca, Mn, P, S, Pb, Zn, and Cu.

-67-

| Table 3.2 Dearman correctorio | Table | 5.2 | Spearman | Correlations |
|-------------------------------|-------|-----|----------|--------------|
|-------------------------------|-------|-----|----------|--------------|

| egree of<br>onfidence: | 90%                                                            | 95%                                                                                      | 99%               |
|------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------|
| lement                 |                                                                |                                                                                          |                   |
|                        | Si, Na                                                         | Sr, Rb                                                                                   |                   |
| í.                     | d                                                              | $\overline{C}a, \overline{S}, \overline{P}, \overline{P}b, \overline{R}b, \overline{S}r$ |                   |
| L .                    | Mg, P                                                          | Ca, S, Mn, Zn, Ga                                                                        | K, Ti, Ba, Li     |
| e                      | Na, B                                                          |                                                                                          |                   |
| 5                      | A1, $\overline{B}$                                             | Ca, Ti, Li                                                                               | Ga                |
| 3                      | Mn, Pb, $\overline{T}i$ , Cu, $\overline{L}i$ , $\overline{B}$ | Si, Al, Mg                                                                               | P, S, Zn          |
| a                      | d, K, Fe, Mn, Rb, Sr                                           | Ba, Li                                                                                   | В                 |
|                        | Na, B, Ga                                                      | Li                                                                                       | Al, Mn, Ba        |
| Ē.                     | Ca, P, S, Zn, B                                                | Mg, Ba, Rb, Ga                                                                           | Al, Mn, Ba, Li    |
|                        | Al, Ti, Mn, P, Ga                                              | Si, Li                                                                                   | Ca, S, Pb, Zn, Cu |
| n                      | Ca, $\overline{N}a$ , P, Zn, $\overline{B}$                    | Al, Li                                                                                   | K, Ti             |
|                        | Ti                                                             | Ā1, Īi, Zn, Li, Pb, Cu                                                                   | Ca, P, Zn         |
| Þ                      | Ca                                                             | Ši, S                                                                                    | P, Zn             |
|                        | Si, Ti, Mn                                                     | Ā1, S, Li, Cu                                                                            | Ca, P, S          |
| r                      | Ca                                                             | S, Zn                                                                                    | P                 |
| -                      |                                                                |                                                                                          |                   |
| •                      |                                                                | Na, Ti, Li, Rb, B                                                                        | Al, K, Ti         |
|                        | Na                                                             | d, Ti, Ba                                                                                | Sr                |
|                        | Na                                                             | d                                                                                        | Rb                |
|                        | Ca                                                             | Mg, Na, K, $\overline{P}$ , $\overline{Mn}$ , $\overline{S}$ ,                           | Al, Ti            |
|                        |                                                                | Ba, Zn, Ga                                                                               |                   |
|                        | d, Fe, Mg, Ca, K, Ti,<br>Mn                                    | .Ba                                                                                      | Na                |
|                        | к, Р                                                           | Al, Ti, Li                                                                               | Mg                |

= depth down drillhole

.

ars above elements indicate negative correlations

67a

|                        |               | and a second |                                              |
|------------------------|---------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| egree of<br>onfidence: | 90%           | 95%                                                                                                            | 99%                                          |
| lement                 |               |                                                                                                                |                                              |
|                        |               | Rb                                                                                                             | Sr                                           |
| i                      | Sr            | Ca, S, Zn                                                                                                      | P, Pb                                        |
| 1                      | P, S          | Ca, Zn, Ga                                                                                                     | K, Ti, Mn, Li                                |
| Э                      |               |                                                                                                                |                                              |
| g                      | К             | Al, Ca, Ti, Li                                                                                                 |                                              |
| a                      | K, Ga         | $\overline{Si}$ , $\overline{A1}$ , $\overline{Mg}$ , Mn, Cu, $\overline{Li}$                                  | P, S, Zn                                     |
| а                      | Ba            |                                                                                                                |                                              |
|                        | Mg, Ca, Rb    | Ga                                                                                                             | Al, Ti, Mm, Li                               |
| i                      | P, S, Zn      | Mg, Ca, Ga                                                                                                     | Al, K, Mīn, Li                               |
| н<br>                  | Āl, Tī, Mn    | Cu, Li                                                                                                         | Si, Ca, S, Pb, Zn                            |
| n                      | P, S, Ga      | Ca, Li                                                                                                         | $\overline{A}1, \overline{K}, \overline{T}i$ |
|                        | Al, Ti, Mn    | Si, Pb, Cu                                                                                                     | Ca, P, Zn                                    |
| Ь                      | Cu            | Ca, S                                                                                                          | Sī, P, Zn                                    |
| n                      | Ti            | Si, Al, Cu, Li                                                                                                 | Ca, P, S, Pb                                 |
| u                      | РЪ            | Ca, P, S, Zn                                                                                                   |                                              |
| i                      |               |                                                                                                                |                                              |
| a                      | Na, Sr, B, Li | Rb                                                                                                             | Al, K, Ti                                    |
| Ь                      | K             | Ba                                                                                                             | Sr                                           |
| r                      | Īi, Ba        |                                                                                                                | d, Rb                                        |
| i                      | Ba            | Mg, Ca, P, Mn, Zn, Ga                                                                                          | Al, K, Ti                                    |
|                        | Ba            |                                                                                                                |                                              |
| а                      | Ca, Mn        | Al, K, Ti, Li                                                                                                  | Mg                                           |
|                        |               |                                                                                                                |                                              |

Table 5.3 Kendall Correlations

= depth down drillhole

ars above elements indicate negative correlations

67Ъ

There is a strong positive correlation (usually >99% significance) between elements within the same group, and a negative correlation between elements from different groups.

Rb and Sr show a high correlation with each other, a moderate correlation with Ba and little correlation with any other elements.

Fe lacks any significant positive or negative correlation with any other elements, but correlations are negative for most group A elements and positive for most group B elements. This apparent independence is due to Fe being an important component in both the sulphides and silicates of the metasediments.

Si shows a negative correlation with many elements, but a positive correlation with none. This is due to other elements being swamped by the high abundance of quartz, and indicates that silica was a separate component in the original sediments, probably as chert.

Rb and Sr show a significant decrease with depth down the hole, and Si increases with depth.

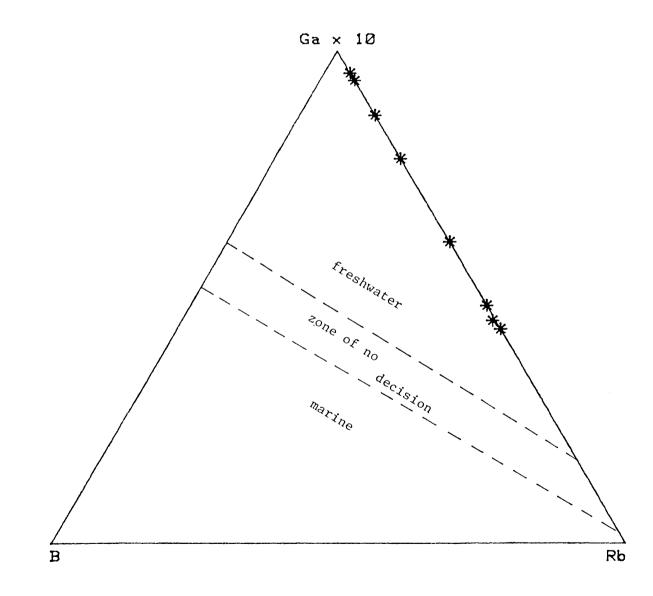
Hawkins (1968b) and Stanton et al. (1978), have also noted the correlation of Ca, Mn, P and base metals in the Broken Hill lodes. The correlation of Fe with these, as noted by Hawkins (1968b), was not significant in this study.

# 5.2.3. Paleosalinity.

Degens et al. (1957a,b), found that the relation between Ga, Rb, and B provides a very useful geochemical method of discrimination between rocks thought to have been formed under conditions of differing salinity. This method has been successfully applied to rocks of low metamorphic grade by Reynolds (1965a,b) and Davy (1980). A corresponding plot for WAL rocks indicates an extremely low salinity

-68-

(Figure 5.3), although the results could be complicated by post-depositional mobilisation of B. Harder (1974) noted than boron can be a very mobile element, although Reynolds (1965b) and Mehnert (1968) showed that while metamorphism may redistribute the boron somewhat, it is seldom lost from the rock (usually being removed from micas and stabilized in tourmaline, axinite and other borosilicates).


The rarity of these borosilicates in the Broken Hill lodes (Birch et al. 1982; Bottrill, 1983b), even in pegmatites and quartz veins, suggests that this process has not occurred in the Broken Hill lodes. Tourmaline – rich rocks found within the Willyama Complex, and recently in the North Mine lodes, are considered by Plimer (1983) and Slack et al. (in press) to represent original primary tourmaline precipitates. Ahmad and Wilson (1981) have inferred the presence of B-bearing retrograde fluids, but Stanton (1976d) and D. Milton (pers. comm.) argue against any significant large scale element movement in the Broken Hill lodes.

A comparison of some average analyses of marine and non-marine shales with sillimanite gneiss from Broken Hill is shown in Table 5.4. The high Ga, low S and Sr, relatively low Mn and very low Li in the sillimanite gneiss are indicative of low paleosalinity, according to the postulates of Keith & Degens (1959), and Wedepohl (1971).

Plimer (pers. comm.) suggested that the ore-forming fluids may have been essentially magmatic, and underwent limited mixing in a restricted basin. These fluids would have masked the paleosalinity indicators, and the hydrothermal wallrock alteration, resulting from their percolation through the sediments, may simply provide (useful) information regarding the composition of the fluids. In particular these solutions, poor in Mg, and high in K and Si, resulted in the Mg

-69-

Fig. 5.3 Relation between B, Ga and Rb in WAL whole-rock samples, showing the palaeosalinity fields of Degens et al. (]957).



|                                | SHALE & MARINE SHALE ANALYSES |       |       |       |       |  |  |  |
|--------------------------------|-------------------------------|-------|-------|-------|-------|--|--|--|
|                                | 1                             | 2     | 3     | 4     | 5     |  |  |  |
| SiO <sub>2</sub> %             | 66.60                         | 60.38 | 54.53 | 57.29 | 69.26 |  |  |  |
| TiO <sub>2</sub>               | 0.77                          | 0.96  | 0.92  | 0.94  | 0.57  |  |  |  |
| Al <sub>2</sub> O <sub>3</sub> | 16.50                         | 21.75 | 20.89 | 21.24 | 21.41 |  |  |  |
| Fe <sub>2</sub> O <sub>3</sub> | 0.54                          | 1.22  | *     | *     | *     |  |  |  |
| FeO                            | 6.97                          | 7.01  | 8.58  | 7.49  | 8.90  |  |  |  |
| MnO                            | 0.30                          | 0.26  | 0.80  | 0.12  | 0.61  |  |  |  |
| MgO                            | 1.48                          | 1.83  | 1.65  | 1.73  | 1.23  |  |  |  |
| CaO                            | 1.14                          | 0.63  | 0.54  | 0.31  | 0.16  |  |  |  |
| Na <sub>2</sub> O              | 0.99                          | 0.44  | 0.22  | 0.21  | 0.15  |  |  |  |
| K <sub>2</sub> O               | 3.48                          | 4.45  | 3.71  | 3.53  | 3.34  |  |  |  |
| $P_2O_5$                       | 0.15                          | 0.14  | 0.23  | 0.17  | n.d   |  |  |  |
| S                              | n.d                           | n.d   | 0.92  | 0.15  | 0.152 |  |  |  |
| B ppm                          | u                             | п     | 115   | 44    | 1.5   |  |  |  |
| Ga                             | "                             | 22    | 8     | 17    | 25    |  |  |  |
| Li                             | "                             | n.d   | 159   | 92    | 23    |  |  |  |
| Rb                             | u                             | 172   | n.d   | n.d   | 185   |  |  |  |
| F                              | u                             | n.d   | 817   | 642   | n.d   |  |  |  |
| Sr                             | "                             | 55    | 250   | 205   | 13    |  |  |  |

TABLE 5.4 : COMPARISON OF AVERAGE SILLIMANITE GNEISS, FRESHWATER

1: Sillimanite gneiss (94 analyses) Plimer (1979). 2: Sillimanite gneiss (63 analyses) Shaw (1973). 3: Marine shale (15 analyses) Keith & Degens (1959). 4: Non-marine shale (15 analyses) Keith & Degens (1959). 5: Sillimanite gneiss (2 analyses). This study.

\* = all iron as FeO n.d = not detected

-70-

- depletion, sericitization and silicification, as suggested by Plimer (1979).

Berner et al. (1979) noted that the presence of iron monosulphides other than pyrite in sediments is indicative of low salinity. Plimer (1981) noted the lack of evidence for any original pyrite within the Broken Hill lode, and postulated that an iron monosulphide (perhaps pyrrhotite), rather than pyrite, was the original iron sulphide in the Broken Hill lodes. This may then be taken as another indicator of low paleosalinity for these rocks, but is discussed in greater detail in section 6.2.

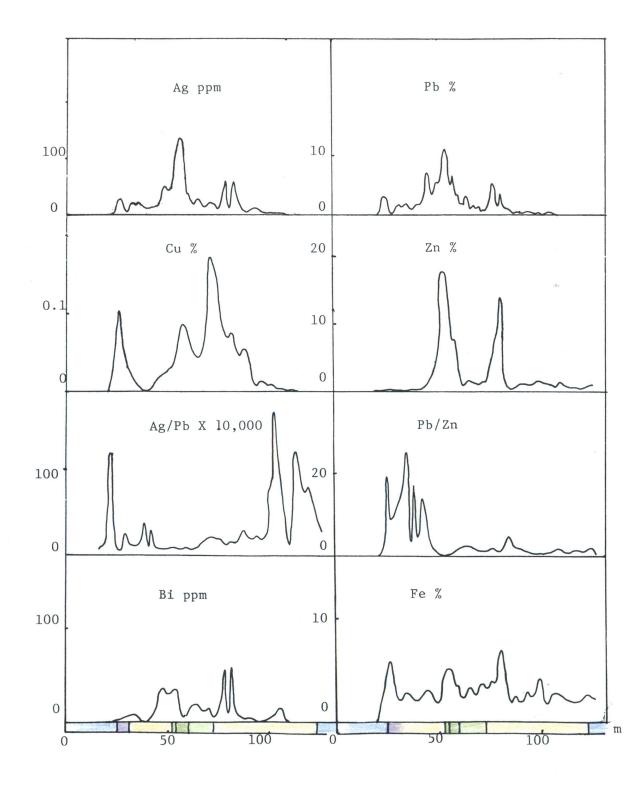
In conclusion, estimation of the paleosalinity is complicated by a number of unknown factors, but there is considerable evidence to indicate that the salinity of the depositional basin and/or ore-forming fluids was very low.

# 5.2.4. Base metal variations.

NBHC mine assay data for base metals were plotted as bar – graph plots (Appendix 4b), as the wide variation in sample lengths made comparisons of trends otherwise difficult, and are summarised in Figures 5.4 – 5.6.

The distribution of sulphides suggests the usual presence of three principle zones of enrichment:

I. A stratigraphically upper zone, within the gahnite - rich zone and high in the upper garnet quartzite.


II. A central zone, centred about the pyroxmangite subzone.

٣

-71-

Fig. 5.4 Base metal variation in Drillhole 4496.

Legend: Sillimanite gneiss Gahnite-rich zone Garnet quartzite Amphibole subzone



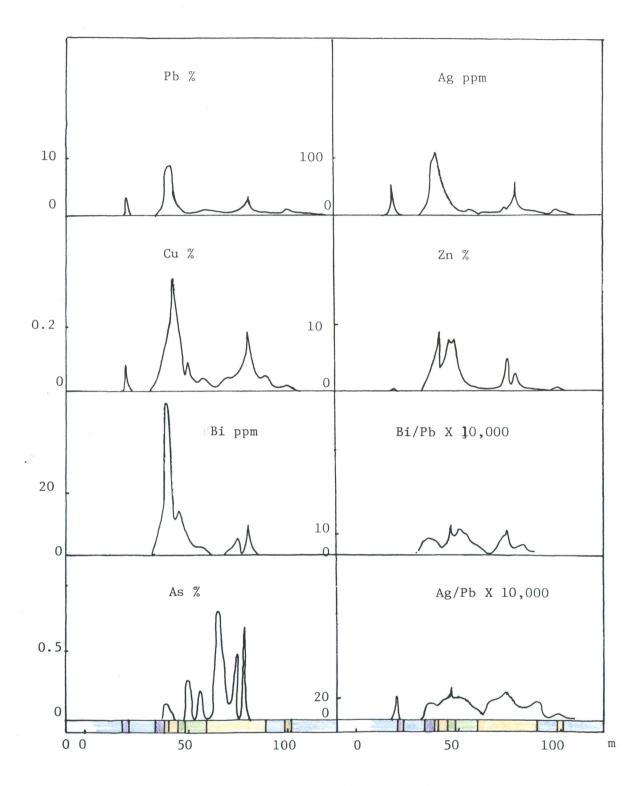
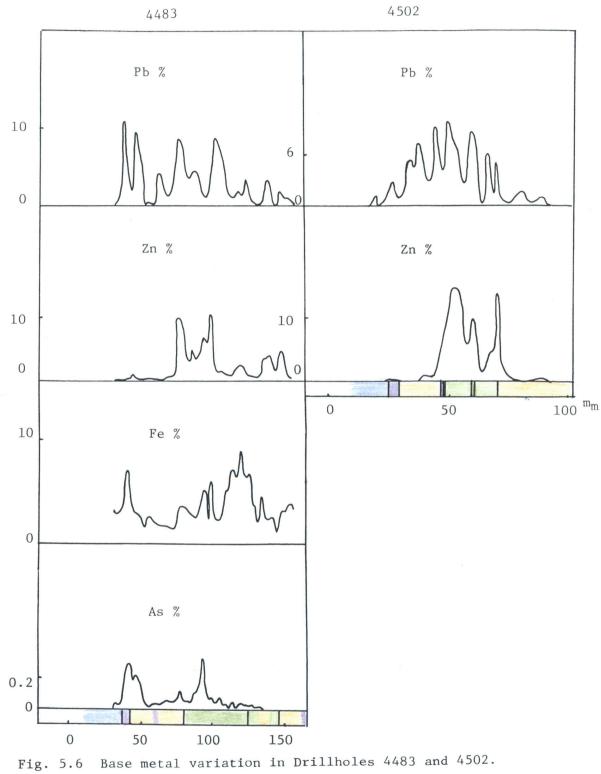
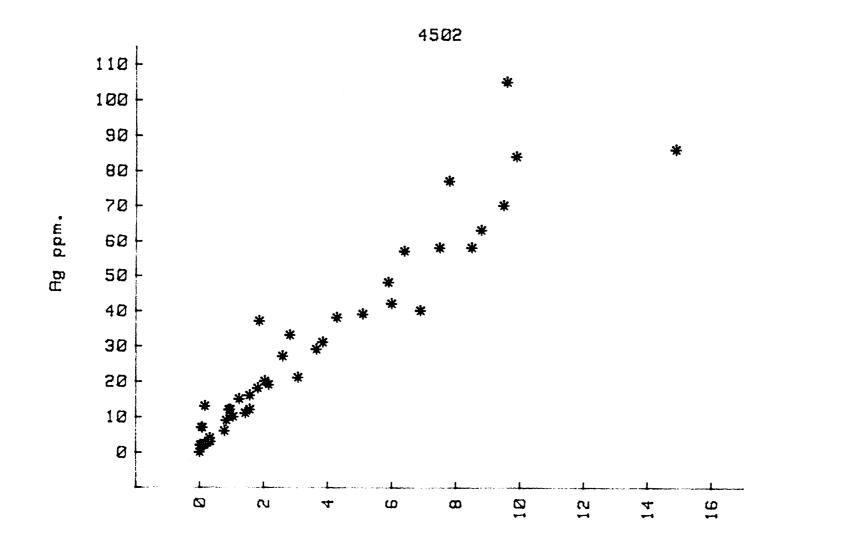
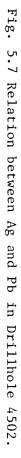


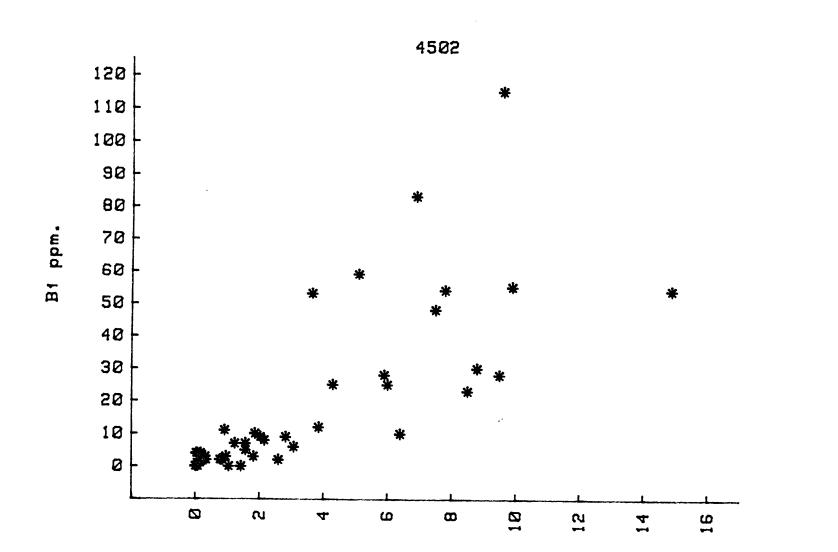

Fig. 5.5 Base metal variation in Drillhole 2682.

7]Ъ





Fig. 5.6


III. A small, stratigraphically lower zone, within the lower garnet quartzite.


Pb is fairly well distributed throughout the WAL, but has peaks corresponding to the three sulphide-rich zones, and is richest within the central zone. The presence of several small galena-rich patches are also apparent. Zn is less widely distributed, and is relatively minor in the stratigraphically upper sulphide zone. Ag and Bi closely follow Pb in distribution, but minor fluctuations in the ratios Ag/Pb and Bi/Pb seem to occur (Figs. 5.5 - 5.6). High values of these ratios tend to be prevalent in low - Pb (and low Ag & Bi) areas, and may indicate either the presence of Bi - bearing minerals (other than galena) or, perhaps more likely, analytical errors as detection limits are approached and as such are not significant. Cu appears somewhat similar to Pb in distribution, but seems more widely dispersed. The distribution of Fe appears to be even more widespread, although still enriched in the principle sulphide zones. The generally high Fe values, even when pyrrhotite seems poor, suggests that part of the Fe determined in assays is derived from silicates, not just the sulphides as assumed by mine geologists (D. Milton, pers. comm.). Arsenic is very patchily distributed, usually being highest in sulphide zones, but can have high values elsewhere in the WAL.

# 5.3. Variations in Mineral chemistry.

Many of the mineral phases discussed in Chapter 3 show large variations in composition throughout the WAL and its wallrocks. This is most important for the phases that are principally prograde, e.g. garnet and biotite, but other minerals, including gahnite, chlorite, amphiboles and pyroxenes also show considerable chemical variations.









72b

The pyroxenoids appear to have a relatively limited compositional range in the WAL (Figures 4.24 - 4.26), despite showing considerable chemical variation in nature (Brown et al. 1980). The plots are shown in Appendix 4c and are summarized in Figures 5.9 - 5.10.

# 5.3.1 Garnets

As discussed in section 4.3, WAL garnets vary from magnesian almandine to a Ca-Fe-rich spessartine. There is a general trend from low to high (Ca + Mn) / Mg towards the centre of the orebody. The low values around 65.2 m and 67.3 m in DH4502 occur in Mg-rich, chlorite and/or biotitebearing samples; the trends can otherwise be related to the whole-rock Ca, Mn and Mg trends.

The Mg/(Mg + Fe) ratio is erratic with no obvious relationship to the whole rock trend (Figure 5.1), probably due to Fe contribution from the Ore-forming fluids as well as the detrital Fe influx. Re-equilibration of Fe-sulphides and Fe-silicates may have further complicated these trends (Mallio & Gheith, 1972). Some amphibole-rich samples have particularly low Mg/(Mg + Fe) (<0.55), perhaps due to re-equilibration with amphiboles, or to Mn-metasomatism accompanying amphibole formation. The garnet at 26.9 m in DH4502 is associated with staurolite, and perhaps re-equilibrated with it, during retrograde metamorphism. The variation between other samples is usually smaller than their intergranular or intragranular variation.

# 5.3.2 Biotite

The biotites range in composition from near the phlogopite endmember to near the siderophyllite end-member (Figure 4.6 - 4.7). This Al variation in biotite is closely related to the whole rock Al

-73-

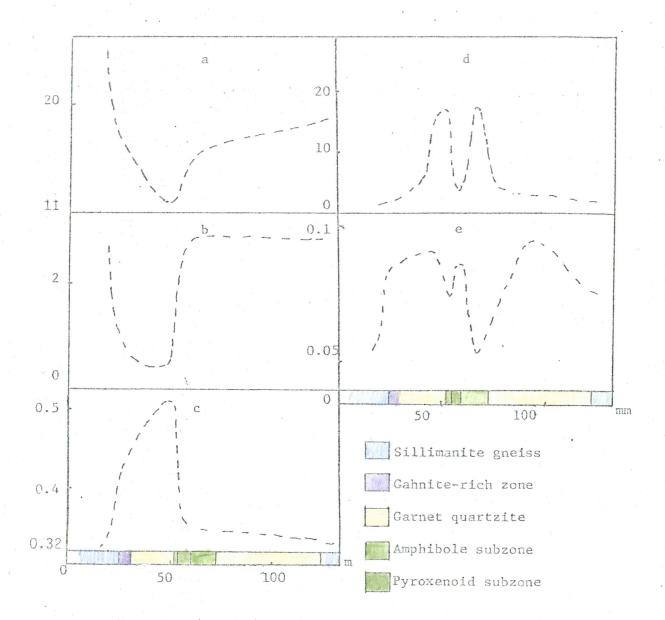
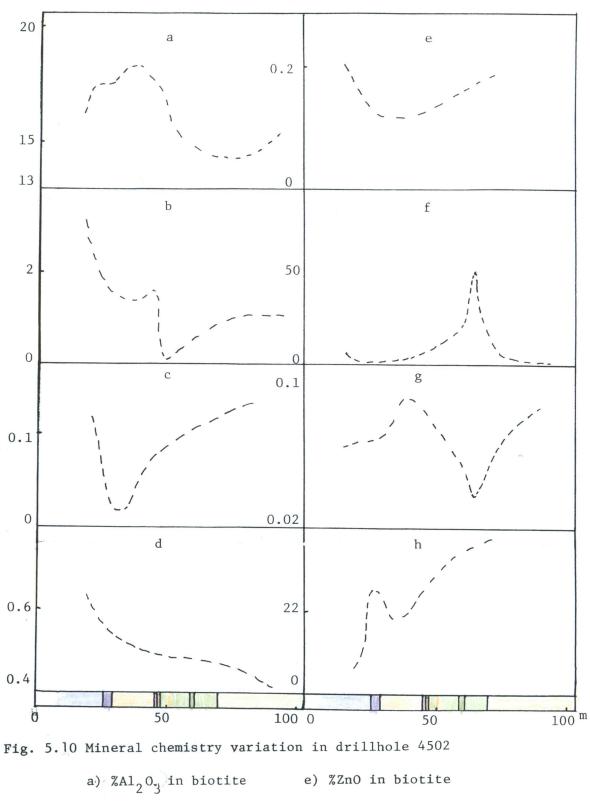




Fig. 5.09: Mineral chemistry variation in drillhole 4496.

- a) % Al2O3 in biotite
- c) Mg/Mg+Fe in biotite
- e) Mg0/Mg0+Fe0 in garnet

b) TiO<sub>2</sub> % in biotite
d) CaO + MnO/MgO in garnet

73a



- b) %TiO<sub>2</sub> in biotite f) (Ca+Mn)/Mg in garnet
- c) % MnO in biotite g) MgO/MgO+FeO in garnet
- d) Mg/Mg+Fe in biotite h) Zn/Fe in gahnite

73Ъ

variation in DH4496 (compare Figs. 5.1 and 5.9), being highest outside the orebody and dropping steadily towards the centre of the orebody. The trend in DH4502, however, is not so simple, perhaps because most of the high - Al (>17wt.%  $Al_2O_3$ ) biotites are associated with gahnite. This may be a sampling bias, as gahnite is not very abundant in the region where many of the samples were taken.

The Mg/Mg + Fe variation in biotite varies considerably between the two drillholes. High Mg/Mg + Fe values (>0.48) were recorded from biotite associated with amphiboles, and low values were recorded from biotite associated with zincian hercynite. Green biotite replacing gahnite has very low ratios (<0.15) but the other biotites have a relatively constant ratio of about 0.35.

Ti also shows a variable trend in the two holes. Drillhole DH4496 shows a strong trend of increasing Ti away from the centre of the WAL, but the most Ti – poor biotite (at 47.3m) is the green retrograde biotite. The two high Ti biotites (>2.5% TiO<sub>2</sub>) coexist with feldspars (anorthite and orthoclase), but it is uncertain whether this has a direct relationship. The other samples in DH4496 show little variation, with approximately 1 - 2% TiO<sub>2</sub>. Most biotites in DH4502 have between 1.1 and 1.3% TiO<sub>2</sub> while two samples have Ti – poor biotite (<0.8% TiO<sub>2</sub>) – one of these is associated with amphiboles, the other with staurolite. Both samples may have re-equilibrated at low temperature, where Ti – biotite is less stable, although some biotites in association with staurolite do have a moderately high Ti content.

The sulphide-rich areas of the WAL are very low in Al and Ti, and thus any biotite present is likely to be poor in Al and Ti also. These biotites are relatively poor in Fe, as indicated by the close relation between Ti, Al and Fe / Fe + Mg in biotites (Figure 4.6 and 4.8),

-74-

although Fe is relatively constant throughout the lode, or is even enriched slightly in the (Ti and Al-poor) centre of the lode (c.f. Section 5.2.1). George (1969), Tso et al. (1977), Nesbitt and Kelly (1980) and Nesbitt (1982) have described similar Fe depletion in biotite in sulphide-rich rocks as resulting from sulphide-silicate reactions, and this applies also in the WAL. The most likely reaction to have occurred is:

Biotite + pyrite = Fe-depleted biotite + 2 pyrrhotite

There is evidence for slight enrichment of Zn and Mn in biotite in the outer parts of the WAL, although Mn-rich biotites occur rarely in the pyroxenoid subzone, and both Zn and Mn may approach their detection limits. Sulphide-silicate reactions are likely to deplete any Zn in biotite in sulphur-rich areas, and most Mn would preferentially partition into garnet or pyroxenoids rather than biotite under normal metamorphic conditions (Frondel and Ito, 1966).

# 5.3.3. Spinels.

Gahnite is seldom widespread enough to exhibit statistically significant trends, although an increase in Zn / Fe may occur towards the centre of the WAL, and zincian hercynite occurs near the edge of the WAL.

# Chapter 6. Summary and Conclusions

# 6.1 Summary of zoning in WAL

It has been found that moderately well developed zoning exists between the country rocks and the lode rocks within the WAL, and is expressed in a number of ways. A whole-rock chemical trend is one of the most basic of these, and is clearly shown by an overall inverse relationship between Al, Ti, K and Mg / (Mg + Fe), all enriched in the detrital metasediments (sillimanite gneiss), and Mn, P, Ca, S, Pb, Zn and other base metals, all enriched towards the centre of the WAL.

These chemical variations are reflected in changes in the mineralogical constitution throughout the WAL (Figure 6.1 and Table 6.1). Passing from the sillimanite gneiss towards the centre of the WAL, the following series of assemblages are encountered:

 $Qtz - Bt - Sil \pm Or \pm Alm$ 

 $\rightarrow$  Qtz - Bt ± Gah ± Alm ± Po ± Gn

$$\rightarrow$$
 Qtz - Alm - Bt  $\pm$  Sl  $\pm$  Po  $\pm$  Gn

 $\rightarrow$  Qtz - Sps ± Amph ± Sl ± Po ± Gn

 $\rightarrow$  Pxn ± Qtz ± Sps ± Gn ± Sl ± Po

This results in five distinct mappable zones: sillimanite gneiss, a gahnite-rich zone, a garnet quartzite zone, an amphibole-bearing zone and a pyroxenoid-bearing zone. In detail, the zoning is considerably more complex, with interfingering of many of these zones, and abundance of minor rock types, including pegmatites, veins and remobilized sulphides, and small retrograde shear zones.

The distribution of sulphides is especially complex, but can generally be divided into three principal sections: i) The upper section (stratigraphic top of WAL) is relatively narrow, galena and

-76-

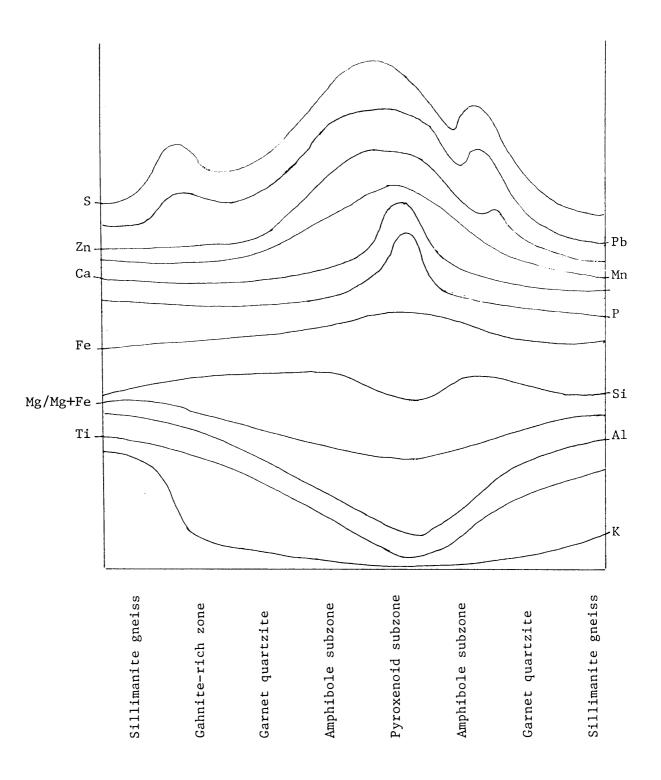



Fig. 6.1: Schematic summary of geochemical variation in the WAL.

### Table 6.1: Summary of mineral distribution in the WAL

|                            | Quartz | Sillimanite | Gar              | net   | Biotite | Principal<br>Zinc<br>Mineral | Retrograde<br>Minerals                     | Total<br>Sulphides | Galena/<br>Sphalerite | -             |
|----------------------------|--------|-------------|------------------|-------|---------|------------------------------|--------------------------------------------|--------------------|-----------------------|---------------|
| Sillimanite Gneiss         |        | Major       |                  |       | Major   |                              |                                            | <18                |                       |               |
| Gahnite-rich Zone          |        | Minor       | ÷                | Minor |         | Gahnite                      | Sericite                                   | c.10%              | >1                    |               |
| Garnet Quartzite           | Major  |             | Almandine        |       | Minor   |                              |                                            | c.2%               |                       |               |
| Amphibole-bearing<br>Zone  |        |             |                  | Major |         |                              | Amphiboles                                 |                    |                       | phic top      |
| Pyroxenoid-bearing<br>Zone | Minor  | Absent      | Spessar-<br>tine | Minor | Absent  | sphalerite                   | various Mn-<br>silicates and<br>amphiboles | c.10%              | >1                    | Stratigraphic |
| Amphibole-bearing<br>Zone  |        |             |                  | Major |         |                              | Amphiboles                                 | -                  |                       |               |
| Garnet Quartzite           | Major  |             | Almandine        |       |         |                              | chlorite                                   | c.2%               |                       |               |
| Sillimanite Gneiss         |        | Major       |                  | Minor | Major   | gahnite                      | sericite                                   | <18                | ?                     |               |

,

~

pyrrhotite - rich, and sphalerite poor, largely in the gahnite - rich section, ii) the central, most sulphide-rich section (generally around the pyroxenoid zone) and iii) the lower, narrow, less sulphide-rich section in the lower garnet - quartzite are richer in sphalerite and poorer in galena.

The distribution of retrograde minerals is asymmetric, with most chlorite appearing in the lower garnet - quartzite, most sericite in the upper part of the lode, and most cummingtonite around, but predominantly below, the pyroxenoid zone. Abundant sericite occurs around the pegmatite / sillimanite gneiss zone locally present in the upper garnet quartzite, while chlorite is related to a late-stage fracture zone in the lower garnet quartzite. Despite the widespread retrogression, well-defined RSZ cannot be distinguished within the WAL.

The whole-rock chemical variation is also expressed in the chemical variations of certain minerals, especially garnet. Mn and Ca increase, and Fe and Mg decrease in garnet towards the centre of the WAL, but Mg / Mg + Fe shows irregular trends and is complicated by partial retrograde re-equilibration of the Fe between amphiboles, sulphides and other minerals.

Biotite generally shows some correlation of Al, Ti and Mg / Mg + Fe between biotite and whole-rock compositions, although these trends are less regular than in garnet. Biotite formation or re-equilibration during retrogression, and the instability of the annite component, distort these trends.

Gahnite shows an irregular trend of increasing Zn / Fe towards the centre of the lode.

-77-

-78-

6.2 Origin of prograde mineral phases

Reactions 6.1 - 6.7 and 6.9 - 6.13 are derived principally from Helgeson et al. (1978) and Winkler (1974). Unless otherwise noted, the others are proposed by the author.

# 6.2.1 Sillimanite

Sillimanite may derive from metamorphism of a kaolinite group mineral or muscovite:

kaolinite 
$$\rightarrow$$
 pyrophyllite  $\rightarrow$  and alusite  $\rightarrow$  sillimanite (6.1)

quartz + muscovite 
$$\rightarrow$$
 sillimanite + K-feldspar + H<sub>2</sub>O (6.2)

muscovite + 
$$H^+$$
 + sillimanite + quartz +  $K^+$  +  $H_2O$  (6.3)

-

muscovite + chlorite  $\rightarrow$  sillimanite + biotite + H<sub>2</sub>O (6.4)

Stanton et al. (1978) favoured direct derivation of sillimanite from a kaolinite type precursor.

## 6.2.2 Feldspars

K-feldspar may have originated as detrital, authigenetic or diagenetic feldspar, or by the dehydration of muscovite and/or biotite (reactions 6.2, and 6.5 - 6.7).

muscovite + biotite + quartz  $\rightarrow$  garnet + K-feldspar + H<sub>2</sub>O (6.5)

quartz + biotite + garnet + K-feldspar + 
$$H_2O$$
 (6.6)

sillimanite + biotite + quartz  $\rightarrow$  garnet + K-feldspar + H<sub>2</sub>O (6.7)

The Pb component of K-feldspar probably derived from desulphurization of galena by some of the following reactions:

$$muscovite + galena + guartz -> Pb-K feldspar + H_2S$$
 (6.8)

sillimanite + galena + quartz + 
$$H_2O \rightarrow Pb$$
 feldspar +  $H_2S$  (6.8a)

K-feldspar + galena + biotite +  $H^+$  -> Pb-feldspar +  $K^+$  + pyrrhotite (6.8b)

The anorthite found in the sillimanite gneiss is unlikely to be pre-metamorphic, due to its unusually high Ca content. It may have formed from one of the following reactions:

calcite + kaolinite 
$$\rightarrow$$
 anorthite + C0, + H<sub>2</sub>O (6.9)

laumontite 
$$\rightarrow$$
 anorthite + quartz + H<sub>2</sub>O (6.10)

heulandite -> laumotite -> wairakite -> anorthite + quartz +  $H_2O$  (6.10a)

# 6.2.3 Biotite.

Biotite forms by metamorphism of detrital or authigenitic or diagenetic ferromagnesian minerals and some important reactions are 6.4 and 6.11:

chlorite + muscovite 
$$\rightarrow$$
 garnet + biotite + H<sub>2</sub>O (6.11)

6.2.4 Garnet.

Garnet may form from the reactions 6.5 - 6.7, 6.12 and 6.13:

chlorite + quartz -> garnet + 
$$H_2O$$
 (6.12)

Fe-chlorite + quartz -> Mg-chlorite + garnet +  $H_2O$  (6.13)

Much of the garnet probably formed quite early in the metamorphism, due to the high Mn and Fe/Mg in these rocks (Leake, 1972). The Mn-rich garnets formed principally by reaction of  $MnCO_3$  with clays:

rhodochrosite + kaolinite + quartz -> spessartine +  $CO_2$  +  $H_2O$  (6.14)

## 6.2.5 Spinels.

Gahnite is commonly thought to derive from reactions between sphalerite and aluminosilicates (Juve, 1967; Wall & England, 1979; Williams, 1983) but locally derives from prograde metamorphism of several silicates (Sundblad, 1982). These silicates include biotite (Dietvorst, 1980), staurolite (Atkin, 1978; Stoddard, 1979; Spry, 1982), and anthophyllite (Sundblad, 1982) - the first two of these being aluminosilicates which can be found naturally with high ZnO contents (Frondel & Ito, 1966; Griffen & Ribbe, 1973; Frondel & Ito, 1975; Griffen, 1981). Anthophyllites are unusual here in having low Al and Fe contents and no Zn has been recorded at all (although not commonly recorded in most analyses of rock forming minerals) (Robinson et al. 1982), but the gahnite - anthophyllite association could well have derived from a more Fe - Al - Zn - rich amphibole (Klein & Ito, 1968). Sundblad (1982) noted that gahnites were more iron - rich when forming from silicate breakdown than when replacing sphalerite, and thus it is suggested that the ferroan gahnite/zincian hercynite of the WAL was formed largely by prograde breakdown of zincian ferroalumino – silicates. The large Zn / Fe range in gahnites from the WAL could indicate either a large Zn / Fe range in the precursor silicate, or zinc contribution from sphalerite breakdown.

The identity of the precursor to this Zn - Fe - Al silicate is another problem. The low temperature stability limits of Zn - chlorite (Radke et al. 1978) or Zn - biotites (Frondel and Ito, 1975) are unknown, but Zn - staurolite seems restricted to quite high metamorphic grades (Ashworth, 1975; Griffen, 1981). Chlorites may be authigenetic or diagenetic (Deer et al. 1966) and could conceivably have been original Zn - bearing phases (Frondel and Ito, 1975; Radke al. 1978). Zinc bearing clays - sauconite et (Na 0.33 Zn 3 (Al,Si)<sub>4</sub>  $0_{10}$  (OH)<sub>2</sub> .4 H  $_2$ O, a smectite) and fraipontite  $((2n,Mg,Al)_{3}(Si,Al)_{2}O_{5}(OH)_{4}, a septechlorite)$  are possible sedimentary components, but have not been found in marine sediments. R. Segnit (pers. comm.) noted that substantial absorptive zinc can be contained in opal - claystones (probable precursors to some of the siliceous rocks of the Broken Hill lodes) and Weber-Diefenbach (1977) observed the presence of substantial ZnO absorbed onto various amorphous hyroxides and silica in Red Sea metalliferous sediments (although it is very rapidly altered diagenetically to sphalerite there). Squiller and Sclar (1980) proposed that primary zinc - bearing carbonates were the progenitors of the zinc - rich minerals at Franklin, New Jersey (gahnite, franklinite, zincite, willemite, hendricksite, etc.) but the lack of most of these minerals at Broken Hill prevents direct comparison. Mossman & Heffernan (1978) found evidence for the presence

-81-

of zinc carbonate (smithsonite or hydrozincite) in metalliferous Red Sea sediments, and Bischoff (1969) found woodruffite  $((2n,Mn)_2Mn_5O_{12}.4H_2O)$  in the same deposits. Non – sulphide zinc in sediments may be present as either a carbonate, a clay mineral, a chlorite, absorbed ZnO, or a Zn-Mn oxide, and any combination of these may be a progenitor to gabnite.

A smithsonite – Fe sulphide assemblage is usually considered unstable with respect to a sphalerite – siderite assemblage (G.Moh, oral comm.; Brown, 1982) and we can thus assume that ZnCO<sub>3</sub> could only have been a minor constituent of the pyrrhotite and gahnite- rich rocks. Gahnite bearing rocks in the WAL are Mn-poor and of very low oxidation state, so an origin from Zn-Mn oxide is very unlikely. Most gahnite is closely associated with pyrrhotite and galena in the WAL, and this may indicate that either primary zincian clays can exist in equilibrium with Fe sulphides, or alternatively the assemblage re-equilibrated from an original sphalerite – ferroan silicate (e.g. chlorite) association, e.g.:

Fe-Al-rich chlorite + sphalerite -> gahnite + pyrrhotite + Fe-Al-poor chlorite (6.15) Williams (1983) found evidence elsewhere for the reaction:

gedrite + sphalerite +  $0_2$  -> gahnite+ quartz + S + H<sub>2</sub>O (6.16)

An intermediate Zn-rich silicate, as discussed above, is probably involved in many cases.

The hercynite component of the spinels is probably formed from the metamorphism of Fe-rich silicates, in the reverse of reactions 4.1 -

It seems unlikely that zincian clays would be stable at higher sulphur fugacities than smithsonite, as both are found in similar occurrences, i.e oxidized zones of zinc deposits (Fransolet et al., 1975; Ross, 1946). Zn carbonate in the Red Sea deposits was postulated to exist only in sediments where zinc is in greater amounts than necessary for stabilizing all S as sphalerite (Bischoff, 1969; Mossman & Heffernan, 1978). One or more of the following desulphurization reactions probably occurred:

$$KAl_{3}Si_{3}O_{10}(OH)_{2} + ZnS = ZnAl_{2}O_{4} + KAlSi_{2}O_{4} + H_{2}S$$
 (6.17)  
muscovite sphalerite gabnite K-feldspar fluid

 $Al_2SiO_5 + ZnS + H_2O = ZnAl_2O_4 + SiO_2 + H_2S$  (6.18) sillimanite sphalerite fluid gabnite quartz fluid

## 6.2.6 Pyrrhotite and other sulphides.

With good evidence existing for sphalerite desulphurization, the possibility of desulphurization of other sulphides must be considered. Ferry (1981) has shown that, in contrast to pyrite, pyrrhotite is very rare as a primary phase in sedimentary rocks and its abundance in metamorphic rocks (Schneider, 1978) is mainly due to desulphurization. The most important reactions suggested by Ferry are:

 $2 \text{FeS}_2 + C H_4 =$ 2FeS С  $2H_2S$ (6.19) + + pyrite fluid pyrrhotite graphite fluid  $2FeS_2 + 2H_2O$  $+ 2H_2S + CO_2$  (6.19a) + C = 2FeS fluid pyrite graphite pyrrhotite fluid

-83-

4.4.

Ferry showed that when all pyrite has been converted to pyrrhotite, principally by the above reactions, further desulphurization can occur by sulphide-silicate reactions such as:

 $\begin{aligned} & \text{KAlSi}_{3}\text{O}_{8} + 3\text{FeS} + 4\text{H}_{2}\text{O} = \text{KFe}_{3}\text{AlSi}_{3}\text{O}_{10}(\text{OH})_{2} + 3\text{H}_{2}\text{S} \quad (6.20) \\ & \text{K-feldspar} \quad \text{pyrrbotite} \quad \text{fluid} \qquad \qquad \text{biotite} \qquad \quad \text{fluid} \end{aligned}$ 

This reaction results in iron-rich biotite, in contrast to the high Mg biotite in equilibrium with pyrite-pyrrhotite-biotite assemblages, which have low variance and a Mg/Mg + Fe about 0.95 (Ferry, 1981; Nesbitt, 1982; Robinson & Tracy, 1977). This may be partly responsible for the high Fe in many mineral phases of the WAL.

Plimer (1977a) found primary pyrite with no trace of pyrrhotite in quartz-albite rocks of lower granulite facies 30 km SW of Broken Hill, and inferred that desulphurization could not have taken place in the Willyama Complex. This may be an over-generalisation, however, as Rumble et al. (1982) noted that fluid flow is highly dependent upon individual rocktypes - BIF's, for example, being relatively impermeable, and Walther and Orville (1982) showed that volatile loss from well-foliated rocks would be relatively rapid due to their extremely small tensional strength.

Most other sulphides represent original primary precipitates, which have undergone recrystallization and some remobilization. Cubanite, however, is a high temperature phase formed from chalcopyrite and pyrrhotite:

-84-

| CuFeS 2      | FeS        | <b>→</b> | CuFe <sub>2</sub> S <sub>3</sub> | (6.21) |
|--------------|------------|----------|----------------------------------|--------|
| chalcopyrite | pyrrhotite |          | cubanite                         |        |

# 6.2.7 Pyroxenoids and pyroxenes

The pyroxenoids have range in composition of  $Mn_{0.4-0.6} Fe_{0.3-0.4} Ca_{0.1-0.2} Mg_{0-0.1} Si_1 O_3$ , and the pyroxenes of  $Mn_{0.2-0.3} Fe_{0.4-0.7} Ca_{0.5-0.9} Mg_{0.1-0.6} Si_2 O_6$ . The overlap in distribution of the pyroxenes and pyroxenoids, and the lack of local enrichment in Fe or Ca above that necessary for these phases, suggests that only one or two Mn-rich phases were originally present. The progenitors could be: i) a Mn-Fe-Ca oxide (Roy & Purkait, 1968), ii) a Mn-Fe-Ca carbonate (Peters, 1980; Winter et al., 1981), and iii) a Mn-Fe-Ca silicate (Stanton, 1983).

Neotocite/hisingerite/'sturtite'-type minerals have suitable compositions, except for lower Ca, for being precursors. Such phases, have however, only once been recorded as possible primary minerals in rocks of low metamorphic grade (Aleksiev & Bogdanov, 1974).

In contrast to the silicates, primary Mn oxides are common constituents of sediments but a homogenous phase (or even a mixture of common oxides) of appropriate composition is unknown. No indication of Fe-Mn separation, as in the natural oxides (Berger, 1968), can be detected in the WAL. Metamorphism can reduce Mn oxides to rhodonite and other silicates, but usually only partially (Siviprakash, 1980), and this is only minor with Fe (Klein, 1973). As no evidence exists for the presence of higher oxides of Mn or Fe in the WAL, they must have been insignificant primary phases.

Mn-Fe-Ca carbonates, in contrast to the silicates, are common primary phases in sediments (Curtis, 1967; Klein, 1973; Postma, 1977;

-85-

Berner, 1981a,b) and, in contrast to the oxides, occur with compositions quite compatable with the pyroxenoids and pyroxenes. Fe-Ca rhodochrosite and kutnahorite/ankerite type phases were considered as progenitors by Hodgson (1975b). Fe-rich carbonates are much more abundant in fresh water than marine sediments (Curtis, 1967; Postma, 1977; Berner et al. 1979) but manganoan siderite occurs in the Red Sea sediments (Bischoff, 1969) and siderite is postulated to have been a common primary phase in many Precambrian sedimentary Fe formations (Klein, 1973). Mn-Ca-Fe carbonates are rare in the WAL but some of that present could be relict primary carbonate. Carbonates of similar composition are very common in the more Ca-rich Pb lodes, where tephroite-fayalite series minerals are also locally common. Roy (1968) found that tephroite was diagnostic of a rhodochrosite precursor and thus the fayalite component presumably derives from siderite.

The breakdown temperature of  $MnCO_3$  is less than that for  $CaCO_3$  and thus the primary manganoan calcite now present in the WAL and the other Broken Hill lodes approaches the maximum stability limits of such carbonates under the prevailing metamorphic conditions (Winter et al. 1981). The Pb lodes are less siliceous overall, and more Ca-rich and Fe-poor, than the WAL and consequently Ca-rich, Fe-poor rhodonite and bustamite { (Ca,Mn)SiO<sub>3</sub> }. The lack of tephroite/fayalite minerals or abundant carbonates in the WAL is due to the higher Si content, forming more pyroxenoids by the reaction:

$$(Mn,Fe)_2SiO_4 + SiO_2 \rightarrow 2(Mn,Fe)SiO_3 \qquad (6.22)$$

# 6.3 Origin of principal rocktypes

-86-

#### 6.3.1 Sillimanite gneiss (detrital facies).

This rocktype is similar in most components to an average marine shale, except for the following: i) The FeO/Fe<sub>2</sub>O<sub>3</sub> ratio is very high, compatible with the euxinic basin necessary for deposition and preservation of sulphides (Large, 1980), ii) the Mg and Sr contents are low, particularly around the orebody, and this was considered by Plimer, (1979) to be due to pre-metamorphic hydrothermal alteration, iii) the B, Li and S contents are all low, indicating either low salinity or the mobility of these elements during metamorphism (Harder, 1974; Schneider, 1978).

The Mg depletion described by Plimer (1979) is very unusual for wallrock alteration and some possible explanations are : i) an influx of non-marine waters through Mg-poor basement, depleting Mg from solution prior to exhalation as hydrothermal metalliferous solutions ii) low temperature (<200 degrees C) authigenetic or diagenetic alteration of Mg-rich clays, releasing Mg in solution (Bohlke et al. 1980; Gelinas et al. 1982). Low temperature alteration of seafloor basalts may cause an increase in Fe/Mg (Gelinas et al. 1982) and a similar process is conceivable for pelitic sediments. Replacement of smectites by phillipsite or illite could also cause the potassic alteration at Broken Hill by Plimer (1979).

Gahnite and sulphide bearing rocks and garnet quartzites occur sporadically and indicate spasmodic exhalation of hydrothermal fluids (see below).

The pegmatites appear to have formed by remobilization of K-feldspar formed by the anatexis of micas.

6.3.2 Gahnite-rich zone.

The common association in the WAL of gahnite with galena and pyrrhotite but rarely with sphalerite provides good indirect evidence for the desulphurization of sphalerite. Direct evidence for desulphurization is rarely obvious but the general occurrence of most gahnite in a macroscopic selvage separating most sulphide-rich and Al -rich rocktypes is very significant. On a finer scale, a gahnite selvage can sometimes be seen bordering small quartz veins (with minor pyrrhotite in biotite-garnet quartzites, and this indicates some relation between gahnite and fluid activity – a high fluid flow being necessary to drive desulphurization reactions (Ferry, 1981). The high fluid flow possible in the well-foliated sillimanite gneiss may similarly drive the gahnite forming desulphurization reactions in the gahnite-bearing rocks by removing H2S (Walther and Orville, 1982).

# 6.3.3 Garnet quartzite.

This rock type is quite similar to the manganese silicate-rich rocks described as 'gondites' by Fermor (1909) and 'coticules' (Renard, 1878), although the latter name seems to be more particularly applied to mineralogically simple spessartine quartzites (Clifford, 1960). The garnet quartzites of the WAL are generally richer in sulphides and sometimes amphiboles than these, and the garnet is sometimes almandine not spessartine, but there is clearly a strong similarity between these rock types.

The origin of coticles has not been proven conclusively, although they are usually considered to be metasedimentary. The postulated origins include: i) Clifford (1960) described them as originating from Mn-rich sandy beds, ii) Schiller & Taylor (1965) concluded that they were originally chemically precipitated chert and Mn with detrital

-88-

clay, iii) Doyen (1971) found evidence for a rhodocrosite-rich parent rock to coticules, iv) Hodgson (1975b) thought that garnet quartzites at Broken Hill were formed by premetamorphic hydrothermal alteration (Mn metasomatism) of the pelitic wallrocks, v) Kramm (1976), postulated an origin from manganoan smectite, vi) Stanton et al. (1978) considered that a Mn-chamosite-rich sediment was a probable precursor to the garnet quartzites at Broken Hill, vii) but Spry (1978) showed how similar rocks can be formed by contact metamorphism of Mn-oxide rich clayey cherts.

Berger (1968), and Roy (1979) have noted the rarity of primary Mn silicates in unmetamorphosed sedimentary Mn deposits and normal sediments, where either carbonates (rhodochrosite) and/or higher oxides of Mn are present. Aleksiev and Bogdanov (1974), however, found apparently primary Mn hydrosilicates (neotocite to manganoan saponite in composition) in a hydrothermal Mn deposit. Although Roy and Purkait (1968) found evidence for partial reduction and conversion of Mn oxides to silicates at moderate metamorphic grades, Sivaprakash (1980) indicated the common stability of higher oxides of Mn at high metamorphic grades.

The presence of primary Mn oxides co-existing with sulphides is unlikely (although rare sulphides have been noted in ferro-manganese nodules (Muller, 1979)). Mn carbonates are assumed to be the most likely original Mn minerals as, in contrast to  $MnCO_3$ , there is a lack of evidence for the widespread occurrence of Mn silicates or oxides in sulphide-rich sediments or their former presence in the Broken Hill lodes (Section 6.3.4). Mg, K and Al show a negative correlation to Mn (Section 5.2.2), and presumably represent original clay minerals. The most Mn - rich, Mg - poor garnets contain considerable Ca and Fe, so

-89-

the original carbonate is suggested to be ferroan calcic rhodochrosite. The Fe could, however, have also been deposited as a K - Mg - Al poor phase like greenalite, as in the silicate-rich facies of other low metamorphic grade Fe formations most Ca and Mn are preferentially partioned into carbonates rather than silicates (Klein, 1973 and 1974; Floran and Papipke, 1977). The sulphides were probably deposited syngenetically, although there has been some metamorphic remobilization.

The presence of pyrrhotite may again indicate desulphurization, or alternatively it could be directly derived from iron monosulphides, indicative of low paleosalinity (Berner et al. 1979). It seems surprising that all prograde Fe sulphide at Broken Hill is pyrrhotite, while all Fe sulphides in rocks of similar metamorphic grade at Big Hill, 30km SW of Broken Hill, is pyrite. The quartz – albite rock at Big Hill seems unlikely to be much less permeable than the garnet – quartzite at Broken Hill, and Plimer & Finlow – Bates (1977) concluded that the pyrrhotite at Broken Hill was primary, originating from deep water hydrothermal exhalations, although the evidence for this is inconclusive. The original iron-sulphide phase remains unidentified but is considered to be principally pyrrhotite.

The progenitor to the garnet quartzite was a silica and manganese rich chemical sediment closely related to the ore rocks, and minor pyrrhotite and sphalerite are considered to have been original constituents. The rarity of manganese silicates in sedimentary rocks, and manganese oxides in sulphide-rich sediments, suggest that manganese carbonate was a major primary constituent. A variable detrital component and chemically precipitated chert were the other major phases.

-90-

#### 6.3.4 Pyroxenoid - Amphibole zone.

The pyroxenoid-amphibole zone is considered to have originated by metamorphism of a mixed chemical precipitate of silica (chert), sulphides, and Mn-Fe-Ca minerals. The Mn/Fe/Ca/Mg ratios of WAL pyroxenes and pyroxenoids, lack of higher oxides of Mn or Fe in the WAL, and the rarity of primary Mn silicates in sediments indicates that carbonates were the most probable precursors for most of the Mn, Ca and Fe in this zone. Some of the Fe was, however, probably deposited as silicates.

The zone is extremely variable in mineral distribution, and it seems probable that this was largely due to remobilisation of sulphides and quartz from the more massive pyroxenoid 'boudins'.

The breakdown of the carbonates to pyroxenoids would have resulted in a high fCO<sub>2</sub>, effectively flushing other fluids ( $H_2O,CH_4,H_2S$ ,etc.) from the orebody. This would, in turn, have promoted the breakdown of hydrous silicates, sulphides and graphite in the vicinity of the orebody by buffering reactions. The metamorphogenic alteration zone noted about the Broken Hill lodes by Plimer (1975c & 1979) may partly result from this devolatilization.

## 6.4 Retrogression.

The retrogression in the WAL is widespread and extremely variable, but no clear relation to RSZ or other structures is apparent. The retrograde minerals present depend mainly on the composition and abundance of the prograde mineral phases.

### 6.4.1 Amphiboles

The amphiboles, as discussed in Section 4.8, are probably retrograde, replacing the pyroxenoids. The high Mg/Fe+Mg (and Fe/ Fe+Mn) in amphiboles compared with the pyroxenoids resulted from limited re- equilibration, with preferential partitioning of Fe and Mg into amphiboles and Mn into pyroxenoids. The low variability in pyroxenoid compositions of the WAL, suggests that this re-equilibration was minor, although pyroxenoids richer in Fe and Mg (i.e. near pyroxferroite or orthopyroxene) would have been less stable during retrogression. The excess Mn from pyroxenoid breakdown could have been partitioned into garnet, which frequently shows high Mn/Mg + Fe rims, or could also have contributed to the secondary manganese minerals such as manganpyrosmalite, 'sturtite' and manganese carbonates, although these may all be formed during late stage retrogression. The presence of amphiboles in small shears, frequently intimately associated with sulphides, also suggests that there may have been some metasomatic movement, although this seldom appears to have involved distances of more than a few metres. The garnet quartzites are unlikely to be sufficiently permeable to such fluids, which would have travelled mainly along shears and fractures.

### 6.4.2 Other retrograde silicates

Pyrosmalite is an uncommon alteration product of the pyroxenoids and is commonly separated from them by a manganpyrosmalite-galena selvage, indicating some retrograde metasomatic remobilisation of Mn and galena.

Manganoan stilpnomelane is uncommon as inclusions within sulphides in relatively massive pyroxenoids, and may have a similar origin to the amphiboles and pyrosmalites. The Al and K appear to have been

-92-

introduced externally.

Staurolite is a not uncommon retrograde phase in the outer parts of the WAL, where it commonly appears to replace gahnite and can be quite zinc-rich.

Chlorites are common outside of the pyroxenoid-amphibole zone and result principally from alteration of biotite, but also from spinels and rarely garnet. There is some fine galena intergrown with some chlorite, again indicating metasomatic remobilization of sulphides.

Some very fine grained phases ('pug') of uncertain nature may be bethierine, greenalite and interlayered chlorite-illite and may partly recrystallise to chlorite or sericite.

Sericite can be formed from retrogression of gahnite, feldspars, sillimanite or rarely staurolite. Paragonite was identified only as an alteration of gahnite, but closely resembles sericite and may be more common than realised. The K in sericite may derive from the breakdown of biotite to chlorite (e.g. the reverse of reaction 6.4) or from fluids associated with migmatisation (Corbett & Phillips, 1981). Na is more difficult to account for, as it is low to very low in all other analysed phases of the WAL. It is possible that the K and Na are introduced in groundwater moving down shear zones (Etheridge & Cooper, 1981).

All the retrograde reactions involve addition of water. This could have the same origin as the K and Na, but the exsolution of water from guartz during the waning metamorphism (Spear and Selverstone, 1983) may have had an important contribution.

Some sulphurisation was associated with retrogression. The most important reactions are:

-93-

pyrrhotite + loellingite +  $H_2S \rightarrow$  arsenopyrite (6.23)

pyrrhotite +  $H_2S \rightarrow$  pyrite (6.24) There is also some late stage sulphurisation of gahnite, producing a rim rich in fine pyrrhotite, presumably by the reaction:

Fe-rich gahnite + Al-poor biotite +  $H_2S \rightarrow Zn$ -rich gahnite + pyrrhotite + Al-rich biotite +  $H_2O$  (6.25)

These sulphurizaton reactions appear to be due to re-equilibration of H2S in the fluid phase (resulting from desulphurization during prograde reactions: Wall & England, 1979) with the various minerals. This H2S also precipitates the sphalerite in the alteration rim about gabnite.

The gudmundite-chalcopyrite assemblage is probably due to the breakdown of tetrahedrite (which is the most important phase with intrinsic Ag at Broken Hill, but was not identified in the WAL), and was previously noted from Broken Hill by Lawrence (1968).

### 6.5 Environment of Ore Deposition.

The structure of the sedimentary basin was not clearly defined in this study, but was certainly very elongate. The narrowing or 'necking' of the A lode between the WAL and the rest of the A lode could be taken to indicate a slight submarine rise separating the WAL from the major part of the basin, but tectonic thinning in the fold hinge could also be responsible. The western margin of the WAL has not been well defined but it seems to lens out quite rapidly, perhaps being controlled by penecontemporaneous faulting, The setting seems

-94-

quite compatible with the linear fault-bounded basin first postulated by McKenzie (1965) and, except for the abundance of volcanics in the sequence, fits the description of third-order sedimentary basins proposed by Large (1980) for sediment-hosted, submarine exhalative lead-zinc deposits.

The estimate of the paleosalinity is inconclusive, and the basin could have been normal marine or non-marine in character. Metal enrichment from hydrothermal solutions in the freshwater Lake Kivu of East Africa was found by Degens & Ross (1976), so a non-marine origin cannot be rejected outright.

The rate of detrital sedimentation seems to have been low, as little evidence for original rudites exists in the sillimanite gneiss, which is usually very pelitic. Graded bedding, found in nearby rocks by Glen & Laing (1975) and Willis et al. (1983), could indicate turbidite deposition, perhaps in deep water.

It may be inferred from the Al content of the pyroxenoid zone that, at the peak of chemical sedimentation, detrital sediments comprised < 10% of all sediments. Assuming that the rate of detrital sedimentation was constant then the ore body must have been deposited at >10 times the rate of detrital sedimentation. This high depositional rate could indicate either a very low rate of detrital sedimentation or possibly turbidite-type deposition of sulphides (B. Stevens, pers. comm.).

Calc-alkaline volcanism was certainly prevalent preceeding formation of the ore deposit, but had practically ceased by the time of ore deposition (Laing et al. 1978). The ore could have been deposited from fluids substantially comprising volcanic exhalations generated during cooling of shallow igneous intrusions or, alternatively, heating by igneous intrusions could have generated

-95-

hydrothermal convection systems in meteoric waters (Large, 1977) supplying the feeder system and leaching metals and other components from the volcano- sedimentary pile. Campbell et al. (1982) noted that stratabound ore deposits are commonly underlain by subvolcanic basaltic sills which may have instigated the convection systems - the basalts stratigraphically below the Broken Hill ore deposits may represent these sills.

#### 6.6 Economic aspects of this thesis

This thesis has made several important contributions to the economic aspects of the WAL:

i) mappable chemical and mineralogical zones were identified in the WAL.

ii) a galena-rich, sphalerite-poor selvage is charactersistic of the stratigraphic top of the WAL, with a significant proportion of the whole-rock Zn being present as gabnite.

iii) a considerable amount of very fine grained sulphide is found, commonly intimately associated with retrograde silicates, and would be very difficult to recover efficiently and economically.

#### 6.7 Summary of geological history

The Broken Hill ore deposit was deposited syngenetically in a euxinic, narrow tectonic basin, during the waning stages of early Proterozoic calc-alkaline volcanism. There were several exhalative pulses, producing mixed precipitates of chert, sulphides and Mn-Ca-Fe carbonates intercalated with shaley detrital sediments. The exhalation producing the WAL increased and decreased gradually, resulting in compositional zoning. The sediments were subsequently buried, uplifted, and metamorphorsed to lower granulite facies, resulting in almost complete decarbonation of the WAL and most of the other lodes. The high  $CO_2$  expelled probably instigated extensive dehydration, some desulphurization and perhaps the partial melting in the vicinity of the lodes. Some sulphide remobilisation also occurred at this stage.

This metamorphism was followed by variable retrogression, resulting in a complex series of mineral assemblages, further sulphide remobilisation, and some veining and brecciation.

# 7. Suggestions for further work

The author considers that the results of this thesis are worth following up and expanding upon. The study was necessarily limited in scope due to the large number, size and complexity of the Broken Hill lodes, but further examination of mineral variation in this and other lodes may confirm and enlarge upon the trends shown, and perhaps identify other less obvious trends. The whole-rock geochemical trends were indefinite due to the small number of analyses and further geochemical studies are similarly important to elaborate the known trends and identify others.

The variation in composition of sulphides could be important for metallurgical purposes by providing information on distribution of valuable and unfavourable elements - e.g. Ag, Bi in galena and Fe, Cd in sphalerite.

The nature and extent of retrogression is poorly understood but the evidence for mobilization of S suggests that further study of this would be of use.

The formation of gahnite is still a matter of some conjecture, and field and experimental studies should provide useful information on the thermodynamics of the sulphide - silicate - oxide system and the nature of the reactions and fluids.

98

## 8. Acknowledgements

I would like to thank my supervisors, Drs Peter Rickwood and Alaster Dunlop for their suggestions and criticisms of earlier versions of this thesis. I am indebted to innumerable other members of the University of NSW School of Geology and W.S. and L.B. Robinson University College, including most clerical, library and academic staff. In particular, Dr Kevin Tuckwell helped instigate the project and Dr Gerrit Neef showed me how to conduct research and set goals.

The NBHC Mines kindly gave permission to sample drillcore and underground exposures, and provided access to their mine plans and core logs. I am particularly indebted to Dave Milton for suggesting the project and following its progress with constant interest and encouragement. Most other Broken Hill mine geologists have contributed ideas to the project.

Among the geologists who have contributed valuable suggestions must . be mentioned those of the Broken Hill mapping division, Geological Survey of New South Wales (especially Barney Stevens and Rob Barnes), Drs Ian Plimer (who read and criticized an earlier version of this thesis), Ralph Segnit, John Slack and Burton Murrell.

Nick Ware (ANU), Brendon Griffin (UA) and Peter Cheyne (MIM) assisted with electron microprobe analyses.

I would like to thank the Barrier Rangers' for their constant encouragement to complete this thesis, and anyone else who was involved in any way.

Last but not least I would like to thank the most important person of all: my wife, Sue, without who's tireless encouragement, support, patience, editing, technical and clerical assistance none of this would have been accomplished.

#### BIBLIOGRAPHY

ABRECHT, J and PETERS, Tj., 1975: Hydrothermal synthesis of pyroxenoids in the system  $MnSiO_3$  at  $P_f = 2kb$ . <u>Contrib. Mineral.</u> Petrol. 50, p. 241 - 246.

ABRECHT, J and PETERS, Tj., 1980: The miscibility gap between rhodonite and bustamite along the join  $MnSiO_3 - Ca_{0.6}Mn_{0.4}SiO_3$ . Contrib. Mineral. Petrol. 74, p.261-269.

AHMAD, R. and WILSON, C.J.L. 1981: Uranium and Boron distributions related to metamorphic microstructure – evidence for metamorphic fluid activity. Contrib. Mineral. Petrol. 76, p. 24-32.

AHMAD, R. and WILSON, C.J.L. 1982: Microstructural relationships of sillimanite and "fibrolite" at Broken Hill, Australia. <u>Lithos</u>. 15, p. 49-58.

AIKAWA, N. 1979: Oriented intergrowth of rhodonite and pyroxmangite and their transformation mechanism. Mineral. J. 9, p. 255-269.

ALEKSIEV, B. and BOGDANOVA, K. 1974: The Obrochishte manganese deposit In DRAGOV, P. and KOLKOVSKI, B. (eds). <u>Twelve ore deposits of</u> <u>Bulgaria.</u> p.149-160. 4th IAGOD Symposium, Varna.

ANDREWS, E.C. 1922: The Geology of the Broken Hill district. <u>NSW Geol.</u> Survey. Mem. 8, 432 pp.

ASHWORTH, J.R. 1975: Staurolite at anomalously high grade. Contrib.

Mineral. Petrol., 53, p. 281-291.

ASHWORTH, J.R. 1976: Petrogenesis of migmatites in the Huntly-Portsoy area, Mineral. Mag., 40, p. 661-682.

ASHWORTH, J.R. and CHINNER, G.A. 1978: Coexisting garnet and cordierite in Scottish Caledonian migmatites. <u>Contrib. Mineral.</u> Petrol., 65, p. 379-394.

ATKIN, B.P. 1978: Hercynite as a breakdown produce of staurolite from within the aureole of the Ardara Pluton, Co. Donegal, Eire. <u>Mineral.</u> Mag., 42, p. 287-289.

BANERJEE, S. 1974: Tin in the the Base Metal Sulphide deposits at Geco, Manitouwadge, Ontario, Canada. Bull. Geol. Survey India, 40, 36 pp.

BARNES, R.G. 1980: Types of mineralisation in the Broken Hill block and their relationship to stratigraphy. <u>In</u> STEVENS, B.P.J. (ed.) A guide to stratigraphy and mineralization of the Broken Hill block, New South Wales. <u>Records of the Geological Survey of N.S.W.</u>, 20(1), p. 33 - 70.

BARRON, L.M and BARNES, R.G. 1981: The mineral chemistry of some Corruga - type scheelite - bearing calc-silicate rocks and their comparison with other sulphide - bearing rocks, Broken Hill Block. Geol. Survey of NSW, Unpub. Petrol. Rept. 81/9, 42 pp.

BAYLISS, P. 1975: Nomenclature of the tri-octahedral chlorites. Can.

-2-

Mineral. 15, 178 - 180

BENTOR, Y.K., KASTNER, M., PERLMAN, I. and YELLIN, Y. 1981: Combustion metamorphism of bituminous sediments and the formation of melts of granitic and sedimentary composition. <u>Geochim. Cosmochim. Acta</u>, 45, p. 2229-2255.

BERGER, A., 1968: Zur Geochemie und Lagerstattenkunde des Mangans Gebruder Borntraeger, Berlin, Stuttgart, 216 p.

BERNER, R.A., 1964: Stability fields of iron minerals in anaerobic marine sediments. J. Geol. 71, p.826-834.

BERNER, R.A., 1970: Sedimentary pyrite formation, <u>Amer. J. Sci.</u>, 268 p. 1-23.

BERNER, R.A., 1981a: Authigenic mineral formation resulting from organic matter decomposition in modern sediments. <u>Fortschr. Mineral</u>., 59, p. 117-135.

BERNER, R.A., 1981b: A new geochemical classification of sedimentary environments. J. Sed. Petrol. 51, p. 359-365.

BERNER, R.A., BALDWIN, T., HOLDREN, G.R., Jnr., 1979: Authigenic iron sulphides as palaeosalinity indicators, <u>J. Sed. Petrol</u>. 49, p. 1345 – 1350.

BETHUNE, P. de, LADURON, D. and BOCQUET, J., 1975: Diffusion processes

-3-

in resorbed garnets, Contrib. Mineral. Petrol. 50, p. 197-204.

BILLINGTON, L.G., 1979: The relationship of the Garnet Quartzite rocktypes to the orebodies in the Z.C.-N.B.H.C. Mines, Broken Hill, N.S.W., Australia, Unpublished MSc thesis, Univ. of N.S.W..

BINNS, R.A., 1962: Studies in metamorphism at Broken Hill, NSW. PhD thesis (unpub.). Univ. Cambridge.

BINNS, R.A., 1964: Zones of progressive regional metamorphism in the Willyama Complex, Broken Hill District, New South Wales. J. Geol. Soc. Aust., 11, p. 283-330.

BINNS, R.A., 1968b: Experimental studies of metamorphism at Broken Hill; <u>In</u>: RADMANOVICH, M. & WOODCOCK, J. (eds.)., <u>Broken Hill mines -</u> 1968. Austsn. Inst. Min. Metall. Monog. no. 3, Melb. p199-204.

BIRCH, W.D; CHAPMAN, A & PECOVER, S.R., 1983: The minerals. <u>In</u>: WORNER, H.K & MITCHELL, R.W., (eds.), <u>Minerals of Broken Hill</u>, Aust. Min. & Smelting, Melb. p. 68-195.

BISCHOFF, J.L., 1969: Red Sea geothermal brine deposits: their mineralogy, chemistry and genesis; <u>In</u>: DEGENS, E.T. and ROSS, D.A.(eds.), <u>Hot brines and recent heavy metal deposits in the Red Sea.</u> Springer-Verlag, New York, p. 386 - 401.

BLACKBURN, W.H., 1969: Zoned and unzoned garnets from the Grenville gneisses around Gannoque, Ontario. Canad. Mineral. 9, p. 691 - 698

-4-

BOHLKE, J.K, HONNOREZ, J & HONNOREZ-GUERSTEIN, B.M., 1980: Alteration of Basalts from site 396 B, DSDP: petrographic and mineralogical studies, Contrib. Mineral. Petrol., 73, p.341 - 364.

BORCHERT, H., 1970: On the ore deposition and geochemistry of manganese, Mineralium Deposita., 5, p. 300-314.

BOTH, R.A., 1970; Minor element geochemistry of sulphide minerals in the Broken Hill Lode, NSW. Unpub. PhD thesis, ANU.

BOTH, R.A. and RUTLAND, R.W.R., 1976: The problem of identifying and interpreting stratiform ore bodies in highly metamorphosed terrains: the Broken Hill example: <u>In</u>: WOLF, K.H. (ed.), <u>Handbook of strata-bound and stratiform ore deposits</u>. Elsevier, Amsterdam. Vol. 4, Ch. 6, p. 261 - 326.

BOTTRILL, R.S., 1983a: Zincian staurolite from Broken Hill, New South Wales. Aust. Miner., 44, p. 251-253.

BOTTRILL, R.S., 1983b: A manganaxinite-bearing assemblage from Broken Hill, New South Wales. Aust. Miner., 44, p.254-255.

BRIGATTI, A.F., 1982: Hisingerite: A review of its crystal chemistry <u>In VAN OLPHEN, H. and VENIALE, F. (Eds.) "International Clay</u> <u>Conference 1981</u>, Developments in Sedimentology 35, Elsevier, Amsterdam, p.97-110.

-5-

BROWN, A.C., 1982: Grenville iron - formations and associated stratiform zinc mineralization, Roddick Lake area, Mount Laurier Basin, Quebec. Can. J. Earth Sci., 19, p. 1670 - 1679.

BROWN, E.H., 1969: Some zoned garnets from the greenschist facies, Amer. Mineral., 54, p. 1662-1677.

BROWN, P.G., ESSENE, E.J. and PEACOR, D.R., 1980: Phase relations inferred from field data for Mn pyroxenes and pyroxenoids. <u>Contrib.</u> Mineral. Petrol., 74, p. 417-425.

BROWN, M., 1979: The petrogenesis of the St. Malo Migmatite Belt, Armorican Massif, France, with particular reference to the diatexites. N. Jb. Mineral. Abh., 135, p. 48-74.

BROWN, R.N., RILEY, J.F. and SCHULTZ, P.K., 1970: Contributions to Australian mineralogy : 1. A new zinc-bearing ilmenite from Broken Hill. AMDEL Bull., 10, p. 48-50.

BURFORD, B.J., 1972: Studies in Broken Hill Geology: A: Zoning in B lode, Broken Hill. Unpub. Hons. thesis, Adel. Uni.

BURRELL, H.C., 1942: A statistical and laboratory investigation of ore types at Broken Hill, New South Wales. PhD thesis (unpub.) Harvard Univ.

BUSCH, W., SCHNEIDER, G & MEHNERT, K.R., 1974: Initial melting at grain boundaries. Part II: Melting in rocks of granodiorite, quartz

-6-

dioritic and tonalitic compositions. <u>Neues Jahrb.fur Mineral. Mh. 8</u>, p. 345-370.

CALLENDER, E. and BOWSER, C.J., 1976: Freshwater manganese deposits. In: WOLF, K.H. (ed.) <u>Handbook of stratabound and stratiform ore</u> deposits. Elsevier, Amsterdam, 7, p. 341-389.

CALLENDER, E., and BOWSER, C.J., 1980: Manganese and copper geochemistry of interstitial fluids from manganese - nodule - rich pelagic sediments of the northeastern equatorial Pacific Ocean. <u>Amer.</u> J. Sci., 280, p. 1063-1096.

CALVERT, S.E. and PRICE, N.B., 1977: Shallow water, continental margin and lacustrine nodules: Distribution and geochemistry. <u>In</u>: GLASBY, G.P., (ed.) <u>Marine manganese deposits.</u> Elsevier, Amsterdam. Ch.3. p. 45 - 86.

CAMERON, K.L., 1975: An experimental study of actinolite-cummingtonite phase relations with notes on the synthesis of Fe-rich anthophyllite. Amer. Mineral., 60, p. 375-390.

CAMPBELL, I.H., FRANKLIN, J.M., GORTON, M.P., HART, T.R., and SCOTT, S.D., 1982: The role of subvolcanic sills in the generation of massive sulphide deposits. Econ. Geol., 77, p. 2248-2253.

CAMPBELL-SMITH, W., and BANNISTER, F.A., and HEY, M.H., 1946: Pennantite, a new manganese-rich chlorite from Benallt mine, Rhiw, Carnarvonshire. Mineral. Mag., 27, p. 217-220.

-7-

CARRUTHERS, D.S., and PRATTEN, R.D., 1961: The stratigraphic succession and stratigraphy in the Zinc Corporation and New Broken Hill Consolidated Ltd., Broken Hill, N.S.W. <u>Econ. Geol</u>., 56, p. 1088-1102.

ČECH, F., MISAŘ, Z. and POVONDRA, P., 1971: A green lead-containing orthoclase. Tschermaks Mineral. Petrol. Mitt., 15, p. 213-231.

CHENHALL, B.E., 1973: Some aspects of prograde and retrograde metamorphism at Broken Hill. Unpub. PhD, Univ. Syd.

CHENHALL, B.E., 1976: Chemical variation of almandine and biotite with progressive regional metamorphism of the Willyama Complex, Broken Hill, N.S.W. J. Geol. Soc. Aust., 23, p. 235-242.

CLARK, A.M., EASTON, A.J. & MOUNT, M., 1978: A study of the neotocite group. Mineral. Mag., 42, p. 279 (synopsis), Miniprint section. p. 26 - 30.

CLIFFORD, T.N., 1960: Spessartine and magnesian biotite in coticule-bearing rocks from Mill Hollow, Alstead Township, New Hampshire, U.S.A. A contribution to the petrology of metamorphosed manganiferous sediments. <u>N. Jb. Mineral Abh.</u>, 94, p. 1369-1400.

COOMES, D.S. NAKAMURA,Y & VUAGNAT, M., 1976: Pumpellyite-actinolite facies schists of the Taveyanne Formation near Loeche, Valais, Switzerland. J. Petrol., 17, p. 440-471. CORBETT, G.J. and PHILLIPS, G.N., 1981: Regional retrograde metamorphism of a high grade terrain : The Willyama Complex, Broken Hill, Australia. Lithos, 14, p. 9-73.

CRERAR, D.A., CORMICK, R.K., and BARNES, H.L., 1980: Geochemistry of Manganese: An overview. In: VARENTSOV, I.M. and GRASSELLY, Gy. (eds.): <u>Geology and Geochemistry of Manganese. Vol. 1.</u> E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, p. 293-334.

CROWLEY, M.S. and ROY, R., 1964: Crystalline solubility in the muscovite and phlogopite groups. Amer. Mineral., 49, p.348-362.

CURTIS, C.D., 1967: Diagenetic iron minerals in some British Carboniferous sediments. Geochim. Cosmochim. Acta., 31, p.2109-2123.

CURTIS, C.D. and SPEARS, D.A., 1968: The formation of sedimentary iron minerals. Econ. Geol., 63, p. 257-270.

DASGUPTA, H.C. and MANICKAVASAGAM, R.M., 1981: Regional metamorphism of non-calcareous, manganiferous sediments from India and the related petrogenic grid for a part of the system Mn-Fe-Si-O. <u>J. Petrol.</u>, 22, p. 363-396.

DAVY, R., 1980: A chemical and mineralogical study of low-grade zinc mineralization at three localitites in the Proterozoic Banernall Basin of Western Australia. Geol. Survey of W.A. Report. 10, 70pp.

DE WAAL, S.A., 1981: Neoformed supergene sphalerite and possible precipitation control by gahnite. Bull. Minéral., 104, p. 732-736.

-9-

DEER, W.A., HOWIE, R.A & ZUSSMAN, J., 1966: <u>Rock-forming minerals</u>, (5 vols), Longman, London.

DEGENS, E.T. and ROSS, D.A., 1976: Stratabound metalliferous deposits found in or near active rifts: <u>In</u>: WOLF, K.H. (ed.) <u>Handbook of</u> <u>Stratabound and Stratiform Ore Deposits</u>, Vol. 4. p. 165-202. Elsevier, Amsterdam.

DEGENS, E.T., WILLIAMS, E.G. and KEITH, M.L., 1957: Environmental studies of carboniferous sediments. <u>Bull. Amer. Assoc. Pet. Geol.</u>, 41, p. 2427-2455.

DEWAR, G.J.A., 1968: Detailed geological mapping north-east of No. 3 Shaft, North Broken Hill Limited <u>In</u>: RADMANOVICH, M. & WOODCOCK, J., <u>Broken Hill Mines - 1968</u>, Austsn. Inst. Min. Metall. Monog. No. 3, Melb. p. 137-154.

DIETRICH, R.V., 1971. Quartz - two new blues. <u>Mineralogical Record</u>, 2, p.79-82.

DIETVORST, E.J.L., 1980: Biotite breakdown and the formation of gahnite in metapelitic rocks from Kemio, S.W. Finland. <u>Contrib. Miner.</u> Petrol., 75, p. 327-337.

DONNAY, G., BETOURNAY, M. & HAMILL, G., 1980: McGillite, a new manganese hydroxychlorosilicate. Canad. Mineral. 18, p. 31-36.

DOYEN, L., 1971: The manganese ore deposit of Kisenge-Kamata (western Katanga) Mineralogical and sedimentological aspects of the primary ore In: AMSUTZ, C.G & BERNARD, A.J., (eds.) Ores in sediments, Springer-Verlag, Berlin. p. 93 -100.

EDWARDS, A.C., 1977: Manganoan grunerites from Broken Hill, Aust. Mineral., No. 12, p. 61.

ELLIOTT, S.M., 1979: Geochemistry of the rocks enclosing Broken Hill-type deposits in the Broken Hill Block, Australia. Unpub. PhD Thesis, Uni. N.S.W.

ETHERIDGE, M.A. and COOPER, J.A., 1981: Rb/Sr isotopic and geochemical evolution of a recrystallized shear (mylonite) zone at Broken Hill. Contrib. Mineral. Petrol., 78, p. 74-84.

FAYE,G.H. and NICKEL,E.H., 1969: On the origin and colour and pleochrism of kyanite. Canad. Mineral. 10, p.35-46.

FERMOR, L.L., 1909: The manganese-ore deposits of India. <u>Mem. Geol.</u> Surv. India, 37. (Ref. In: Clifford (1960)).

FERRY, J.M., 1981: Petrology of graphitic sulphide-rich schists from south - central Maine: an example of desulphidation during prograde regional metamorphism. Amer. Mineral. 66, p.908-930.

FITZGERALD, J.D & MCLAREN, A.C., 1982: The microstructures of microcline from some granitic rocks and pegmatites. <u>Contrib. Mineral.</u> Petrol., 80, p.219-229.

-11-

FLEISCHER, M., 1980: <u>Glossary of Mineral species</u>. Mineralogical Record, Tucson, Arizona. 192pp.

FLORAN, R.J. & PAPIKE, J.J., 1978: Mineralogy and petrology of the Gunflint Iron Formation, Minnesota-Ontario: Correlation of compositional and assemblage variations at low to moderate grade. <u>J.</u> Petrol., 19, p.215-288.

FOSTER, M.D., 1960: Interpretation of the composition of triocahedral micas. U.S. Geol. Survey. Prof. Papers, 354-B, 48pp.

FOSTER, M.D., 1962: Interpretation of the composition and a classification of the chlorites. U.S. Geol. Survey Prof. Papers. 414-A, 33pp.

FRANSOLET, A-M. and BOURGUIGNON, P., 1975: Données nouvelles sur la fraipontite de Moresnet (Belgium). <u>Bull. Soc. Fr. Minéral.</u> Cristallogr., 98, p. 235-244.

FROESE, E., 1981: Applications of thermodynamics in the study of mineral deposits, Geol. Survey, Canada, Paper 80, 28 pp.

FRONDEL, C. and BAUER, L.H., 1953: Manganpyrosmalite and its polymorphic relation to friedelite and schallerite. <u>Amer. Miner.</u>, 38, p.755-760.

FRONDEL, C. and BAUM, J.L., 1974: Structure and mineralogy of the Franklin Zinc-Iron-Manganese Deposit, New Jersey, Econ. Geol. 69, p.

157-180.

FRONDEL, C. and ITO, J., 1966: Hendricksite, a new species of mica, Amer. Mineral. 51, p.1107-1123.

FRONDEL, C. and ITO, J., 1975: Zinc-rich chlorites from Franklin, New Jersey, with a note on chlorite nomenclature, <u>N. Jb. Mineral Abh.</u>, 123, p. 111-115.

FROST, B.R., 1973: Ferroan gahnite from quartz-biotite-almandine schist, Wind River Mountains, Wyoming. Amer. Mineral. 58, p. 831-834.

GANGULY, J., 1972: Staurolite stability and related paragenesis. Theory, experiments and applications. J. Petrol., 13, p. 335-365.

GARRETTY, M.D., 1943: The mineralisation of the ore bodies at Broken Hill, N.S.W. D. Sc. thesis (unpub.) Univ. Sydney.

GELINAS, 1. MELLINGER, M. and TRUDEL, P., 1982: Archaean mafic metavolcanics from the Rouyn-Noranda district, Abitibi Greenstone Belt, Quebec. Mobility of the major elements. <u>Can. J. Earth Sci.</u>, 19, p.2258-2275.

GEORGE, R. J., 1969: Sulphide-silicate reactions during metamorphism of the Nairne pyrite deposit. <u>Proc. Austn. Inst. Min. Metall.</u> 230, p.1 - 8.

GERMANN, K., 1971: Deposition of manganese and iron carbonates and

silicates in Liassic marl of the northern Limestone Alps (Kalkalpen). In: AMSTUTZ, G.C. & BERNARD, A.J. (eds.): Ores in Sediments. Springer-Verlag, Berlin. p. 129-138.

GLEN, R.A. & LAING, W.P., 1975: The significance of sedimentary structures in the Willyama Complex, New South Wales. <u>Proc. Australas.</u> Inst. Min. Metall., 256, p. 15-20.

GOLE, M.J., 1980: Low - temperature retrograde minerals in metamorphosed Archaean banded iron formations, Western Australia. Canad. Mineral., 18, p. 205-214.

GOLE, M.J., 1981: Archaean Banded Iron-Formations, Yilgarn Block, Western Australia, Eco. Geol., 75, p.1954-1974.

GRAMBLING, J.A., 1981: Pressures and temperatures in Precambrian metamorphic rocks, Earth & Planet. Sci. Lett., 53, p. 63-68.

GRANT, J.A. and WEIBLEN, P.W., 1971: Retrograde zoning in garnet near the second sillimanite isograd. Amer. J. Sci., 270, p.281-296.

GREW, C.S., 1981: Granulite-facies metamorphism at Molodezhnaya Station, East Antarctica, J. Petrol., 22, p. 297-336.

GRIFFEN, D.T., 1981: Synthetic Fe/Zn staurolites, and the ionic radius of (IV)<sub>Zn</sub><sup>2+</sup>, Amer. Mineral., 66, p. 932-937.

GRIFFEN, D.T., GOSNEY, T.C. & PHILLIPS, W.R., 1982: The chemical

formula of natural staurolite, Amer. Mineral., 67, p. 292-297.

GRIFFEN, D.T & RIBBE, P.H., 1973: The crystal chemistry of staurolite. Amer. J. Sci., 273-A. p. 479-495.

GRIGGS, D., 1976: Hydrolytic weakening of quartz and other silicates, Geophys. J.R. Astr. Soc., 14, p.19 - 31.

GUIDOTTI, C.V., 1969: The mineralogy and petrology of the transition from the lower to upper sillimanite zone in the Oquossoc Area, Maine, J. Petrol., 11, p. 277-336.

GULSON, B.L., 1983: Uranium-lead and lead. Lead investigations of minerals from the Broken Hill Lodes and mine sequence rocks and their implications for ore genesis, (abs.), <u>In 7th Austn. Geol. Conv., Canberra</u>. Geol. Soc. Aust. Abs. Ser. 9. p. 272-273.

GUSTAFSON, J.K., BURRELL, H.C. & GARRETTY, M.D., 1950: Geology of the Broken Hill Ore Deposit, Broken Hill, New South Wales, Australia, Bull. Geol. Soc. Amer., 61, p. 1369-1438.

HAASE,C.S., 1982: Metamorphic Petrology of the Negaunee Iron Formation, Marquette District, Northern Michigan: Mineralogy, metamorphic reactions, and phase equilibria. <u>Econ. Geol.</u>, 77, p. 60 - 81

HARADA, K., SEKINO, H., NAGASHIMA, K., WATANABE, T. & MOMOI, H., 1974: High - iron bustamite and fluorapatite from the Broken Hill mine, NSW, Aust. Mineral. Mag., 39, p. 601-604. HARDER, H., 1974: 5-N (Boron) Behaviour in metamorphic reactions. In: WEDEPOHL, K.H. (ed.) <u>Handbook of Geochemistry</u>, Springer - Verlag, Berlin, Vol. I. p. 5- N-1.

HARRISON, T.M & McDOUGALL, I., 1981: Excess Ar in metamorphic rocks from Broken Hill, New South Wales: implications for Ar40/Ar39 age spectra and the thermal history of the region. <u>Earth & Planet. Sci.</u> Lett., 55. p. 123-149.

HAWKINS, B.W., 1968b: A quantitative chemical model of the Broken Hill Lead-Zinc deposit. Proc. Australis. Aust. Min. Metall., 227, p.11-15.

HEIER, K.S. & BILLINGS, G.K., 1970: 3-M-N (Lithium) abundance in common metamorphic processes <u>In:</u> WEDEPOHL, K.H. (ed.). <u>Handbook of</u> Geochemistry. Springer-Verlag, Berlin. II - 1 p.3-M-N-1.

HEWINS, R.H., 1975: Pyroxene geothermometry of some granulite facies rocks, Contrib. Mineral. Petrol., 90, p. 205-209.

HEY, M.H., 1954: A new review of chlorites. Min. Mag., 30. p. 277-292.

HODGE-SMITH, T., 1930: Sturtite - a new mineral. Broken Hill, N.S.W. Aust. Museum Records, 17. p.410-412.

HODGSON, C. J., 1975a: The geology and geological development of the Broken Hill Lode in the NBHC Mine, NSW, Part I: Structural Geology. J.Geol. Soc. Aust. 21, p.413-430.

-16- .

HODGSON, C.J., 1975b: The geology and geological development of the Broken Hill Lode in the NBHC Mine, NSW. Part II: Mineralogy. J. Geol. Soc. Aust. 21. p.33-50.

HODGSON, C.J., 1975c: The geology and geological developent of the Broken Hill lode in the New Broken Hill Consolidated Mine, Australia, Part III: Petrology & Petrogenesis, J. Geol. Soc. Aust. 22, p.195-213.

HOLLISTER, L.S., 1966: Garnet zoning: An interpretation based on the Rayleigh fractionation model, <u>Science</u>, 154, p. 1647-1651.

HOPWOOD, D.T., 1978: Conformable elongate ore bodies & intrafolial folds parallel to a mineral streaking lineation <u>In:</u> VERWOERD, W.J. (ed.), <u>Mineralization in metamorphic terrains</u>, Geol. Soc. Sth. Africa. Sp. Publ., 4, p.41-51.

HUTTON, C.O., 1956: Manganpyrosmalite, bustamite and ferroan johannsenite from Broken Hill, NSW, Aust. Amer. Mineral. 41, p.581-591

IMMEGA, I.P. & KLEIN, C. Jr., 1976: Mineralogy and petrology of some metamorphic Precambrian iron-formations in Southwestern Montana. <u>Amer.</u> Mineral. 61, p.1117-1144.

JAYARAMAN, N., 1939: The cause of colour of the blue quartzes of the charnockites of South India and of the Champion gneiss and other related rocks of Mysore. <u>Proc. Indian Acad. Sci.</u>, Sect A-9, p. 265-285.

JOHNSON, I.R. and GOW, N.N., 1975: Willyama inlier – mineralization In:KNIGHT, C.L. (Ed.) – Economic geology of Australia and Papua New Guinea. Australas. Inst. Min. Metall., Monograph 5. Vol. 1– Metals. p.495-498.

JOHNSON, I.R. & KLINGNER, G.D., 1975: Broken Hill ore deposit and its environment. In: KNIGHT, C.L.(ed.) Economic geology of Australia and Papua-New Guinea, 1: metals. Aust. Inst, Min.Metall., Parkville, Vic. (Monog. series no.5). p 476-492.

JONES, T.R., 1968: Garnet sandstone and garnet rims at orebody contacts, Broken Hill. In: RADMANOVICH, M. & WOODCOCK, J. (eds.) Broken Hill Mines - 1968, Australas. Instn. Min. Metall. Monog. no. 3, Melb. . p 171-178.

JUVE, G., 1967: Zinc and lead deposits in the Håfjell syncline, Ofoten, Northern Norway. Norges Geologiske Undersøkelse, 244, p. 1-54.

KATZ, M.B., 1976: Broken Hill - A Precambrian hot spot?, Precambrian Research, 3, p. 91-106.

KEITH, M.C. & DEGENS, E.T., 1959: Geochemical indicators of marine and fresh-water sediments In: ABELSON, P.H. (ed.) <u>Researches in</u> Geochemistry: Wiley, N.Y. p. 38-61.

KING, H.F. & O'DRISCOLL, E.S., 1953: The Broken Hill Lode. In: EDWARDS, A. B. (ed.) Geology of Australian ore deposits. 5th Empire Mining and Metallurgical Congress, 1953. p.578-600.

KLEIN, C., 1974: Greenalite, stilpnomelane, minnesotaite, crocidolite and carbonates in a very low-grade metamorphic Precambrian iron-formation. Can. Mineral., 12, p. 475-498.

KLEIN, C., 1973: Changes in mineral assemblages with metamorphism of some banded Precambrian iron-formations. Econ.Geol., 68, p. 1075-1088.

KLEIN, C., 1978: Regional metamorphism of Proterozoic iron-formation, Labrador Trough, Canada, Amer. Mineral., 63, p. 898-912.

KLEIN, C., & ITO, J., 1968: Zincian and manganoan amphiboles from Franklin, New Jersey. Amer. Mineral., 53 p. 264-265.

KLUG, H.P. & ALEXANDER, L.E, 1969: X-ray diffraction procedures. Wiley, New York.

KRAMM, V., 1976: The coticule rocks (spessartine quartzites) of the Venn-Stavelot Massif, Ardennes, a volcanoclastic metasediment?, Contrib. Mineral. Petrol., 56, p. 135-155.

KRETZ, R., 1983: Symbols for rock-forming minerals. Amer. Miner., 68. p.277-279.

KWAK, T.A.P., 1974: Natural staurolite breakdown reactions at moderate to high pressures, Contrib. Mineral. Petrol., 44, p. 57-80.

-19-

LAING, W.P., MARJORIBANK, R.W., and RUTLAND, R.W.R., 1978: Structure of the Broken Hill mine area and its significance for the genesis of the orebodies, Econ. Geol., 73, p. 1112-1136.

LARGE, D.E., 1980: Geological parameters associated with sediment – hosted, submarine exhalative Pb-Zn deposits: An empirical model for exploration. Geol. Jb., D40, p.59-129.

LARGE, R.R., 1977: Chemical evolution and zonation of massive sulphide deposits in volcanic terrains. <u>Econ. Geol.</u>, 72, 549–572

LAWRENCE, L.J., 1968: The minerals of the Broken Hill district In: RADMANOVICH, M., & WOODCOCK, J. (eds.) Broken Hill mines - 1968, AIMM monog. no.3, Melb. p.103-136.

LAWRENCE, L.J., 1967: Sulphide neomagmas and highly metamorphosed sulphide deposits, Mineralium Deposita, 2, p. 5-10.

LAWRENCE, L.J., 1973: Polymetamorphism of the sulphide ores of Broken Hill, N.S.W., Australia, Mineralium Deposita, 8, p. 211-236.

LAYTON, W. & PHILLIPS, R., 1960: The cummingtonite problem. <u>Mineral.</u> Mag., 32, p. 659-663.

LEAKE, B.E., 1972: Garnetiferous striped amphibolites from Connemara, Western Ireland. <u>Mineral. Mag.</u>, 38, p. 649-665.

LEAKE, B.E., 1978: Nomenclature of Amphiboles, Can. Mineral., 16, p.

501-520.

LE MAITRE, R.W., 1973: Partially fused granite blocks from Mt. Elephant, Victoria. J. Pet., 15, p.403-412.

LEYH, W.R., 1980: The structural and metaorphic geology of the Springs Area, Broken Hill, NSW. MSc thesis, Uni. NSW (unpub.)

LEYH, W.R. & LARSEN, D.F., 1983: Iron formation related base metal prospects, Broken Hill, NSW. In: Broken Hill Conference, 1983. Aust. Inst. Min. Met., Parkville, Vic. p. 133-156.

LINDQVIST, B. & JANSSON, S., 1962: On the crystal chemistry of hisingerite. Amer. Mineral., 47, p.1356-1362.

MacKENZIE, D.H., 1968: Lead lode at New Broken Hill Consolidated Limited. In: RADMANOVICH, M. & WOODCOCK, J. (eds.) Broken Hill Mines -1968, Australas. Instn. Min. Metall. Monog. no. 3, Melb. p. 161-169.

MacKENZIE, D.H. & GOW, N., 1975: Relationships between ore, banded iron formation and Potosi gneiss at Broken Hill. 1st. <u>Aust. Geol.</u> Conv. on Proterozoic Geol. p. 51 (abs.).

MacKENZIE, K.J.D. & BEREZOWSKI, R.M., 1980: Thermal and mossbauer studies of iron - containing hydrous silicates. II. Hisingerite. Thermochem. Acta., 41, p. 335-355.

MAIDEN, K.J., 1975: High grade metamorphic structures in the Broken

Hill orebody, Proc. Australas. Inst. Min. Metall., 254, p. 19-27.

MAIDEN, K.J., 1976: Piercement structures formed by metamorphic mobilization of the Broken Hill orebody, <u>Proc. Australas. Inst. Min.</u> Metall., 257, p. 1-8.

MAISONEUVE, J. 1981: The composition of the Precambrian ocean waters. Sed. Geol., 31. p. 1-11.

MALLIO, W.J. & GHEITH, M.A., 1972: Textural and chemical evidence bearing on sulfide-silicate reactions in metasediments, <u>Mineralium</u> Deposita. 7, p. 13-17.

MARESCH, W.V., MOTTANA, A., 1976: The pyroxmangite-rhodonite transformation for the MnSiO3 composition, <u>Contrib. Mineral. Petrol.</u>, 55, p. 69-79.

MARJORIBANKS, R.W., RUTLAND, R.W.R., GLEN, R.A. & LAING, W.P., 1980: The structure and tectonic evolution of the Broken Hill region, Australia, Precambrian Research, 13, p. 209-240.

MASON, B., 1973: Manganese silicate minerals from Broken Hill, New South Wales, J. Geol. Soc. Aust., 20, p. 397-404.

MATTHIAS, I.G., 1973: The geology of the B-lode complex, Broken Hill, N.S.W., Unpub. Ph.D., University of New England.

MATTHIAS, I.G., 1974: High Grade regional metamorphism of the B-lode

complex, Broken Hill, New South Wales, <u>Trans. Inst. Min. Metall.</u> (Sect. B: Appl. Earth Sci.), 83, p. 875-80.

MEHNERT, K.R., 1968: Composition and abundance of common metamorphic rock types. In: WEDEPOHL, K.H. (ed.) <u>Handbook of Geochemistry</u>, Springer-Verlag, Berlin. Vol. 1., p.272-296.

MOHR, D.W & NEWTON, R.C., 1983: Kyanite – staurolite metamorphism in sulphide schists of the Anakesta formation, Great Smokey Mountains, North Carolina, Amer. J. Sci., 283. p. 97-134.

MOINE, B., SAUVAN, P. & JAROUSSE, J., 1981: Geochemistry of evaporite-bearing series: A tentative guide for the identification of meta-evaporites, Contrib. Mineral. Petrol., 76, p. 401-412.

MOOKHERJEE, A., 1976: Ores and metamorphism: Temporal and genetic relationships, In: WOLF, K.H. (Ed.) <u>Handbook of strata-bound and</u> stratiform ore deposits, Elsevier, Amsterdam. Vol. 4. p. 203-260.

MOSSMAN, D.J. & HEFFERNAN, K.J., 1978: Simulated low-grade metamorphism of metalliferous mud from the Red Sea Atlantis II geothermal deep, Econ. Geol., 73, p. 1150-1189.

MUAN, A., 1959: Stability relations among some manganese minerals, Amer. Mineral., 44, p. 946-959.

MUELLER, R.F., 1961: Oxidation in high temperature petrogenesis, <u>Amer.</u> J. Sci., 259, p. 460-480. MUELLER, R.F., 1967: Mobility of the elements in metamorphism, <u>J.</u> Geol., 75, p. 565- 582.

MULLER, D., 1979: Sulphide Inclusions in manganese nodules of the northern Pacific, Mineralium Deposita., 14, p. 375-380.

NEDELEC, A: & PAQUET, J., 1981: Biotite melting in high-grade metamorphic gneisses from the Haut Allier (French Massif Central), Contrib. Mineral. Petrol., 77, p. 1-10.

NEMEC, Von D., 1980: Zinkhaltiger staurolith aus den Leptynitten der Blanicer Furche und aus übrigen Moldanubikum der Bohmisch-Mahrischen Hohe (ČSSR), Chem. Erde, 39, p. 311-320.

NESBITT, E.B. & KELLY, W.C., 1980: Metamorphic zonation of sulphides, oxides and graphite in and around the orebodies at Ducktown, Tennessee, Econ. Geol., 75, p. 1010-1021.

NESBITT, B.G., 1982: Metamorphic sulfide-silicate equilibria in the massive sulfide deposits at Ducktown, Tennessee, <u>Econ. Geol.</u>, 77, p. 364-378.

NORRISH, K. & CHAPPELL, B.W., 1967: X-ray fluorescence Spectroscopy, In: ZUSSMAN, J. (ed.). <u>Physical methods in determinative Mineralogy</u>. Academic Press, London. p. 161-214.

O'DRISCOLL, E.S.T., 1983: Broken Hill at the cross - roads In: Broken

Hill Conference, 1983, Aust. Inst. Min. Metall., Melb. p. 29-48.

PEACOR, D.R., ESSENE, E.J., SIMMONS, W.B., BIGELOW, W.C., 1974: Kellyite, a new Mn-Al member of the Serpentine Group from Bald Knob, North Carolina, and new data on grovesite, <u>Amer. Mineral.</u>, 59, p. 1153-1156.

PEDERSEN, F.D., 1980: Remobilization of the massive sulphide ore of the Black Angel Mine, Central West Greenland, Econ. Geol., 75, p. 1022-1041.

PEDERSEN, T.F. & PRICE, N.B., 1982: The geochemistry of manganese carbonate in Panama Basin sediments, <u>Geochim. Cosmochim. Acta.</u>, 46, p. 59-68.

PETERS, T.J. 1980: Progressive metamorphism of manganese carbonates and cherts in the Alps. In: VARENTSOV, I.M. & GRASSELLY, GY. (eds.), Geology & Geochemistry of Manganese, E. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, Vol. 1 p. 271-283.

PETERSEN, E.V., ESSENE, E.J., PEACOR, D.R., & VALLEY, J.W., 1982: Fluorine end – member micas and amphiboles. Amer. Miner. 67, p. 538-544.

PHILLIPS, E.R., RANSOM, D.M. & VERNON, R.H., 1972: Myrmetite and muscovite developed by retrograde metamorphism at Broken Hill, NSW, Mineral. Mag. 38, p. 570 - 578.

PHILLIPS, G.N., 1978: Metamorphism and geochemistry, Willyama Complex, Broken Hill, Unpub. Ph.D. Thesis, Monash Uni., p. 452.

PHILLIPS, G.N., 1980: Water activity changes across an amphibolite-granulite facies transition, Broken Hill, Australia, Contrib. Mineral. Petrol., 75, p. 377-386.

PHILLIPS, G.N. & WALL, V.J., 1981: Evaluation of prograde regional metamorphic conditions: their implications for the heat source and water activity during metamorphism in the Willyama Complex, Broken Hill, Australia, Bull. Minér., 104, p. 801–810.

PHILLIPS, G.N., WALL, V.J. & ARCHIBALD, N.J., 1980: Metamorphosed Fe-rich tholeiites and their relationship to sulphide mineralization, Broken Hill, N.S.W., 5th Aust. Geol. Conv., Hobart. (Abs.). p. 47.

PIDGEON, R.T., 1967: A rubidium-Strontium geochronological study of the Willyama Complex, Broken Hill, Aust. J. Pet., 8, p.283-324.

PLIMER, I.R., 1968: Variability in the Broken Hill lode, North Broken Hill Mine, N.S.W., B.Sc. Hons. Thesis (unpubl.) - U.N.S.W.

PLIMER, I.R., 1975a: The geochemistry of amphibolite retrogression at Broken Hill, Australia, N.Jb Mineral. Mh., p. 431-482.

PLIMER, I.R., 1975b: Geochemistry of hydrothermal alteration around the Broken Hill orebodies, Unpubl. Rept. to Broken Hill M.M.A. 43 pp.

ī

PLIMER, I.R., 1975c: A metamorphogenic alteration zone around the stratiform Broken Hill ore deposits, Australia, <u>Geochemical Journal</u>, 9, p. 211-220.

PLIMER, I.R., 1976a: A plumbian feldspar pegmatite associated with the Broken Hill orebodies, Australia, N. Jb. Mineral Mh, p. 272-288.

PLIMER, I.R., 1976b: Garnet-biotite relationships in high grade metamorphic rocks at Broken Hill, Australia, <u>Geol. Mag.</u>, 113(3), p. 263-270.

PLIMER, I.R., 1977a: The mineralogy of the high grade metamorphic rocks enclosing the Broken Hill orebodies, Australia, <u>N. Jb. Mineral</u> Abh., 131, p. 115-139.

PLIMER, I.R., 1978a: Proximal and distal stratabound ore deposits, Mineralium Deposita, 13, p. 345-353.

PLIMER, I.R., 1978b: The origin of the albite-rich rocks enclosing the cobaltian pyrite deposit at Thackaringa, N.S.W., Australia, <u>Mineral.</u> Deposita, 12, p. 175-187.

PLIMER, I.R., 1979: Sulphide rock zonation and hydrothermal alteration at Broken Hill, Australia, <u>Trans. Instn. Min. Metall.</u>, (Sect. B: Appl. Earth Sci.), 88, p. 237-241.

PLIMER, I.R., 1980a: A discussion of the paper by E.F. Stumpfl "Manganese haloes surrounding metamorphic stratabound base metal deposits", Mineralium Deposita, 15, p. 237-241.

PLIMER, I.R., 1980c: Hydrothermal mobilization of silver during retrograde metamorphism at Broken Hill, Australia, <u>N. Jb. Miner. Mh</u>, 1980, p. 433-437.

PLIMER, I.R., 1981: Water depth - a critical factor for exhalative ore deposits. BMR. J. Aust. Geol. & Geophys., 6, p. 293-300.

PLIMER, I.R., 1982a: Fluorine-bearing minerals from Broken Hill, N.S.W., Aust. Miner., 29, 214-215.

PLIMER, I.R., 1983: The association of tourmaline - bearing rocks with mineralisation at Broken Hill, NSW. In: Broken Hill Conference, 1983. AIMM, Melb. p. 157-176.

PLIMER, I.R. & ELLIOTT, S.M., 1979: The use of Rb/Sr ratios as a guide to mineralization, J. Geochem. Explor., 12, p. 21-34.

PLIMER, I.R., & FINLOW-BATES, T., 1978: Relationship between primary iron sulphide species, sulphur source, depth of formation and age of submarine exhalative sulphide deposits, <u>Mineralium Deposita</u>, 13, p. 399-410.

PORRENGA, D.H., 1966: Clay minerals in recent sediments of the Niger Delta. Proc. 14th Natnl. Conference on Clay minerals. Oxford press, p. 221-223.

-28-

PORTNOV, A.M., VAINTRUB, B.G., SOLNTSEVA, L.S. & DUBAKINA, L.S., 1978: Sturtite, a hydrous silicate of manganese with the structure of trioctahedral mica, Dokl. Akad. Nauk. SSSR 243, p. 1292-1294.

POSTMA, D., 1977: The occurrence and chemistry of recent iron-rich mixed carbonates in a river bog, J. Sed. Petrol., 47, p. 1089-1098.

PUCHELT, H., 1971: Recent iron sediment formation at the Kameni Islands, Santorini (Greece). <u>In</u>: AMSTUTZ,CG & BERNARD,A.J. (eds.) 1971: Ores in sediments, Springer-Verlag, Berlin. p. 227-245.

PYZIK, A.J. & SOMMER, S.E., 1981: Sedimentary iron monosulphides: kinetics and mechanisms, Geochim. Cosmochim. Acta, 45, p. 687-698.

RADKE, F., SCHULTZ, P.K. & BROWN, R.N., 1978: Contributions to Australian mineralogy 9. Zinc-rich chlorite from Chillagoe, Queensland. Aust. Mineral. Devt. Labs. Bull. 23, p. 25-28.

RAMDOHR, P., 1950: The ore deposit of Broken Hill, in N.S.W., Australia, in the light of new geological investigations and ore-microscopy investigations, <u>Hiedelberger Beitrage zur Mineralogie</u> and Petrographie (Bd. 2). 25pp.

RAMDOHR, P., 1969: The ore minerals and their intergrowths. Pergammon press, Oxford. 3rd Ed., English translation, 1174pp.

RAMDOHR, P., 1972: Minerals and structures of the Broken Hill orebody. Summary by H.F. KING, Zinc Corp. Ltd., Broken Hill, from literal translation by Dr. R.O. BRUNNSCHWEILER of the BMR. Copy held at MMA Lib., Broken Hill. 6 pp.

REED, S.J.B. & WARE, N.G., 1975: Quantitative electron microprobe analysis of silicates using energy-dispersive electron microprobe spectrometry. J. Pet. 16, p. 499-519.

RENARD, A., 1878: Sur la structure et la composition minéralogique du coticule. <u>Mém. Cour. et Mém. des Sav. Étr. Acad. Roy. de Belg.</u>, Tome XLI, Bruxelles. ( Ref. in CLIFFORD (1960))

REYNOLDS, R.C. Jr. 1965a: The concentration of Boron in Precambrian seas. Geochem. Cosmochem. Acta, 29, p.1-16.

REYNOLDS, R.C., Jr. 1965b: Geochemical behaviour of boron during the metamorphism of carbonate rocks. <u>Geochim. Cosmochim. Acta</u>, 29, p.1101-1114.

REYNOLDS, P.H., 1971: A U-Th-Pb isotope study of rocks and ores from Broken Hill, Aust., Earth, Planet. Sci. Lett., 12, p.215-223.

RICE, J.M. & FERRY, J.M., 1982: Buffering, infiltration, and the control of intensive variables during metamorphism. <u>In:</u> FERRY, J.M (ed) <u>Characterization of metamorphism through chemical equilibria.</u> Reviews in Mineralogy vol. 10, p.267–326. Mineral. Soc. Amer., Washington.

RICKWOOD, P.C., 1968: On recasting analyses of garnet into end member molecules, Contrib. Mineral. Petrol., 18, p. 175-198.

ROBERTS, W.L., RAPP, E.R & WEBER, J., 1974: Encyclopedia of minerals, Van Nostrand, New York. 693p.

ROBINSON, P. & TRACY, R.J., 1977: Sulphide-silicate-oxide equilibria in sillimanite-K-feldspar grade pelitic schists, central Massachusetts: EOS, 58, p.73-524.

ROBINSON, P., SPEAR, F.S., SCHUMACHER, J.C., LAIRD, J., KLEIN, C., EVANS, B.W., DOOLAN, B.L., 1982. Phase relations of metamorphic amphiboles: natural occurrence and theory <u>In:</u> VEBLEN, D.R & RIBBE, P.H (eds.). <u>Reviews in mineralogy vol. 9B; Amphiboles: Petrology and</u> <u>experimental phase relations.</u> Ch.1. Mineral. Soc. Amer., Washington. p. 1-228.

ROSS, C.S., 1946: Sauconite - a clay mineral of the montmorillonite group, Amer. Mineral., 31, p. 411-424.

ROSSMAN, G.R., GREW, E.S. & DOUASE, W.A., 1982: The colours of sillimanite, Amer. Mineral., 67, p. 749-761.

ROY, S., 1968: Mineralogy of the different genetic types of manganese deposits, Econ. Geol., 63, p. 760-786.

ROY, S., 1976: Ancient manganese deposits, <u>In</u>: WOLF, K.H. (Ed.) Handbook of stratabound and stratiform ore deposits, Elsevier, Amsterdam. Vol.7 p. 395-476.

ROY, S. & PURKAIT, P.K., 1968: Mineralogy and genesis of the metamorphosed manganese silicate rocks (gondites) of Gowari Wadhono,

-31-

Madhya Pradesh, India, Contr. Mineral. Petrol., 20, p. 86-114.

RUI, I.J. & BAKKE, I., 1975: Stratabound sulphide mineralisation in the Kjøli area, Røros district, Norwegian Caledonides. <u>Norsk Geologisk</u> Tidsskrift, 55 p. 51-75.

RUMBLE, D.I., FERRY, J.M., HOERING, T.C. & BOUCOT, A.J., 1982: Fluid flow during metamorphism at the Beaver Brook Fossil Locality, New Hampshire, Amer. J. Sci., 282, p. 886-919.

RUSSELL, M.J., SOLOMON, M. & WALSHE, J.L., 1981: The genesis of sediment-hosted, exhalative zinc + lead deposits, <u>Mineralium Deposita</u>, 16, p. 113-127.

RUTLAND, R.W.R., MARJORIBANKS, R.W., LAING, W.P. & GLEN, R.A., 1978: Tectonic deformations at Broken Hill, New South Wales, Australia, and their significance for interpretations of ore environment, <u>Trans.</u> Instn. Min. Metall. (Sect. B: Appl. Earth Sci.) 87, p. B172-B176.

RYALL, W.R., 1979: Mercury in the Broken Hill (N.S.W., Australia) lead-zinc-silver bodies, J. Geochem. Expl., 11, p. 175-194.

RYALL, W.R., 1981: The forms of mercury in some Australian stratiform Pb-Zn-Ag deposits of different regional metamorphic grades, <u>Mineral.</u> Deposita, 16, p. 425-435.

SAMSONOVA, N.S., ZHABIN, A.G., SEREEVA, T.A., BOGOMODOVA, V.D., 1982: Zinciferous chlorite from the Kvaisi lead-zinc deposit. Doklady Acad. Nauk. SSSR., 226, p. 1458-1462.

SANFORD, R.F., 1981: Mineralogical and chemical effects of hydration reactions and application to serpentinization, <u>Amer. Mineral.</u>, 66, 290-297.

SAXBY, J.D., 1981: Organic matter in ancient ores and sediments. BMR. J. of Aust. Geol. & Geophys., 6, p. 287-291.

SCHILLER, E.A. & TAYLOR, F.C., 1965: Spessartine-quartz rocks (coticles) from Nova Scotia, Amer. Mineral., 50, p. 1477-1481.

SCHNIEDER, A., 1978: Abundance in common metamorphic rocks. In: WEDEPOHL, K.H. (ed). <u>Handbook of Geochemistry</u>. Springer - Verlag, Berlin. 16-M-1-5,16-N-1-3. Vol. 2 pt.16 (sulphur).

SCOTT, S.D., BOTH, R.A. & KISSIN, S.A., 1977: Sulphide petrology of the Broken Hill region, New South Wales, <u>Econ. Geol.</u> 72, p. 1410-1425.

SEGNIT, E.R., 1961: Petrology of the zinc lode, N.B.H.C. Ltd., Broken Hill, N.S.W., Proc. Australas. Inst. Min. Metall., 199, p. 87-112.

SEGNIT, E.R., 1977: Jacobsite and magnetite from Broken Hill, New South Wales. Aust. Mineral., 9, p.37-39.

Serdyuchenko, D.P., 1948: On the crystallochemical role of Ti in micas. <u>Doklady Akad. Nauk SSSR.</u>, 59, p.739. (Ref. in Deer et al., 1966).

SHARMA, R.S. & MacRAE, N.D., 1981: Paragenetic relations in gedrite-cordierite-staurolite-biotite-sillimanite-kyanite gneisses at Ajitpura, Rajasthan, India, Contrib. Mineral Petrol., 78, p. 48-60.

SHAW, S.E., 1968: Rb-Sr isotopic studies of the mine sequence rocks at Broken Hill. In; RADMANOVICH, M. & WOODCOCK, J. (eds.) Broken Hill <u>Mines - 1968</u>, Australas. Instn. Min. Metall. Monog. no. 3, Melb. p. 185-198.

SHAW, S.E., 1973: Geochemistry of the mine sequence rocks, Broken Hill, Unpub. Report, Macquarie University. (in MMA Library, Broken Hill).

SIVAPRAKASH, C., 1980: Mineralogy of manganese deposits of Koduru and Garbham, Andhra Pradesh, India, Econ. Geol. 75, p. 1083-1104.

SMELLIE, J.A.T., 1974: Formation of atoll garnets from the aureole of the Ardara Pluton, Co. Donegal, Ireland, <u>Mineral. Mag.</u>, 39, p. 878-888.

SMITH, D.C., 1980: Highly aluminouus sphene (titanite) in natural high - pressure hydrous-eclogite-facies rocks from Norway and Italy, and in experimental runs at high pressure. <u>26th International Geological</u> <u>Congress (1980)</u>. Mineralogy Section 2 p. 145 (Abstract).

SPEAR, F.S. & SELVERSTONE, J., 1983: Water exsolution from quartz: implications for the generation of retrograde metamorphic fluids. Geology, 11, p.82-85. SPEER, J.A. 1981: The nature and magnetic expression of isograds in the contact aureole of the Liberty Hill pluton, South Carolina : a summary. Geol. Soc. Amer. Bull., 92, p.603-609.

SPRY, A. 1969: Metamorphic textures, Oxford Press.

SPRY, P.G., 1978: The geochemistry of garnet-rich lithologies associated with the Broken Hill orebody, N.S.W., Australia, Unpub. M.Sc. thesis, Uni. of Adelaide.

,

SPRY, P.G., 1982: An unusual gabnite-forming reaction, Geco Base metal deposit, Mamtouwadge, Ontario. Can. Min., 20, p.549-553.

SQUILLER, S.F. & SCLAR, C.B., 1980: Genesis of the Sterling Hill zinc deposit, Sussex Co., New Jersey, In: RIDGE, J.D. (Ed.), Proceedings of the fifth quadrennial IAGOD symposium, Vol. 1, p. 759-766.

STANTON, R.L., 1964: Mineral interfaces in stratiform ores, <u>Trans</u>. Instn. Min. & Metall. (Sect. B: Appl. Earth Sci.),74, p. B45-B79.

STANTON, R.L., 1966: Compositions of stratiform ores as evidence of depositional processes, Trans. Instn. Min. Metall., (Sect. B: Applied Earth Sci.) 75, p. B75-B84.

STANTON, R.L., 1972: A preliminary account of chemical relationships between sulphide lode and "banded iron formation" at Broken Hill, N.S.W., Econ. Geol. 67, p. 1128-1145.

•

STANTON, R.L., 1976a: Petrochemical studies of the ore environment at Broken Hill, New South Wales: 1 - Constitution of "banded iron formation", <u>Trans. Instn. Min. Metall.(Sect. B: Appl. Earth Sci.</u>) 85, p. B33-B46.

STANTON, R.L., 1976b: Petrochemical studies of the ore environment at Broken Hill, New South Wales: 2 - Regional metamorphism of banded iron formations and their immediate associates, <u>Trans. Instn. Min. Metall.</u>, Sect. B, 85, Appl. Earth Sci.) 85, p. B118-B131.

STANTON, R.L., 1976c: Petrochemical studies of the ore environment at Broken Hill, N.S.W: 3 - banded iron formations and sulphide orebodies: constitutional and genetic ties, <u>Trans. Inst. Min. Metall.,( Sect. B,</u> Appl. Earth Sci.) 85, p. B132-B141.

STANTON, R.L., 1976d: Petrochemical studies of the ore environment at Broken Hill, New South Wales: 4 – environmental synthesis, <u>Trans</u>. Instn. Min. Metall. (Sect. B: Appl. Earth Sci.), 85, p. B221-B233.

STANTON, R.L., 1977: Discussion on papers (1976 a, b, c, d), <u>Trans.</u> Instn. Min. Metall. (Sect. B: Appl. Earth Sci.), 86, p. Blll-Bll4.

STANTON, R.L., 1978a: Tectonic deformations at Broken Hill, New South Wales, Australia, and their significance for interpretations of ore environment: Authors reply, <u>Trans. Instn. Min. Metall.( Sect. B: Appl.</u> Earth Sci.) 87, p. B176-B180.

STANTON, R.L., 1982: Metamorphism of a stratiform sulfide orebody at Mount Misery, Einasleigh, Queensland, Australia: 1 - Observations & 2 - Implications, Trans. Instn. Min. Metall. (Sect. B: Appl. Earth Sci.), 91, p. B47-71 & B72-80.

STANTON, R.L., 1983: Stratiform ores and metamorphic processes - some thoughts arising from Broken Hill. In: Broken Hill Conference, 1983. Aust. Inst. Min. Metall., Melb. p. 11-28.

STANTON, R.L. & RICHARDS, S.M., 1961: The abundances of lead, zinc copper and silver at Broken Hill, Proc. Australas. Inst. Min. Metall., 198, p. 309-367.

STANTON, R.L., ROBERTS, W.P.H. & CHANT, R.A., 1978: Petrochemical studies of the ore environment at Broken Hill, N.S.W: 5 - Major element constitution of the lode and its interpretation, <u>Proc.</u> Australas. Inst. Min. Metall., 266, p. 51-78.

STANTON, R.L. & VAUGHAN, J.P., 1979: Facies of ore formation: A preliminary account of the Pegmont deposit as an example of potential relations between small "iron formations" and stratiform sulphide ores, Proc. Australas. Inst. Min. Metall. 270, p. 25-38.

STANTON, R.L. & WILLIAMS, K.L., 1978: Garnet compositions at Broken Hill, N.S.W., as indicators of metamorphic processes, <u>J. Petrol.</u>, 19, p. 514-529.

STEVENS, B.P.J., STROUD, W.J., WILLIS, I.L., BROWN, R.E., & BARNES,

-37-

R.G., 1980: A stratigraphic interpretation of the Broken Hill Block <u>In</u>: STEVENS, B.P.J (ed) <u>A guide to the stratigraphy and mineralization of</u> the Broken Hill Block, NSW. Records of the Geol. Survey of NSW, 20. p. 9-32.

STILLWELL, F.L., 1959: Petrology of the Broken Hill lode and its bearing on ore genesis, Proc. Australas. Inst. Min. Metall., 190, p. 1-84.

STILLWELL, F.L. & EDWARDS, A.B., 1939: Note on lollingite and the occurence of cobalt and nickel in the Broken Hill Lode. Proc. Australas. Inst. Min. Metall., 114, p.111-124.

STILLWELL, F.L. & EDWARDS, A.B., 1956: Uralite dolerite dykes in relation to the Broken Hill lode, Proc. Australas. Inst. Min. Met., 178, p. 213-232.

STODDARD, E.F., 1979: Zinc-rich hercynite in high-grade metamorphic rocks: a product of dehydration of staurolite, <u>Amer. Mineral.</u>, 84, p. 736-741.

STUMPFL, E.F., 1979: Manganese haloes surrounding metamorphic stratabound base metal deposits, Mineralium Deposita., 14, p. 207-217.

SUESS, E., 1978: Mineral phases formed in anoxic sediments by microbial decomposition of organic matter, <u>Geochim. Cosmochim. Acta</u>, 43, p. 339-352.

SUNDBLAD, K., 1981: Chemical evidence for, and implications of, a primary FeS phase in the Ankarvatlnet Zn-Cu-Pb massive sulphide deposit, Central Swedish Caledonides, <u>Mineralium Deposita</u>, 16, p. 129-146.

SUNDBLAD, K., 1982: Distribution of gahnite-bearing sulphidic deposits in the Scandinavian Caledonides. <u>Trans. Instn. Min. Metall. (Sect. B</u> – Appl. Earth Sci.), 91, p. B214-B218.

TAYLOR, G.H., 1971: Carbonaceous Matter: A guide to the genesis and history of ores, <u>Soc. Mining. Geol. Japan, Spec. Issue</u>, 3, p. 283-288. (Proc. IMA-IAGOD Meetings '70, IAGOD Vol.).

THOMAS, W.N., 1960: Notes on facies variation in rocks of the Willyama Series; Report to the Zinc Corporation Ltd., Ref. No. N.S.W. 103/38, 10th June, 1960. M.M.A. Library, Broken Hill.

TRACY, R.J., 1982: Compositional zoning and inclusions in metamorphic minerals In: FERRY, J.M. (ed.) <u>Characteristics of metamorphism through</u> mineral equilibria: Reviews in mineralogy. 10, p.355-397.

TRACY, R.J. & DIETSCH, C.W. 1982: High-temperature retrograde reactions in pelitic gneiss, central Massachusettes, <u>Can. Mineral.</u>, 20, p. 425-437.

TSO, J.L., GILBERT, M.C. & CRAIG, J.R., 1979: Sulphidation of synthetic biotites. Amer. Mineral., 64, p.304-316.

-40-

TURNER, W.J., 1927: Notes on the geology of the Pinnacles Mine and District. Proc. Aus. Inst. Min. Metall., 68. p. 299-312.

VERNON, R.H., 1962: Co-existing cummingtonite and hornblende in an amphibolite from Duchess, Queensland, Aust. <u>Amer. Mineral.</u>, 47, p. 360-370.

VERNON, R.H. & RANSOM, D.M., 1971: Retrograde schists of the amphibolite facies at Broken Hill, New South Wales, <u>J. Geol. Soc.</u> Aust. 18, p. 267-277.

VOKES, F.M., 1968: Regional met'amorphism of the Palaeozoic geosynclinal sulphide ore deposits of Norway, <u>Trans. Instn. Min. Metall.</u>, (Sect. B: Appl. Earth Sci.) B77, p. 53-80.

VOKES, F.M., 1971: Some aspects of the regional metamorphic mobilization of pre-existing sulphide deposits, Mineralium Deposita, 6, p. 122-129.

WALKER, J.L., 1964: Primary geochemical dispersion in relation to the mineralization at Broken Hill, N.S.W., Unpub. Ph.D., Imperial College, London.

WALL, V.J. & ENGLAND, R.N., 1979: Zn-Fe Spinel-Silicate-Sulphide reactions as sensors of metamorphic intensive variables and processes.

Geol. Soc. Amer. Ann. Meet. (abstracts with programs) 11, p.534.

WALTHER, J.V. and ORVILLE, P.M., 1982: Volatile production and transport in regional metamorphism. <u>Contrib. Mineral. Petrol.</u>, 79, 252-257.

WEBER-DIEFENBACH, K., 1977: Geochemistry and diagenesis of recent heavy metal ore deposits of the Atlantis – II – Deep (Red Sea). <u>In:</u> KLEMM, D.D., & SCHNEIDER, H-J.(eds.). <u>Time and stratabound ore</u> deposits. Springer- Verlag. New York., p. 419-436.

WEDEPOHL, K.H., 1971: Environmental influences on the chemical composition of shales and clays <u>IN</u>: AHRENS, L.H., PRESS, F., RUNCORN S.K. and UREY, H.C. (Eds.). <u>Physics and Chemistry of the Earth</u>, Pergammon Press, Oxford. Vol. 8, p. 307-333.

WEDEPOHL, K.H., 1972: Abundance in rock-forming minerals, phase equilibria, zinc minerals. (Zinc, 30-D) in WEDEPOHL, K.H., (ed.) <u>Handbook of geochemistry</u>, Springer-Verlag, Berlin-Heidelberg. II-3, p.30-D-1-12.

WEDEPOHL, K.H., 1980: Geochemical behaviour of manganese <u>In</u>: VARENSTOV, I.M., and GRASSELLY, Gy. (Eds.), <u>Geology and Geochemistry</u> of <u>Manganese</u>, Stuttgart., E. Schweigerbartsche Verlagbuchhardlung. Vol. 1., p.335-352.

WENDLANDT, R.F., 1981: Influence of CO2 on melting of model granulite facies assemblages: a model for the genesis of charnockites, Amer. Mineral., 66, p. 1164-1174.

WHELAN, J.A. & GOLDICH, S.S., 1961: New data for hisingerite and neotocite. Amer. Mineral, 46, p.1412-1423.

WHITE, D.E., 1968: Environments of generation of some base metal ore deposits, Econ. Geol., 63, p. 301-335.

WILKINS, R.W.T., 1977: Fluid inclusion assemblages of the stratiform Broken Hill ore deposit, N.S.W., Australia, Science, 198, p. 185-187.

WILLIAMS, P., 1983: A metamorphic sulphide-silicate reaction producing gahnite from the Fornas Cu mine, NW Spain. (Abstr.& programme)."Sulphide mineralogy and petrology with special reference to metamorphic rocks". Mineral. Soc. Ann. Meet. Mineral. Soc. Bull. No. 57, p. 8-9.

WILLIS, I.L., BROWN, R.E., STROUD, W.J. & STEVENS, B.P.J., 1983: The early Proterozoic Willyama Supergroup: stratigraphic subdivision and interpretation of high to low-grade metamorphic rocks in the Broken Hill Block, NSW. J. Geol. Soc. Aust., 30, p.195-224.

WILLIS, I.L., STEVENS, B.P.J., STROUD, W.J., BROWN, R.E., BRADLEY, G.M. & BARNES, R.G., 1983: Metasediments, composite gneisses, and migmatites <u>In</u>: STEVENS, B.D.J. & STROUD, W.J. (eds.). Rocks of the Broken Hill Block: Their classification, nature, stratigraphic distributrion and origin. <u>Records of the Geol. Surv. NSW.</u>, 21(1). p.57-126.

-42-

WINTER, G.A., ESSENE, E.J., & PEACOR, D.R., 1981: Carbonates and Pyroxenoids from the manganese deposit near Bald Knob, North Carolina, Amer. Mineral., 66, p. 278-289.

WINTSCH,R.P., 1981: Syntectonic Oxidation. Amer.J. Sci., 281, p.1223-1239

WISE, M.A., 1981, Blue quartz in Virginia, <u>Virginia Minerals</u>, 27, p. 9-13.

WONES, D.R., FAHEY, J.J. & AYUSO, R.A., 1977: A search for "annite" (abstract). EOS, 58, p.525.

WRIGHT, T.L., 1968: X - ray and optical studies of alkali feldspars: II An X - ray method for determining the composition and structural state from measurement of 20 values for three reflections. <u>Amer.</u> Miner., 53, p. 88-104.

YARDLEY, B.W.D., 1981: A note on the composition and stability of Fe-staurolite, N Jahrb. Mineral Mh., p. 127-132.

#### Addendum to Bibliography

- HAWKINS, B.W., 1968a: The Zinc Lode Orebodies of the Broken Hill Lode. <u>in</u> RADMANOVICH, M. & WOODCOCK, J. (eds.) Broken Hill Mines - 1968. Australas. Inst. Min. Met. Mon. 3, p. 151-159
- HOBBS, B.E., 1966: The structural environment of the northern part of the Broken Hill orebody. <u>Jnl. Geol. Soc. Aust.</u>, 13, p. 315-318
- HELGESON, H.C., DELANEY, J.M., NESBITT, H.W. & BIRD, D.K., 1978: Summary and critique of the thermodynamic properties of rock-forming minerals. Amer. J. Sci., 278-A, p. 1-229
- WINKLER, H.G.F., 1974: <u>Petrogenesis of metamorphic rocks</u>. Springer-Verlag, Berlin. pp. 334
- BACHINSKI, S.W. & SIMPSON, E.L., 1984: Ti-phlogopites of the Shaw's Cove minette: a comparison with other micas of other lamprophyres, potassic rocks, Kimberlites and mantle xenoliths. Amer. Miner., 69, p. 41-56
- PETERSEN, E.U., ANOVITZ, L.M. & ESSENE, E.J., 1984: Donpeacorite, (Mn,Mg)MgSi<sub>2</sub>O<sub>6</sub>, a new orthopyroxene and its proposed phase relations in the system MnSiO<sub>3</sub>-MgSiO<sub>3</sub>-FeSiO<sub>3</sub>. Amer. Miner., 69, p. 472-480

-44-

#### APPENDIX I : ANALYTICAL METHODS

# 1. Electron Microprobe Analysis

These analyses were conducted at the Research School of Earth Sciences, Australian National University, Canberra, and on the Jeol 733 microprobes in the Electron Optical Centre, Adelaide University and Mineral Services, Mount Isa Mines Limited, Mount Isa. The Jeol 733 microprobes utilise both wavelength and energy dispersive spectrometers, while the ANU microprobe uses the energy dispersive system of Reed & Ware (1975). Both systems gave detection limits of about 0.05 wt.% oxide.

# 2. X-Ray Fluorescence

These analyses were determined on whole-rock samples for Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, Pb, Zn, S, P, Ba, Rb and Sr by the Zinc Corporation Assay Office at Broken Hill, NSW. The samples were prepared in a Lithium Borate Glass, using the standard methods of Norrish & Chappel (1967).

#### 3. Emission Spectroscopy

Ga, Li and B were determined at the Australian Mineral Development Laboratories, Frewville, South Australia, by standard emission spectroscopic methods.

#### 4. Atomic Absorption Spectroscopy

Analyses for Pb, Ag, Zn, Cu, Fe, As and Bi were conducted by the Zinc Corporation Assay Office by Atomic Absorption Spectroscopy. Samples were digested in HCl and HNO<sub>3</sub>.

#### APPENDIX I (a)

### 5. X-Ray Diffraction Analysis

Samples were handpicked, finely crushed and spread on glass slides prior to analysis in a Phillips Norelco X-Ray Diffractometer. Normally Ni-filtered Cu radiation was used, at 40 kV and 20 mA, and the scan speed varied between 1° and  $\frac{1}{4}$ ° per minute, depending on the precision required. Where high precision was necessary, about 10-20% of A.R. Si or KBrO<sub>3</sub> were mixed with the samples for calibration. KBrO<sub>3</sub> was used for the X-Ray Diffraction determination of structural states of the potash feldspars, and the relevant peaks (CuK  $\alpha_1$ ) were assumed to be 21.12°, 41.17° and 31.56°, for the method of Wright (1968).

#### APPENDIX II : MINERAL ANALYSES

These analyses were conducted at the Electron Optical Centre, Adelaide University (AU), the Research School of Earth Sciences, Australian National University (ANU), and the Mineral Services laboratories, Mount Isa Mines Pty Ltd (MIM). Further details of the microprobe techniques are provided in Appendix 1.

## Detection Limits

The detection limits for most elements is about 0.05 wt%. The analyses are recorded here to four decimal places because that is how they are output from the AU microprobe. The last two decimal places, at least, are insignificant. Similarly, the last decimal place in the calculated formula is insignificant.

## Sample Localities

Large numbers such as 4502/16.6 represent drillhole samples, in this example a sample from 16.6 m in DDH4502. Most of these drillholes are shown in Figures 2.1 to 2.10. Small numbers such as 3/4 are samples collected from underground exposures of the WAL in the NBHC Mine, and have no real locality significance. The underlying codes, e.g. Gl RIM, represent specific points analysed on the polished section.

# II - 2

# CONTENTS

| Garnets                | p. 3 - 10      |
|------------------------|----------------|
| Biotites               | p. 11 - 14, 37 |
| Sillimanite            | p. 14, 39      |
| Spinels                | p. 15 - 16, 36 |
| Amphiboles             | p. 17 - 22     |
| Rhodonite              | p. 22 - 23     |
| Pyroxmangite           | p. 23 - 25     |
| Hedenbergite           | p. 26          |
| Kanoite                | p. 27          |
| Staurolite             | p. 27 - 28     |
| Chlorites              | p. 28 - 29     |
| Pyrosmalite            | p. 29 - 30     |
| Manganpyrosmalite      | p. 30          |
| Sericite               | p. 30          |
| Paragonite             | p. 31          |
| Stilpnomelane          | p. 31          |
| Berthierine            | p. 31          |
| 'Sturtite'-Hisingerite | p. 31          |
| Greenalite             | p. 32          |
| Sphene                 | p. 32, 40      |
| 'Pug'                  | p. 32          |
| Ilmenite               | p. 33, 38      |
| Calcite                | p. 33          |
| Feldspars              | p. 34, 35      |
| Fluorapatite           | p. 39          |

÷

### II - 3

SELECTED ANALYSES FROM : JNH02 : 1, 2, 5, 8, 14, 15, 17, 18, 20, 26, 27, 30, 32, 33, 35, 36, 39, 41, 42, 51-54, 56-58, 62-64, -89, 93-95, 98-102, 104, 107-109, 113-114, 127-128, 134-135, 144, 153-154, 158, 160-161, 165-167, 171-177, 181-185, 192-196

,

GARNETS (ANU)

t

|           | 2/1B.<br>Gl.   | 2/1B.<br>Glrim. | 2/1B.<br>G2.   | 2/1B.<br>G3.    | 2/4A.<br>GICORE. | 2/4A.<br>Glrim. | 2/4A.<br>G2CORE. | 2/4A.<br>G2RIM.  |
|-----------|----------------|-----------------|----------------|-----------------|------------------|-----------------|------------------|------------------|
| S102      | 36.6600        | 36,5600         | 36.4200        | 36.5800         | 37.0600          | 36.9800         | 36.7700          | 36.7500          |
| TI02      | .1300          | .1800           | .1900          | .1300           | 0.0000           | 0.0000          | 0.0000           | 0.0000           |
| AL203     | 20.7700        | 20.9900         | 20.8500        | 20.7800         | 21.0200          | 20.9700         | 20.7600          | 20.8200          |
| FEO       | 12.4000        | 12.0400         | 12.3800        | 12.2700         | 24.2400          | 23.7500         | 24.3700          | 24.3500          |
| MINO      | 25.4200        | 25.5400         | 25.2000        | 25.5500         | 14.7500          | 14.9100         | 14.9000          | 14.8100          |
| MGO       | 1.2700.        | 1.3200          | 1.3600         | 1.2600          | 2.1900           | 2.1200          | 2.1500           | 2.1000           |
| CAO       | 4.0500         | 3.8700          | 4.0500         | 3.9400          | 1.5000           | 1,5000          | 1.4100           | 1.2500           |
| K20       | 0.0000         | 0.0000          | 0.0000         | 0.0000          | 0.0000           | 0.0000          | 0.0000           | 0.0000           |
| NA2O      | 0.0000         | 0.0000          | 0.0000         | 0.0000          | 0.0000           | 0.0000          | 0.0000           | 0.0000           |
| a         | 0.0000         | 0.0000          | 0.0000         | 0.0000          | 0.0000           | 0.0000          | 0.0000           | 0.0000           |
|           | 100.7000       | 100.5000        | 100.4500       | 100.5100        | 100.7600         | 100.2300        | 100.3600         | 100.0800         |
| 0=F,CL    | 0.0000         | 0.0000          | 0.0000         | 0.0000          | 0.0000           | 0.0000          | 0.0000           | 0.0000           |
|           |                |                 |                |                 | <del></del>      | ·               | <del></del>      |                  |
| TOTAL     | 100.7000       | 100.5000        | 100.4500       | 100.5100        | 100.7600         | 100.2300        | 100.3600         | 100.0800         |
|           |                |                 |                |                 |                  |                 |                  |                  |
| SI        | 2.9648         | 2.9578          | 2.9517         | 2.9638          | 2.9861           | 2.9923          | 2.9820           | 2.9859           |
| TI        | .0079          | .0110           | .0116          | .0079           | 0.0000           | 0.0000          | 0.0000           | 0.0000           |
| AL        | 1.9803         | 2.0020          | 1.9922         | 1.9849          | 1.9967           | 2.0004          | 1.9848           | 1.9942           |
| FE        | .8387          | .8146           | .8391          | .8314           | 1.6335           | 1.6072          | 1.6529           | 1.6546           |
| MN<br>MG  | 1.7414         | 1.7502          | 1.7300         | 1.7535          | 1.0067           | 1.0219          | 1.0235           | 1.0192           |
| CA        | .1531<br>.3510 | .1592<br>.3355  | .1643<br>.3517 | .1521           | .2630            | .2557           | .2599            | .2543            |
| ĸ         | 0.0000         | 0.0000          | 0.0000         | .3421<br>0.0000 | .1295<br>0.0000  | .1301           | .1225<br>0.0000  | .1088            |
| NA        | 0.0000         | 0.0000          | 0.0000         | 0.0000          | 0.0000           | 0.0000          | 0.0000           | 0.0000<br>0.0000 |
| ά.        | 0.0000         | 0.0000          | 0.0000         | 0.0000          | 0.0000           | 0.0000          | 0.0000           | 0.0000           |
| <u>u</u>  | 0.0000         | 0.0000          | 0.0000         | 0.0000          | 0.0000           | 0.0000          | 0.0000           | 0.0000           |
| 0,0H,CL,F | 12.0000        | 12.0000         | 12.0000        | 12.0000         | 12.0000          | 12.0000         | 12.0000          | 12.0000          |
| No. atoms | 20.0371        | 20.0303         | 20.0406        | 20.0358         | 20.0155          | 20.0075         | 20.0256          | 20.0170          |

|           | 2/4A.<br>G3. | 2/5A-I.<br>Gl. | 2/5A-I.<br>GlRIM. | 2/5A-I.<br>G2. | 2/5A-1.<br>G3 CORE. | 2/5A-I.<br>G3 RIM. | 2/7A.<br>Gl CORE. | 2/7A.<br>Gl RIM. |
|-----------|--------------|----------------|-------------------|----------------|---------------------|--------------------|-------------------|------------------|
| S102      | 37.1700      | 36.3700        | 36.3800           | 36.3700        | 36.0400             | 36.4700            | 36.7600           | 36.8100          |
| TIO2      | 0.0000       | 0.0000         | 0.0000            | 0.0000         | .1300               | 0.0000             | 0.0000            | 0.0000           |
| AL.203    | 20.9200      | 20.4600        | 20.5300           | 20.6000        | 20.4500             | 20.8100            | 21.3900           | 21.1600          |
| FEO       | 24.0800      | 11.3000        | 10.9500           | 11.0500        | 12.0700             | 11.8800            | 31.8500           | 32.2800          |
| MNO       | 15.1300      | 28.8900        | 29.2800           | 29.1500        | 28.4400             | 28.9500            | 5.8800            | 5.9000           |
| MGO       | 1.9700       | .3200          | 0.0000            | .3300          | 0.0000              | 0.0000             | 2.7800            | 2.5200           |
| CAO       | 1.6800       | 3.1700         | 3.1200            | 2.9900         | 3.1700              | 2.6800             | 1.8300            | 1.9000           |
| K20       | 0.0000       | 0.0000         | 0.0000            | 0.0000         | 0.0000              | 0.0000             | 0.0000            | 0.0000           |
| NA2O      | 0.0000       | 0.0000         | 0.0000            | 0.0000         | 0.0000              | 0.0000             | 0.0000            | 0.0000           |
| a         | 0.0000       | 0.0000         | 0.0000            | 0.0000         | 0.0000              | 0.0000             | 0.0000            | 0.0000           |
|           | 100.9500     | 100.5100       | 100.2600          | 100.4900       | 100.3000            | 100.7900           | 100.4900          | 100.5700         |
| 0=F,CL    | 0.0000       | 0.0000         | 0.0000            | 0.0000         | 0.0000              | 0.0000             | 0.0000            | 0.0000           |
| 1         |              |                |                   |                |                     |                    |                   |                  |
| TOTAL     | 100.9500     | 100.5100       | 100.2600          | 100.4900       | 100.3000            | 100.7900           | 100.4900          | 100.5700         |
|           |              | •              |                   |                |                     |                    |                   |                  |
| SI        | 2.9930       | 2.9747         | 2.9826            | 2.9731         | 2.9618              | 2.9757             | 2.9592            | 2.9681           |
| TI        | 0.0000       | 0.0000         | 0.0000            | 0.0000         | .0080               | 0.0000             | 0.0000            | 0.0000           |
| AL.       | 1.9860       | 1.9729         | 1.9843            | 1.9853         | 1.9813              | 2.0018             | 2.0300            | 2.0114           |
| FE        | 1.6216       | •7730          | .7508             | •7554          | .8296               | .8107              | 2.1443            | 2.1768           |
| MN        | 1.0320       | 2.0015         | 2.0334            | 2.0184         | 1.9797              | 2.0009             | •4009             | .4030            |
| MG        | .2364        | .0390          | 0.0000            | .0402          | 0.0000              | 0.0000             | .3335             | .3028            |
| CA        | .1450        | .2778          | .2741             | .2619          | .2791               | •2343              | .1578             | .1642            |
| K         | 0.0000       | 0.0000         | 0.0000            | 0.0000         | 0.0000              | 0.0000             | 0.0000            | 0.0000           |
| NA        | 0.0000       | 0.0000         | 0.0000            | 0.0000         | 0.0000              | 0.0000             | 0.0000            | 0.0000           |
| a'        | 0.0000       | 0.000          | 0.0000            | 0.0000         | 0.0000 -            | 0.0000             | 0.0000            | 0.0000           |
| 0,0H,CL,F | 12.0000      | 12.0000        | 12.0000           | 12.0000        | 12.0000             | 12.0000            | 12.0000           | 12.0000          |
| No. atoms | 20.0140      | 20.0388        | 20.0253           | 20.0343        | 20.0396             | 20.0234            | 20.0258           | 20.0262          |
| 17, acuis | 20.0140      | 20.0300        | 20.0233           | 20.0343        | 20.0396             | 20.0234            | 20.0238           | 20               |

,

|             | 2/7A.    | 2/7A.    | 2/7A.    | 4496/53.6. | 4496/53.6. | 4496/53.6. | 4496/53.6. | 4496/53.6. |
|-------------|----------|----------|----------|------------|------------|------------|------------|------------|
|             | G2.      | G3 CORE. | G3 RIM.  | G1 CORE.   | G1 RIM.    | G1 INT.    | Gl INT2.   | G1 RIM 2.  |
|             |          |          |          |            |            | ·          |            |            |
| SI02        | 36.8000  | 36.5000  | 36.7100  | 37.1100    | 37.0300    | 36.9300    | 37.0700    | 36.6300    |
| <b>TIO2</b> | 0.0000   | 0.0000   | 0.0000   | 0.0000     | 0.0000     | 0.0000     | 0.0000     | .1400      |
| AL203       | 21.1300  | 21.3000  | 21.2300  | 21.0100    | 20.4900    | 21.2300    | 20.9100    | 20.9600    |
| FEO         | 32.2800  | 32.0500  | 32.3300  | 23.5600    | 22.3400    | 23.6900    | 23.2800    | 23.3100    |
| MNO         | 6.0800   | 6.1500   | 5.8200   | 14.6400    | 17.5700    | 14.4100    | 15.3800    | 15.7800    |
| MGO         | 2.6700   | 2.6500   | 2.5500   | 2.6700     | 1.7000     | 2.7600     | 2.3400     | 2.3300     |
| CAO         | 1.9400   | 1.8500   | 1.8700   | 1.5100     | 1.3700     | 1.4700     | 1.5200     | 1.5900     |
| K20         | 0.0000   | 0.0000   | 0.0000   | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| NA2O        | 0.0000   | 0,0000   | 0.0000   | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| CL.         | 0.0000   | 0.0000   | 0.0000   | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
|             | 100.9000 | 100.5000 | 100.5100 | 100.5000   | 100.5000   | 100.4900   | 100.5000   | 100.7400   |
| O=F,CL      | 0.0000   | 0.0000   | 0.0000   | 0.0000     | 0.0000     | 0.000 o    | 0.0000     | 0.0000     |
|             |          |          |          |            |            |            |            |            |
| TOTAL       | 100.9000 | 100.5000 | 100.5100 | 100.5000   | 100.5000   | 100.4900   | 100.5000   | 100.7400   |
| SI          | 2.9604   | 2.9473   | 2.9618   | 2.9872     | 3.0052     | 2.9720     | 2.9909     | 2,9585     |
| TI          | 0.0000   | 0.0000   | 0.0000   | 0.0000     | 0.0000     | 0.0000     | 0.0000     | .0085      |
| AL          | 2.0039   | 2.0277   | 2.0193   | 1.9938     | 1.9604     | 2.0142     | 1.9889     | 1.9958     |
| FE          | 2.1717   | 2.1644   | 2.1815   | 1.5861     | 1.5163     | 1.5945     | 1.5709     | 1.5746     |
| MIN         | .4143    | .4206    | .3977    | .9982      | 1.2078     | .9823      | 1.0511     | 1.0796     |
| MG          | .3201    | .3189    | .3066    | .3203      | .2056      | .3310      | .2814      | .2805      |
| CA          | .1672    | .1601    | .1617    | .1302      | .1191      | .1268      | .1314      | .1376      |
| K           | 0.0000   | 0.0000   | 0.0000   | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| NA          | 0.0000   | 0.0000   | 0.0000   | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| CL.         | 0.0000   | 0.0000   | 0.0000   | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| CL          | 0.0000   | 0.0000   | 0.0000   | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| 0,0H,CL,F   | 12.0000  | 12.0000  | 12.0000  | 12.0000    | 12.0000    | 12.0000    | 12.0000    | 12.0000    |
| No. atoms   | 20.0377  | 20.0389  | 20.0285  | 20.0159    | 20.0146    | 20.0208    | 20.0145    | 20.0350    |

|           | 4496/53.6.<br>G2 CORE. | 4496/53.6.<br>G2 RIM. | 4496/53.6.<br>G3 RIM. | 4496/53.6.<br>G3 CORE. | 4496/60.1.<br>G2. | 4496/60.1.<br>G1 CORE. | 4496/60.1.<br>G3. | 4496/60.1.<br>Gl RIM. |
|-----------|------------------------|-----------------------|-----------------------|------------------------|-------------------|------------------------|-------------------|-----------------------|
| S102      | 36.1700                | 35.5100               | 36.3500               | 36.8500                | 36.7500           | 36.6800                | 36.8700           | 36.1300               |
| TIO2      | 0.0000                 | 0.0000                | .1600                 | 0.0000                 | .2400             | .1400                  | 0.0000            | .1900                 |
| AL203     | 21.1100                | 24.1400               | 21.0500               | 21.2000                | 20.9900           | 20.7100                | 20.9200           | 20.6200               |
| FEO       | 22.8300                | 22.7000               | 17.7400               | 23.5200                | 17.6600           | 17.1600                | 17.5300           | 16.7500               |
| MNO       | 16.9100                | 14.4000               | 21.0000               | 15.2100                | 20.5300           | 21.8300                | 21.2400           | 22.5600               |
| MGO       | 2.0100                 | 2.3200                | .9200                 | 2.6500                 | 1.6000            | 1.3100                 | 1.5800            | 1.2200                |
| CAO       | 1.4600                 | 1.4400                | 3.2700                | 1.5100                 | 2.2300            | 2.1700                 | 1.8600            | 2.1400                |
| K20       | 0.0000                 | 0.0000                | 0.0000                | 0.0000                 | 0.0000            | 0.0000                 | 0.0000            | 0.0000                |
| NA20      | 0.0000                 | 0.0000                | 0.0000                | 0.0000                 | 0.0000            | 0.0000                 | 0.0000            | .3300                 |
| a         | 0.0000                 | 0.0000                | 0.0000                | 0.0000                 | 0.0000            | 0.0000                 | 0.0000            | .0600                 |
|           | 100.4900               | 100.5100              | 100.4900              | 100.9400               | 100.0000          | 100.0000               | 100.0000          | 99.7473               |
| O=F,CL    | 0.0000                 | 0.0000                | 0.0000                | 0.0000                 | .0.0000           | 0.0000                 | 0.0000            | .0253                 |
|           |                        | <del></del>           |                       |                        | <del></del>       |                        | <del></del>       |                       |
| TOTAL     | 100.4900               | 100-5100              | 100.4900              | 100.9400               | 100.0000          | 100.0000               | 100.0000          | 99.7473               |
| SI        | 2.9397                 | 2.8429                | 2.9540                | 2.9616                 | 2.9815            | 2.9879                 | 2.9948            | 2.9592                |
| TI        | 0.0000                 | 0.0000                | .0098                 | 0.0000                 | .0146             | .0086                  | 0.0000            | .0117                 |
| AL        | 2.0227                 | 2.2784                | 2.0167                | 2.0087                 | 2.0076            | 1.9889                 | 2.0033            | 1.9910                |
| FE        | 1.5518                 | 1.5199                | 1.2057                | 1.5809                 | 1.1982            | 1.1690                 | 1.1908            | 1.1473                |
| MIN       | 1.1642                 | .9765                 | 1.4456                | 1.0354                 | 1.4108            | 1.5063                 | 1.4614            | 1.5651                |
| MG        | .2435                  | .2768                 | .1114                 | .3174                  | .1935             | .1590                  | .1913             | .1489                 |
| † CA      | .1271                  | .1235                 | .2847                 | .1300                  | .1939             | .1894                  | .1619             | .1878                 |
| к         | 0.0000                 | 0.0000                | 0.0000                | 0.0000                 | 0.0000            | 0.0000                 | 0.0000            | 0.0000                |
| NA        | 0.0000                 | 0.0000                | 0.0000                | 0.0000                 | 0.0000            | 0.0000                 | 0.0000            | .0533                 |
| æ         | 0.0000                 | 0.0000                | 0.0000                | 0.0000                 | 0.0000            | 0.0000                 | 0.0000            | .0000                 |
| 0,0H,CL,F | 12.0000                | 12.0000               | 12.0000               | 12.0000                | 12.0000           | 12.0000                | 12.0000           | 12.0000               |
| No. atoms | 20.0489                | 20.0179               | 20.0279               | 20.0341                | 20.0001           | 20.0091                | 20.0036           | 20.0643               |

¢

# II - 4

II **-** 5

|            |         | 4496/67.3.<br>G1 CORE. | 4496/67.3.<br>Gl RIM. | 4496/67.3.<br>G2 CORE. | 4496/67.3. | 4496/67.3.<br>G3PINKCORE. |            |             |
|------------|---------|------------------------|-----------------------|------------------------|------------|---------------------------|------------|-------------|
|            | G?.     | GI CORE.               | GI KIM.               | GZ CORE.               | 02 RIN.    | GJFTIKCORL.               | GJERDERTH, | onparecore. |
| S102       | 34.3900 | 36.5500                | 36.5400               | 36.4300                | 36.3200    | 36.4300                   | 36.3500    | 36.3600     |
| T102       | 0.0000  | 0.0000                 | 0.0000                | 0.0000                 | 0.0000     | .1200                     | 0.0000     | .1100       |
| AL203      | 20.0300 | 20.8600                | 20.9300               | 20,9800                | 20.7600    | 20.7100                   | 21.0600    | 20.8100     |
| FEO        | 27.8400 | 29.1100                | 28.7700               | 29.1000                | 29.0600    | 29.3900                   | 29.4800    | 29.1500     |
| MNO        | 11.0300 | 10.4000                | 11.1600               | 10.6900                | 11.4500    | 10.5100                   | 10.8500    | 10.5200     |
| MGO        | 1.9200  | 2.6900                 | 2.1400                | 2.4200                 | 2.0000     | 2.4700                    | 1.9400     | 2.7100      |
| CAO        | .8400   | .8800                  | .9100                 | .8800                  | .9100      | .8600                     | .8200      | .8400       |
| К20        | 0.0000  | 0.0000                 | 0.0000                | 0.0000                 | 0.0000     | 0.0000                    | 0.0000     | 0.0000      |
| NA20       | .2000   | 0.0000                 | 0.0000                | 0.0000                 | 0.0000     | 0.0000                    | 0.0000     | 0.0000      |
| a          | 0.0000  | 0.0000                 | 0.0000                | 0.0000                 | 0.0000     | 0.0000                    | 0.0000     | 0.0000      |
|            | 96.2500 | 100.4900               | 100.4500              | 100.5000               | 100.5000   | 100.4900                  | 100.5000   | 100.5000    |
| 0=F,CL     | 0.0000  | 0.0000                 | 0.0000                | 0.0000                 | 0.0000     | 0.0000                    | 0.0000     | 0.0000      |
| TOTAL      | 96.2500 | 100.4900               | 100.4500              | 100.5000               | 100.5000   | 100.4900                  | 100.5000   | 100.5000    |
| SI         | 2.9313  | 2.9616                 | 2.9673                | 2.9557                 | 2.9587     | 2.9588                    | 2.9561     | 2.9498      |
| TI         | 0.0000  | 0.0000                 | 0.0000                | 0.0000                 | 0.0000     | .0073                     | 0.0000     | .0067       |
| AL         | 2.0128  | 1.9927                 | 2.0038                | 2.0068                 | 1.9937     | 1.9830                    | 2.0191     | 1.9904      |
| FE         | 1.9846  | 1.9727                 | 1.9539                | 1.9746                 | 1.9798     | 1.9963                    | 2.0050     | 1.9778      |
| MN         | .7964   | .7138                  | .7677                 | .7347                  | .7901      | .7231                     | .7474      | .7229       |
| MG         | .2439   | .3248                  | .2590                 | .2926                  | .2428      | .2990                     | .2351      | .3277       |
| CA         | .0767   | .0764                  | .0792                 | .0765                  | .0794      | .0748                     | .0715      | .0730       |
| ĸ          | 0.0000  | 0.0000                 | 0.0000                | 0.0000                 | 0.0000     | 0.0000                    | 0.0000     | 0.0000      |
| NA         | .0336   | 0.0000                 | 0.0000                | 0.0000                 | 0.0000     | 0.0000                    | 0.0000     | 0.0000      |
| ď          | 0.0000  | 0.0000                 | 0.0000                | 0.0000                 | 0.0000     | 0.0000                    | 0.0000     | 0.0000      |
| 0,011,CL,F | 12.0000 | 12.0000                | 12.0000               | 12.0000                | 12.0000    | 12.0000                   | 12.0000    | 12.0000     |
| No. atoms  | 20.0791 | 20.0421                | 20.0308               | 20.0408                | 20.0445    | 20.0424                   | 20.0343    | 20.0483     |
|            |         |                        |                       |                        |            |                           |            |             |

|           |          | 4496/67.3.<br>G4palerim. | 4496/72.3.<br>GL CORE. | 4496/72.3.<br>Gl RIM. | 4496/72.3.<br>G2 CORE. | 4496/72.3.<br>G2 RIM. | 4496/72.3.4<br>G3. | 496/125.8.<br>G1 CORE. |
|-----------|----------|--------------------------|------------------------|-----------------------|------------------------|-----------------------|--------------------|------------------------|
| SI02      | 36.8000  | 36.7600                  | 36.4700                | 36.1600               | 36.4700                | 36.2300               | 36.3300            | 37.5100                |
| TIOZ      | 0.0000   | 0.0000                   | 0.0000                 | .1400                 | .1300                  | 0.0000                | 0.0000             | .1500                  |
| AL.203    | 20.7800  | 21.1400                  | 20.7600                | 20.5700               | 20.6900                | 20.9400               | 20.8700            | 21.0500                |
| FEO       | 29.0200  | 28.6100                  | 19.6700                | 18.9500               | 19.5500                | 18.3400               | 19.8200            |                        |
| MNO       | 10.3300  | 11.0000                  | 20.6500                | 21.8900               | 20.5200                |                       |                    | 36.1300<br>3.1200      |
| MGO       | 2.7400   | 2.1500                   | 1.2200                 |                       |                        | 21.7100               | 20.0200            |                        |
| CAO       | .8300    | .8500                    | 2.3400                 | 2.3200                | 1.1400                 | .9300                 | 1.3700             | 2.9800                 |
| K20       | 0.0000   | 0.0000                   | 0.0000                 | 0.0000                | 2.3700                 | 2.3300                | 2.3600             | .2000                  |
| NA2O      | 0.0000   | 0.0000                   | 0.0000                 | 0.0000                | 0.000                  | 0.0000                | 0.0000             | 0.0000                 |
| a.        | 0.0000   | 0.0000                   | 0.0000                 |                       | 0.0000                 | .2600                 | 0.0000             | 0.0000                 |
| сь        | 0.0000   | 0.0000                   | 0.0000                 | 0.0000                | 0.000                  | 0.0000                | 0.0000             | 0.0000                 |
|           | 100.5000 | 100.5100                 | 101.1100               | 100.8400              | 100.8700               | 100.7400              | 100.7700           | 101.1400               |
| O=F,CL    | 0.0000   | 0.0000                   | 0.0000                 | 0.0000                | 0.0000                 | 0.0000                | 0.0000             | 0.0000                 |
| •         |          |                          |                        |                       |                        | 0.0000                | 0.0000             | 0.0000                 |
|           |          |                          |                        |                       |                        |                       |                    |                        |
| TOTAL     | 100.5000 | 100:5100                 | 101.1100               | 100.8400              | 100.8700               | 100.7400              | 100.7700           | 101.1400               |
|           |          |                          |                        |                       |                        |                       |                    |                        |
| SI        | 2.9769   | 2.9752                   | 2.9586                 | 2.9520                | 2.9632                 | 2.9504                | 2.9522             | 3.0011                 |
| TI        | 0.0000   | 0.0000                   | 0.0000                 | .0086                 | .0079                  | 0.0000                | 0.0000             | .0090                  |
| AL        | 1.9818   | 2.0172                   | 1.9855                 | 1.9798                | 1.9818                 | 2.0104                | 1.9994             | 1.9855                 |
| FE        | 1.9633   | 1.9366                   | 1.3346                 | 1.2938                | 1.3284                 | 1.2491                | 1.3470             |                        |
| MI        | .7078    | .7541                    | 1.4190                 | 1.5137                | 1.4122                 | 1.4976                | 1.3470             | 2.4176                 |
| MG        | .3303    | .2593                    | .1475                  | .0986                 | .1380                  | .1129                 | .1659              | .3553                  |
| CA        | .0719    | .0737                    | .2034                  | .2029                 | .2063                  | .2033                 | .2055              | .0171                  |
| ĸ         | 0.0000   | 0.0000                   | 0.0000                 | 0.0000                | 0.0000                 | 0.0000                | 0.0000             | 0.0000                 |
| NA        | 0.0000   | 0.0000                   | 0.0000                 | 0.0000                | 0.0000                 | .0417                 | 0.0000             | 0.0000                 |
| CL.       | 0.0000   | 0.0000                   | 0.0000                 | 0.0000                | 0.0000                 | 0.0000                | 0.0000             | 0.0000                 |
| 4         | 0.0000   | 0.0000                   | 0.0000                 | 0.0000                | 0.0000                 | 0.0000                | 0.0000             | 0.0000                 |
| 0,0H,CL,F | 12.0000  | 12.0000                  | 12.0000                | 12.0000               | 12.0000                | 12.0000               | 12.0000            | 12.0000                |
| No. atoms | 20.0323  | 20.0162                  | 20.0486                | 20.0495               | 20.0381                | 20.0652               | 20.0481            | 19.9972                |

,

•

# II - 6

|           | 4496/125.8.4    | 496/125.8.4      | 496/125.8.4      | 496/125.8.4      | 496/125.8.       | 4502/19.3. | 4502/19.3.       | 4502/19.3. |
|-----------|-----------------|------------------|------------------|------------------|------------------|------------|------------------|------------|
|           | G1 CORE.        | Gl RIM.          | G2 CORE.         | G2 RIM.          | G3.              | G 1.       | G2 CORE.         | G2 RIM.    |
| S102      | 37,2700         | 37.1000          | 37.2900          | 37.2600          | 36.8600          | 36.5100    | 36.7900          | 36,7200    |
| T102      | .1500           | 0.0000           | .1000            | 0.0000           | 0.0000           | .1000      | 0.0000           | 0.0000     |
| AL203     | 20.9100         | 21.1600          | 21.4200          | 21.1600          | 20.9900          | 21.4000    | 21.3800          | 21.2900    |
| FEO       | 35,9100         | 36.1200          | 35.6500          | 36.2400          | 36.1300          | 35.3600    | 35.1800          | 34.6500    |
| MNO       | 3.1000          | 3.4300           | 3.2100           | 3.2300           | 3.3300           | 2.8000     | 2.8600           | 2.8000     |
| MGO       | 2,9600          | 2.5700           | 3.3900           | 2.7800           | 2.6700           | 2.5400     | 2.6500           | 2.5400     |
| CAO       | .2000           | .2400            | .3100            | .1800            | .2600            | 1.2700     | 1.2600           | 1.2100     |
| K20       | 0.0000          | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000     | 0.0000           | 0.0000     |
| NA20      | 0.0000          | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000     | 0.0000           | 0.0000     |
| a         | 0.0000          | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000     | 0.0000           | 0.0000     |
|           | 100.5000        | 100.6200         | 101.3700         | 100.8500         | 100.2400         | ,99.9800   | 100.1200         | 99.2100    |
| O=F,CL    | 0.0000          | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000     | 0.0000           | 0.0000     |
|           |                 |                  | <del></del>      | <u> </u>         | <u> </u>         |            |                  |            |
| TOTAL     | 100.5000        | 100.6200         | 101.3700         | 100.8500         | 100.2400         | 99.9800    | 100.1200         | 99.2100    |
| <b>C1</b> |                 | 2 0015           |                  | 2 0044           | <b>D</b> 0000    |            |                  | 2,9870     |
| SI<br>TI  | 3.0011<br>.0091 | 2.9915           | 2.9727           | 2.9944           | 2.9860           | 2.9582     | 2.9723           | 0.0000     |
| AL.       |                 |                  |                  |                  | 0.0000           | .0061      | 0.0000           | 2.0417     |
| FE        | 1.9850          | 2.0115<br>2.4358 | 2.0131<br>2.3768 | 2.0048<br>2.4357 | 2.0046<br>2.4478 | 2.0442     | 2.0364<br>2.3770 | 2.3572     |
| MN        | 2.4183<br>.2114 | .2343            | .2168            | .2199            | .2285            | 2.3961     | .1957            | .1929      |
| MG        | .3552           | .3088            | .4028            | .3330            | .3223            | .1922      | ,3191            | .3079      |
| CA        | .0173           | .0207            | .0265            | .0155            | .0226            | .1103      | .1091            | .1055      |
| K         | 0.0000          | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000     | 0.0000           | 0.0000     |
| NA        | 0.0000          | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000     | 0.0000           | 0.0000     |
| CL<br>N   | 0.0000          | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000     | 0.0000           | 0.0000     |
| L.        | 0.0000          | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000     | 0.0000           | 0.0000     |
| 0,0H,CL,F | 12.0000         | 12.0000          | 12.0000          | 12.0000          | 12.0000          | 12.0000    | 12.0000          | 12.0000    |
| No. atoms | 19.9973         | 20.0027          | 20.0147          | 20.0032          | 20.0117          | 20.0136    | 20.0095          | 19.9922    |

|           | 4502/19.3. | 4502/19.3. | 4502/19.3. | 4502/19.3. | 4502/37.3. | 4502/37.3. | 4502/37.3. | 4502/56.9. |
|-----------|------------|------------|------------|------------|------------|------------|------------|------------|
|           | G3 RIM.    | G3 CORE.   | G3 CORE.   | G4 RIM.    | GI CORE.   | G1 RIM.    | G 3.       | G CORE.    |
| S102      | 36 5000    | 26 2500    | 36 6400    | 36 3500    |            |            |            |            |
| TI02      | 36.5000    | 36.3500    | 36.5400    | 36.3500    | 36.2500    | 36.0500    | 36.5700    | 36.4500    |
| AL203     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | .1000      | 0.0000     |
|           | 21.4900    | 21.2200    | 21.3900    | 21.2200    | 21.3900    | 20.9400    | 21.3200    | 20.6600    |
| FEO       | 35.6100    | 35.4100    | 35.1400    | 34.8800    | 32.1400    | 31.9600    | 31.0000    | 21.3100    |
| MINO      | 3.0300     | 2.8800     | 2.9800     | 2.8400     | 6.3400     | 6.4200     | 6.1300     | 16.0800    |
| MGO       | 2.2100     | 2.2500     | 2.6100     | 2.6200     | 2.9000     | 2.3500     | 3.6200     | 1.7000     |
| CAO       | 1.1500     | 1.2600     | 1.3400     | 1.2800     | .9300      | .9100      | 1.1300     | 3.8100     |
| к20       | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| NA2O      | 0.0000     | 0.0000     | 0.0000     | .2800      | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| a         | 0.000      | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | .1300      | 0.0000     |
|           | 99.9900    | 99.3700    | 100.0000   | 99.4700    | 99.9500    | 98.6300    | 99.4526    | 100.0100   |
| O=F,CL    | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | .0547      | 0.0000     |
|           |            |            |            |            | ,          |            |            |            |
|           |            |            |            |            |            |            |            |            |
| TOTAL     | 99.9900    | 99.3700    | 100.0000   | 99.4700    | 99.9500    | 98.6300    | 99.4526    | 100.0100   |
|           |            |            |            |            |            |            |            |            |
| SI        | 2.9619     | 2.9677     | 2.9598     | 2.9602     | 2.9413     | 2.9676     | 2.9530     | 2.9655     |
| TI        | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | .0061      | 0.0000     |
| al.       | 2.0559     | 2.0424     | 2.0427     | 2.0373     | 2.0461     | 2.0322     | 2.0296     | 1.9816     |
| FE        | 2.4167     | 2.4178     | 2.3805     | 2.3756     | 2.1810     | 2.2003     | 2.0935     | 1.4500     |
| MN        | .2083      | .1992      | .2045      | .1959      | .4357      | .4477      | .4193      | 1.1082     |
| MG        | .2673      | .2738      | .3151      | .3180      | .3507      | .2883      | .4356      | .2061      |
| CA        | .1000      | .1102      | .1163      | .1117      | .0809      | .0803      | .0978      | .3321      |
| K         | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| NA        | 0.0000     | 0.0000     | 0.0000     | .0449      | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| æ         | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | .0000      | 0.0000     |
|           |            |            |            |            |            |            |            |            |
| 0,0H,CL,F | 12.0000    | 12.0000    | 12.0000    | 12.0000    | 12.0000    | 12.0000    | 12.0000    | 12.0000    |
|           |            |            |            |            |            |            |            |            |
| No. atoms | 20.0101    | 20.0111    | 20.0189    | 20.0437    | 20.0357    | 20.0163    | 20.0350    | 20.0437    |
|           |            |            |            |            | 2010337    |            |            | 2010107    |

•

|           | 4502/56.9.<br>GARNET. | 4502/56.9.4<br>G3 CORE. | G1 CORE. | 502/65.1A.4<br>G1 RIM. | G2 RIM.  | G2 CORE.  |          | 4502/65.1A.<br>G 3A(rim). |
|-----------|-----------------------|-------------------------|----------|------------------------|----------|-----------|----------|---------------------------|
| S102      | 36.3000               | 36.4600                 | 36.5000  | 36.0200                | 36.4600  | 36.4600   | 36.3800  | 36.7800                   |
| TIO2      | 0.0000                | 0.0000                  | 0.0000   | 0.0000                 | 0.0000   | 0.0000    | .1400    | 0.0000                    |
| AL203     | 20.9500               | 21.1000                 | 20,6600  | 20.4700                | 20.2500  | 20.6300   | 20.4600  | 20.6000                   |
| FEO       | 20.2100               | 20.9800                 | 16,9800  | 19.8200                | 17.4800  | 18.6900   | 18.2600  | 17.5100                   |
| MNO       | 17.1300               | 16.5200                 | 23.2500  | 20.7200                | 23.6600  | 21.8700   | 22.5000  | 23.1700                   |
| MCO       | 1.5200                | 1.6200                  | .5900    | .9300                  | .5400    | .6100     | .6300    | .4700                     |
| CAO       | 3.9000                | 3.9400                  | 2.0300   | 2.0900                 | 2.0500   | 1.9200    | 1.9600   | 1.9700                    |
| К20       | 0.0000                | 0.0000                  | 0.0000   | 0.0000                 | 0.0000   | 0.0000    | 0.0000   | 0.0000                    |
| NA20      | 0.0000                | 0.0000                  | 0.0000   | 0.0000                 | 0.0000   | 0.0000    | 0.0000   | 0.0000                    |
| a         | 0.0000                | 0.0000                  | 0.0000   | 0.0000                 | 0.0000   | 0.0000    | 0.0000   | 0.0000                    |
|           | 100.0100              | 100.6200                | 100.0100 | 100.0500               | 100.4400 | 100.1800  | 100.3300 | 100.5000                  |
| O=F,CL    | 0.0000                | 0.0000                  | 0.0000   | 0.0000                 | 0.0000   | ° 0000. ° | 0.0000   | 0.0000                    |
| TOTAL     | 100.0100              | 100.6200                | 100.0100 | 100.0500               | 100.4400 | 100.1800  | 100.3300 | 100.5000                  |
| SI        | 2.9531                | 2.9481                  | 2.9901   | 2.9607                 | 2.9887   | 2.9860    | 2.9795   | 3.0010                    |
| TI        | 0.0000                | 0.0000                  | 0.0000   | 0.0000                 | 0.0000   | 0.0000    | .0086    | 0.0000                    |
| AL.       | 2.0093                | 2.0114                  | 1.9953   | 1,9836                 | 1.9569   | 1.9919    | 1.9755   | 1.9816                    |
| FE        | 1.3751                | 1.4187                  | 1.1633   | 1.3625                 | 1.1983   | 1.2801    | 1.2507   | 1.1949                    |
| MIN       | 1.1804                | 1.1315                  | 1.6133   | 1.4426                 | 1.6428   | 1.5172    | 1.5609   | 1.6014                    |
| MG        | .1843                 | .1952                   | .0720    | .1139                  | .0660    | .0745     | .0769    | .0572                     |
| CA        | .3400                 | .3414                   | .1782    | .1841                  | .1801    | .1685     | .1720    | .1722                     |
| к         | 0.0000                | 0.0000                  | 0.0000   | 0.0000                 | 0.0000   | 0.0000    | 0.0000   | 0.0000                    |
| NA        | 0.0000                | 0.0000                  | 0.0000   | 0.0000                 | 0.0000   | 0.0000    | 0.0000   | 0.0000                    |
| a'        | 0.0000                | 0.0000                  | 0.0000   | 0.0000                 | 0.0000   | 0.0000    | 0.0000   | 0.0000                    |
| 0,0H,CL,F | 12.0000               | 12.0000                 | 12.0000  | 12.0000                | 12.0000  | 12.0000   | 12.0000  | 12.0000                   |
| No. atoms | 20.0422               | 20.0462                 | 20.0124  | 20.0474                | 20.0327  | 20.0181   | 20.0241  | 20.0082                   |

|           | G 3B.    | G 3C.    | G 3D(core). | G 3E.    | G 3F.    | G 3G(rim). | GI CORE. | GI RIM   |
|-----------|----------|----------|-------------|----------|----------|------------|----------|----------|
|           |          | 0.000    |             | 0 550    | 0 5.1    | 0.50(11,1  | 01 00.01 | 01 1.1.1 |
| SI02      | 36.5200  | 36.7800  | 36.6000     | 36.6700  | 36.5800  | 36.6200    | 36.5300  | 36.4700  |
| TIO2      | 0.0000   | 0.0000   | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000   | .1600    |
| AL203     | 20.6600  | 20.5300  | 20.4600     | 20.4700  | 20.4200  | 20.3200    | 20.4400  | 20.5500  |
| FEO       | 18.9800  | 18.7100  | 18.8900     | 18.2700  | 18.1900  | 18.0700    | 20.4100  | 18.3800  |
| MINO      | 21.4400  | 21.7000  | 21.6700     | 22.3300  | 22.6700  | 22.5800    | 20.0300  | 21.8700  |
| MGO       | .8000    | .7400    | .8000       | .6900    | .5700    | .6300      | .8100    | .7100    |
| CAO       | 2.1000   | 2.0200   | 2.0700      | 2.0700   | 2.0800   | 2.0500     | 2.2800   | 2.3600   |
| K20       | 0.0000   | 0.0000   | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000   | 0.0000   |
| NA2O      | 0.0000   | 0.0000   | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000   | 0.0000   |
| a.        | 0.0000   | 0.0000   | 0.000       | 0.0000   | 0.0000   | 0.0000     | 0.0000   | 0.0000   |
|           | 100.5000 | 100.4800 | 100.4900    | 100.5000 | 100.5100 | 100.2700   | 100.5000 | 100.5000 |
| 0=F,CL    | 0.0000   | 0.0000   | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000   | 0.0000   |
|           |          |          |             |          |          |            |          |          |
| TOTAL     | 100.5000 | 100.4800 | .100.4900   | 100.5000 | 100.5100 | 100.2700   | 100.5000 | 100.5000 |
| SI        | 2.9802   | 2.9992   | 2.9889      | 2.9939   | 2,9909   | 2.9986     | 2.9842   | 2.9770   |
| rI        | 0.0000   | 0.0000   | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000   | .0098    |
| NC.       | 1.9876   | 1.9736   | 1.9698      | 1.9703   | 1.9684   | 1.9616     | 1.9686   | 1.9776   |
| TE .      | 1.2953   | 1.2760   | 1.2901      | 1.2475   | 1.2439   | 1.2375     | 1.3944   | 1.2548   |
| 'N        | 1.4820   | 1.4989   | 1.4990      | 1.5443   | 1.5701   | 1.5662     | 1.3860   | 1.5122   |
| <b>'G</b> | .0973    | .0899    | .0974       | .0840    | .0695    | .0769      | .0986    | .0864    |
| CA        | .1836    | .1765    | .1811       | .1811    | .1822    | .1799      | .1996    | .2064    |
| ĸ         | 0.0000   | 0.0000   | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000   | 0.0000   |
| NA        | 0.0000   | 0.0000   | 0.0000      | 0.0000   | 0.0000   | 0:0000     | 0.0000   | 0.0000   |
| CL.       | 0.0000   | 0.0000   | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000   | 0.0000   |
|           | ••••••   | 0.0000   | 0.0000      | 0.0000   | 0.0000   | 0.0000     | 0.0000   | 0.0000   |
| 0,0H,CL,F | 12.0000  | 12.0000  | 12.0000     | 12.0000  | 12.0000  | 12.0000    | 12.0000  | 12.0000  |
| No. atoms | 20.0260  | 20.0141  | 20.0263     | 20.0210  | 20.0250  | 20.0205    | 20,0315  | 20.0243  |

ĩ

II - 8

|           | 4502/65.1B.4 |          |          |          |          |          | •        |          |
|-----------|--------------|----------|----------|----------|----------|----------|----------|----------|
|           | G2.          | G3.      | G3 RIM.  | G1 CORE. | G2 RIM.  | C2 CORE. | G3 CORE. | G3 RIM.  |
| SI02      | 36.7200      | 36.1800  | 36.2500  | 36.2200  | 36.3600  | 36.5100  | 36.9100  | 36.3800  |
| т102      | .1100        | .1000    | 0.0000   | .1100    | 0.0000   | 0.0000   | .1600    | 0.0000   |
| AL203     | 20.6400      | 20.5400  | 20.6400  | 20.4100  | 20.9200  | 20.7900  | 20.8600  | 20.8300  |
| FEO       | 18.6200      | 17.3400  | 16.1800  | 21.2100  | 22.0100  | 22.9800  | 22.3800  | 21.9900  |
| MNO       | 21.4500      | 23.1900  | 24.8100  | 16.3000  | 17.3300  | 16.3700  | 16.9900  | 17.0100  |
| MGO       | .6400        | .5200    | .3500    | .7800    | 1.0500   | 1.2400   | 1.1300   | .8400    |
| CAO       | 2.3200       | 2.3600   | 2.2600   | 3.5500   | 3.1600   | 3.0600   | 3.2200   | 3.2400   |
| K20       | 0.0000       | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| NA20      | 0.0000       | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| a         | 0.0000       | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
|           | 100.5000     | 100.2300 | 100.4900 | 98,5800  | 100.8300 | 100.9500 | 101.6500 | 100.2900 |
| 0=F,CL    | 0.0000       | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.000    | 0.0000   | 0.0000   |
|           |              |          |          |          |          |          |          |          |
| TOTAL     | 100.5000     | 100.2300 | 100.4900 | 98.5800  | 100.8300 | 100.9500 | 101.6500 | 100.2900 |
|           |              |          |          |          |          |          |          |          |
| SI        | 2.9917       | 2.9680   | 2.9695   | 2.9932   | 2.9530   | 2.9603   | 2.9688   | 2.9674   |
| TI        | .0067        | .0062    | 0.0000   | .0068    | 0.0000   | 0.0000   | .0097    | 0.0000   |
| AL.       | 1.9825       | 1.9865   | 1.9933   | 1.9885   | 2.0031   | 1.9873   | 1.9781   | 2.0030   |
| FE        | 1.2687       | 1.1896   | 1.1085   | 1.4659   | 1.4950   | 1.5583   | 1.5055   | 1.5001   |
| MN        | 1.4803       | 1.6114   | 1.7215   | 1.1410   | 1.1922   | 1.1243   | 1.1576   | 1.1752   |
| MG        | .0777        | .0636    | .0427    | .0961    | .1271    | .1498    | .1355    | .1021    |
| CA        | .2025        | .2074    | .1984    | .3143    | .2750    | .2659    | .2775    | .2832    |
| к         | 0.0000       | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| NA        | 0.0000       | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| a         | 0.0000       | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 0,0H,CL,F | 12.0000      | 12.0000  | 12.0000  | 12.0000  | 12.0000  | 12.0000  | 12.0000  | 12.0000  |
| 0,01,01,1 | 12.0000      | 12.0000  | 12.0000  | 12.0000  | 12.0000  | 12.0000  | 12.0000  | 12.0000  |
| No. atoms | 20.0103      | 20.0326  | 20.0339  | 20.0058  | 20.0454  | 20.0459  | 20.0324  | 20.0310  |

ف

.

•

SELECTED ANALYSES FROM :SEP32 : 1-4, 9, 16-17

•

ć

|           |            |           | 4502/66.0A.4 |            |          |               |               |
|-----------|------------|-----------|--------------|------------|----------|---------------|---------------|
|           | GAR1 CORE. | GAR1 RIM. | G1 MID PT.G  | l Opp Rim. | GAR2.    | GAR CORE.     | GAR RIM.      |
| 5102      | 38.0614    | 36.3370   | 37.4754      | 37.8320    | 37.8839  | 34.3672       | 37.0771       |
| TIO2      | .0596      | .0333     | .0040        | .0229      | 0.0000   | .0072         | .0080         |
| AL203     | 20.2008    | 19.7428   | 20.0181      | 20.4812    | 20.4107  | 19.4526       | 20.4457       |
| FEO       | 22.3199    | 22.9655   | 22.6553      | 21.8367    | 21.7996  | 29.0627       | 32.5043       |
| MENO      | 16.0457    | 16.5562   | 15.7412      | 16.5229    | 17.0419  | 3.2450        | 3.6089        |
| MGO       | 1.0422     | •5267     | .9828        | .7224      | .7342    | 2.3561        | 2.1664        |
| CAO       | 3.1408     | 2.4450    | 3.1629       | 3.1703     | 3.3842   | .3004         | .3450         |
| NA2O      | .0066      | .0145     | 0.0000       | .0003      | 0.0000   | .0100         | .0250         |
| K20       | .0101      | .0119     | 0.0000       | .0125      | 0.0000   | .0059         | .0013         |
| ZNO       | .0291      | 0.0000    | 0.0000       | .0780      | 0.0000   | 0.0000        | .0423         |
| TOTAL     | 100.9162   | 98.6329   | 100.0397     | 100.6792   | 101.2545 | 88.8071       | 96.2240       |
| SI        | 3.0623     | 3.0219    | 3.0490       | 3.0527     | 3.0460   | 3.0766        | 3.0851        |
| TI        | .0036      | .0021     | .0002        | .0014      | 0.0000   | <b>.</b> 0005 | .0005         |
| AL.       | 1.9161     | 1.9357    | 1.9201       | 1.9484     | 1.9347   | 2.0530        | 2.0056        |
| FE        | 1.5019     | 1.5973    | 1.5416       | 1.4736     | 1.4659   | 2.1759        | 2.2619        |
| MN        | 1.0935     | 1.1663    | 1.0848       | 1.1293     | 1.1606   | .2461         | .2544         |
| MG        | .1250      | .0653     | .1192        | .0869      | .0880    | .3143         | <b>.</b> 2686 |
| CA        | .2708      | .2179     | .2757        | .2741      | .2916    | .0288         | .0308         |
| NA        | .0010      | .0024     | 0.0000       | .0000      | 0.0000   | .0018         | .0041         |
| к         | .0010      | .0013     | 0.0000       | .0013      | 0.0000   | .0007         | .0001         |
| ZN        | .0017      | 0.0000    | 0.0000       | .0047      | 0.0000   | 0.0000        | .0026         |
| 0         | 13 0000    | 12 0000   | 12 0000      | 12 0000    |          | 10 0000       | 12 0000       |
| Oxygen    | 12.0000    | 12.0000   | 12.0000      | 12.0000    | 12.0000  | 12.0000       | 12.0000       |
| No. atoms | 19.9771    | 20.0101   | 19.9907      | 19.9724    | 19.9867  | 19.8976       | 19.9136       |

SELECTED ANALYSES FROM : JAN83 : 1, 7-8, 12, 16, 25, 29, 34, 43, 63, 69, 73, 119-120, 135, 143-144, 160-162, 169, 174, 178, 12 220, 224

J

•

4

....

| GARNETS (F  | \U)        |            |            |            |            |            |            | ,          |
|-------------|------------|------------|------------|------------|------------|------------|------------|------------|
|             | 4502/16.6. | 4502/75.9. | 4502/75.9. | 4502/44.3. | 4502/91.6. | 4502/29.9. | 4502/29.9. | 4502/48.6. |
|             | GARNET.    | G1.        | G2.        | GARNET.    | GARNET 1.  | GARNET 1.  | GNT 2.     | GARNET.    |
| S102        | 36.3236    | 33.4291    | 36.8788    | 35.0525    | 36.4634    | 34.2827    | 37.0715    | 36.5717    |
| <b>TIO2</b> | 0.0000     | .0102      | .0499      | 0.0000     | .0008      | 0.0000     | .0201      | .0130      |
| AL203       | 20.4089    | 18.8544    | 20.5366    | 19.8440    | 20.4369    | 19.4240    | 20.4393    | 20.2086    |
| FEO         | 30.1262    | 34.5195    | 34.4595    | 33.7483    | 36.4907    | 36.8315    | 37.1032    | 23.6349    |
| MINO        | 8.0624     | 4.7459     | 4.9134     | 5.4483     | 2.6851     | 2.3293     | 2.3209     | 15.2310    |
| MGO         | 2.1881     | 2.3966     | 2.4216     | 2.3264     | 3.3231     | 2.5238     | 2.7016     | 1.6167     |
| CAO         | 1.8981     | .5210      | .5137      | .8653      | .1945      | .2197      | .2319      | 1.5410     |
| NA2O        | 0.0000     | .0141      | .0293      | 0.0000     | .0037      | .0082      | .0003      | .0058      |
| K20         | 0.0000     | .0063      | .0017      | .0204      | .0043      | .0115      | 0.0000     | .0136      |
| ZNO         | .0817      | 0.0000     | .0184      | .0633      | .0647      | .0641      | .0493      | .0645      |
| TOTAL       | 99.0890    | 94.4971    | 99.8229    | 97.3685    | 99.6672    | 95.6948    | 99.9381    | 98.9008    |
|             |            |            |            |            |            |            |            |            |
| SI          | 2.9831     | 2.9227     | 3.0037     | 2.9520     | 2.9751     | 2.9438     | 3.0134     | 3.0123     |
| TI          | 0.0000     | .0007      | .0031      | 0.0000     | .0000      | 0.0000     | .0012      | .0008      |
| AL.         | 1.9760     | 1.9434     | 1.9719     | 1.9702     | 1.9658     | 1.9663     | 1.9587     | 1.9623     |
| FE          | 2.0692     | 2.5241     | 2.3473     | 2.3770     | 2.4900     | 2.6450     | 2.5224     | 1.6281     |
| MIN         | .5609      | .3515      | .3390      | .3887      | .1856      | .1694      | .1598      | 1.0626     |
| MG          | .2678      | .3123      | .2939      | .2920      | .4041      | .3230      | .3273      | .1985      |
| CA          | .1670      | .0488      | .0448      | .0781      | .0170      | .0202      | .0202      | .1360      |
| NA          | 0.0000     | .0024      | .0047      | 0.0000     | .0006      | .0014      | .0000      | .0009      |
| к           | 0.0000     | .0007      | .0002      | .0022      | .0004      | .0013      | 0.0000     | .0014      |
| ZN          | .0050      | 0.0000     | .0011      | .0039      | .0039      | .0041      | .0030      | .0039      |
| Oxygen      | 12.0000    | 12.0000    | 12.0000    | 12.0000    | 12.0000    | 12.0000    | 12.0000    | 12.0000    |
| No. atoms   | 20.0289    | 20.1064    | 20.0098    | 20.0641    | 20.0426    | 20.0743    | 20.0060    | 20.0069    |

|             | 4502/47.1C. | 2/9A.   | 4545/42.8. | 1/2.     | 4478/85.8. | 4478/85.8. | 4478/68.1. | 2/9B.    |
|-------------|-------------|---------|------------|----------|------------|------------|------------|----------|
|             | GARNET.     | GNT.    | GNT.       | GARNET.  | GNT COR.   | GNT RIM.   | GNT.       | GNT 1.   |
| SI02        | 36.1811     | 36.2925 | 36.4886    | 37.1376  | 38.1725    | 38.4741    | 37.5602    | 36.9348  |
| <b>TIO2</b> | 0.0000      | .0163   | .0211      | 0.0000   | .0595      | .0287      | .0650      | 0.0000   |
| AL203       | 21.1615     | 20.1072 | 21.3212    | 21.2901  | 21.2354    | 21.3887    | 20.5684    | 20.9173  |
| FEO         | 29.0193     | 12.1783 | 15.9212    | 30.6845  | 19.9173    | 19.6325    | 10.3753    | 12.7188  |
| MINO        | 7.7396      | 24.9680 | 19.8358    | 7.9578   | 14.1178    | 14.1367    | 23.5057    | 26.5348  |
| MGO         | 2.8239      | .2006   | 1.6785     | 1.9109   | 1.6538     | 1.6091     | .1417      | .2707    |
| CAO         | 2.2074      | 3.4266  | 4.5488     | 1.7400   | 5.9982     | 5.8708     | 8.1791     | 3.1526   |
| NA2O        | .0073       | 0.0000  | .0276      | .0034    | 0.0000     | 0.0000     | .0087      | .4473    |
| к20         | 0.0000      | 0.0000  | .0032      | 0.0000   | .0155      | 0.0000     | 0.0000     | .0035    |
| ZNO         | .1338       | 0.0000  | .1309      | 0.0000   | .0441      | .0007      | 0.0000     | .0380    |
| TOTAL.      | 99.2739     | 97.1895 | 99.9769    | 100.7243 | 101.2141   | 101.1413   | 100.4041   | 101.0178 |
|             |             |         |            |          | ÷          |            |            |          |
| SI          | 2.9478      | 3.0355  | 2.9519     | 2.9901   | 3.0228     | 3.0395     | 3.0217     | 2.9902   |
| TI          | 0.0000      | .0010   | .0013      | 0.0000   | .0035      | .0017      | .0039      | 0.0000   |
| AL.         | 2.0326      | 1.9827  | 2.0335     | 2.0209   | 1.9825     | 1.9921     | 1.9508     | 1.9964   |
| FE          | 1.9773      | .8519   | 1.0772     | 2.0662   | 1.3191     | 1.2971     | .6981      | .8612    |
| MN          | .5341       | 1.7689  | 1.3593     | .5427    | .9470      | .9460      | 1.6018     | 1.8196   |
| MG          | .3429       | •0250   | .2024      | .2293    | .1952      | .1894      | .0170      | .0327    |
| CA          | .1927       | .3071   | .3943      | .1501    | .5090      | .4970      | .7051      | .2735    |
| NA          | .0012       | 0.0000  | .0044      | .0005    | 0.0000     | 0.0000     | .0014      | .0714    |
| к           | 0.0000      | 0.0000  | .0003      | 0.0000   | .0016      | 0.0000     | 0.0000     | .0004    |
| ZN          | .0081       | 0.0000  | .0078      | 0.0000   | .0026      | .0000      | 0.0000     | .0023    |
| Oxygen      | . 12.0000   | 12.0000 | 12.0000    | 12.0000  | 12.0000    | 12.0000    | 12.0000    | 12.0000  |
| No. atoms   | 20.0366     | 19.9722 | 20.0324    | 19.9997  | 19.9832    | 19,9628    | 19.9997    | 20.0475  |

¢

II - 9

. .

1

|           | 2/98.4   | 483/143.6.4 | 483/143.6.4 | 4483/143.6. | 4478/62.8.4 | 483/116.1. | 2/13d.   | Sturtite.   |
|-----------|----------|-------------|-------------|-------------|-------------|------------|----------|-------------|
|           | GNT 2.   | G 1.        | G2.         | G3.         | G1.         | Gl.        | Cl.c     | coarse G l. |
| , SIO2    | 38.1391  | 34.2692     | 36.7439     | 36.9363     | 36.7663     | 38.3267    | 39.3972  | 38.1738     |
| T102      | .0537    | .0880       | .0679       | .0623       | .0612       | .0567      | .0868    | 0.0000      |
| AL203     | 19.5584  | 20.2248     | 20.6084     | 21.0220     | 20.5882     | 19.5594    | 20.5766  | 20.0563     |
| FEO       | 11.4197  | 15.5115     | 15.1987     | 15.5720     | 11.1001     | 11.3044    | 12.2583  | 25.8887     |
| MNO       | 27.7622  | 19.9370     | 20.8584     | 20.4296     | 23.0840     | 28.4989    | 22.3527  | 10.3909     |
| MGO       | .2193    | .5317       | .2391       | .5025       | .2322       | .1462      | .5639    | 2.0740      |
| CAO       | 3.6387   | 6.2950      | 6.0497      | 6.1955      | 8.0431      | 3.2454     | 7.2642   | 3.0832      |
| NA2O      | .0183    | .0155       | .0087       | 0.0000      | .0246       | .0270      | .0140    | 0.0000      |
| K20       | .0388    | 0.0000      | 0.0000      | 0.0000      | .0118       | .0043      | 0.0000   | .0052       |
| ZNO       | 0.0000   | .0548       | .0193       | .0445       | .0586       | .0670      | .0385    | .0281       |
| TOTAL     | 100.8482 | 96.9275     | 99.7941     | 100.7647    | 99.9701     | 101,2360   | 102.5522 | 99.7002     |
| SI        | 3.0865   | 2.8982      | 2.9939      | 2.9769      | 2.9829      | 3.0930     | 3.0867   | 3.0809      |
| TI        | .0033    | .0056       | -0042       | .0038       | .0037       | .0034      | .0051    | 0.0000      |
| AL.       | 1.8660   | 2.0165      | 1.9796      | 1.9975      | 1.9692      | 1.8609     | 1.9006   | 1.9083      |
| FE        | .7729    | 1.0971      | 1.0357      | 1.0496      | .7532       | .7630      | .8032    | 1.7474      |
| MN        | 1.9031   | 1.4282      | 1.4396      | 1.3947      | 1.5864      | 1.9481     | 1.4834   | .7104       |
| MG        | .0264    | .0670       | .0290       | .0604       | .0281       | .0176      | .0658    | .2495       |
| CA        | .3155    | .5705       | .5282       | .5350       | .6992       | .2806      | .6098    | .2666       |
| NA        | .0029    | .0026       | .0014       | 0.0000      | .0039       | .0043      | .0022    | 0.0000      |
| к         | .0040    | 0.0000      | 0.0000      | 0.0000      | .0012       | .0004      | 0.0000   | .0005       |
| ZN        | 0.0000   | .0034       | .0012       | .0027       | .0035       | .0040      | .0022    | .0017       |
| Oxygen    | 12.0000  | 12.0000     | 12.0000     | 12.0000     | 12.0000     | 12.0000    | 12.0000  | 12.0000     |
| No. atoms | 19.9807  | 20.0893     | 20.0128     | 20.0206     | 20.0313     | 19.9755    | 19.9589  | 19.9653     |

...

•--

|           |           | •          |            |            |         |            |            |             |
|-----------|-----------|------------|------------|------------|---------|------------|------------|-------------|
|           | Sturtite. | 4496/65.2. | 4496/65.2. | 4496/98.4. | 4496/32 | 4496/85.7. | 4496/26.9. | 4483/143.6. |
|           | G 2 fine. | C1.        | G 2.       | G1.        | Ġ.      | G.         | G.         | G4.         |
| SIO2      | 38.5888   | 35.9825    | 38.7475    | 39.3177    | 36.4691 | 39.5589    | 38.3758    | 36.5076     |
| TIO2      | -0288     | 0.0000     | .0365      | .0100      | .0213   | 0.0000     | 0.0000     | .0654       |
| AL203     | 20.4360   | 19.2273    | 20.7084    | 21.0889    | 19.4181 | 20.8862    | 20.2979    | 21.0531     |
| FEO       | 26.3924   | 27.6622    | 34.0363    | 30.3634    | 34.6767 | 31.8958    | 37.1568    | 15.5987     |
| MNO       | 10.6143   | 4.2316     | 4.0877     | 7.7050     | 2.8334  | 6.4258     | 2.6709     | 20.7491     |
| MGO       | 2.0904    | 2.6857     | 3.0859     | 3.1981     | 3.2924  | 2.6929     | 2.1794     | .4671       |
| CAO       | 3.1181    | .2512      | .2464      | .4964      | .2090   | .9925      | .2240      | 6.1381      |
| NA2O      | .0183     | .0399      | .0278      | .0205      | 0.0000  | .0212      | .0202      | .0054       |
| K20       | .0140     | .0122      | 0.0000     | .0047      | 0.0000  | 0.0000     | 0.0000     | 0.0000      |
| ZNO       | .0725     | .0401      | .0096      | .1253      | 0.0000  | .0457      | 0.0000     | 0.0000      |
| TOTAL     | 101.3736  | 90.1327    | 100.9861   | 102.3300   | 96.9200 | 102.5190   | 100.9250   | 100.5845    |
| SI        | 3.0675    | 3.1510     | 3.0794     | 3.0781     | 3.0425  | 3.0965     | 3.0805     | 2.9552      |
| TI        | .0017     | 0.0000     | .0022      | .0006      | .0013   | 0.0000     | 0.0000     | .0040       |
| AL        | 1.9151    | 1.9850     | 1.9402     | 1.9464     | 1.9098  | 1.9274     | 1.9209     | 2.0091      |
| FE        | 1.7546    | 2.0259     | 2.2622     | 1.9880     | 2.4194  | 2.0880     | 2.4945     | 1.0560      |
| HN        | .7147     | .3139      | .2752      | .5110      | -2002   | .4261      | .1816      | 1.4227      |
| MG        | .2476     | .3505      | .3655      | .3731      | .4093   | .3141      | .2607      | .0564       |
| CA        | .2656     | .0236      | .0210      | .0416      | .0187   | .0832      | .0193      | .5324       |
| NA        | .0029     | .0069      | .0044      | .0032      | 0.0000  | .0033      | .0032      | .0009       |
| ĸ         | .0014     | .0014      | 0.0000     | .0005      | 0.0000  | 0.0000     | 0.0000     | 0.0000      |
| ZN        | .0043     | .0026      | .0006      | .0072      | 0.0000  | .0026      | 0.0000     | 0.0000      |
| Oxygen    | 12.0000   | 12.0000    | 12.0000    | 12.0000    | 12.0000 | - 12.0000  | 12.0000    | 12.0000     |
| No. atoms | 19.9754   | 19.8606    | 19.9504    | 19.9498    | 20.0013 | 19.9414    | 19.9605    | 20.0366     |

•

.

BIOTITES (AU)

.

1

|              | 4502/29.9.4 | 502/47.1C.4 | 502/47.1C. | 4545/42.8.  | 1/2.                | 4526/90.6. |
|--------------|-------------|-------------|------------|-------------|---------------------|------------|
|              | BI 2.       | GN BI.      | GN BI 2.   | BI 2.       | BIOTITE.            | BI 1.      |
| S102         | 36.8366     | 29.1763     | 30.2828    | 41.2224     | 36.4138             | 39.0799    |
| T102         | 1.3721      | 0.0000      | .0146      | .7477       | 2.8676              | .5124      |
| AL203        | 18.2696     | 19.7722     | 18.7345    | 11.4166     | 19.1213             | 10.8520    |
| FEO          | 21.1237     | 31.6884     | 27.7952    | 17.1100     | 19.7112             | 17.2305    |
| MNO          | .0278       | .4151       | .3849      | 1.4605      | .1288               | 2.1587     |
| MCO          | 9.4375      | 4.5193      | 4.2222     | 15.8973     | 8.7581              | 15.1799    |
| CAO          | 0.0000      | .0092       | 0.0000     | 0.0000      | 0.0000              | 0.0000     |
| NA20         | .2256       | .0071       | .0889      | .0169       | .0287               | .0246      |
| K20          | 9.4973      | 4.3009      | 8.3258     | 9.1848      | 8,9408              | 9.8069     |
| ZNO          | .0744       | .3286       | .0933      | .1966       | .1113               | -0881      |
| TOTAL        | 96.8646     | 90.2171     | 89.9422    | 97.2528     | 96.0816             | 94.9330    |
| · .          |             |             |            |             |                     |            |
| SI           | 5.5456      | 4.9410      | 5.1625     | 6.0858      | 5.4715              | 5.9985     |
| TI           | .1553       | 0.0000      | .0019      | .0830       | .3240               | •0592      |
| AL.          | 3.2425      | 3.9475      | 3.7653     | 1.9870      | 3,3872 <sup>,</sup> | 1.9638     |
| FE           | 2.6596      | 4.4880      | 3.9629     | 2.1126      | 2.4770              | 2.2119     |
| MN           | .0035       | .0595       | .0556      | .1826       | .0164               | •2807      |
| MG ·         | 2.1174      | 1.1406      | 1.0727     | 3.4977      | 1.9612              | 3.4725     |
| ÇA           | 0.0000      | .0017       | 0.0000     | 0.0000      | 0.0000              | 0.0000     |
| HA .         | •0669       | .0024       | .0299      | .0049       | .0085               | •0074      |
| . • <b>K</b> | 1.8241      | .9292       | 1.8108     | 1.7300      | 1.7139              | 1.9205     |
| ZN           | .0083       | .0411       | .0118      | .0214       | .0124               | .0100      |
| Oxygen       | 22.0000     | 22.0000     | 22.0000    | 22.0000     | 22.0000             | 22.0000    |
| No. atoms    | 37.6233     | 37.5511     | 37.8733    | . 37 . 7052 | 37.3721             | 37.9245    |

| •           |                   |         |         |          | 4526/89.2. | 4496/32 |
|-------------|-------------------|---------|---------|----------|------------|---------|
|             | BI 2.             | BI 1.   | BI 1.   | Mn-Bi 1. | Mn-Bi 2.   | Bi.     |
| S102        | 39.0978           | 37.1701 | 37.5759 | 39.5427  | 39.6521    | 37.1896 |
| <b>TIO2</b> | .3640             | 1.2553  | 1.2489  | 1.1467   | 1.0860     | .6485   |
| AL203       | 10.5975           | 15.8941 | 17.3594 | 10.8184  | 10.5227    | 16.5427 |
| FEO         | 13.2392           | 19.0310 | 18.8310 | 21.4921  | 22.1454    | 15.5932 |
| MO          | 2.0453            | .1111   | .0925   | 2.4462   | 2.4133     | -0441   |
| MGO         | 17.5294           | 10.1866 | 9.9669  | 10.9339  | 10.9560    | 11.0128 |
| CYO         | 0.0000            | 0.0000  | 0.0000  | · 0.0000 | .0006      | .0184   |
| NA20        | .0487             | .2650   | .1732   | .0197    | .0073      | .2415   |
| K20         | 9.9829            | 9.2014  | 9.7573  | 9.8556   | 9.7205     | 8.3648  |
| Z110        | .0122             | .0850   | .1391   | .0344    | 0.0000     | .0718   |
| TOTAL       | 92.9170           | 93.1996 | 95.1442 | 96.2897  | 96.5039    | 89.7274 |
| SI          | 6.0219            | 5.7701  | 5.7048  | 6.0999   | 6.1154     | 5.8547  |
| TI          | .0422             | .1466   | .1426   | •1330    | .1260      | •0768   |
| AL.         | 1.9243            | 2.9088  | 3.1071  | 1.9675   | 1.9133     | 3.0703  |
| FE          | 1.7054            | 2.4707  | 2.3910  | 2.7728   | 2.8564     | 2.0530  |
| MN          | <b>.</b> 2668     | .0146   | .0119   | .3196    | .3153      | .0059   |
| MG          | 4.0237            | 2.3567  | 2.2551  | 2.5137   | 2.5182     | 2.5838  |
| CA          | 0.0000            | 0.0000  | 0.0000  | 0.0000   | .0001      | .0031   |
| NA          | .0148             | .0811   | .0518   | .0060    | •0022      | .0749   |
| к           | 1.9616            | 1.8223  | 1.8899  | 1.9396   | 1.9126     | 1.6800  |
| ZN          | .0014             | •0098   | .0156   | .0039    | 0.0000     | .0084   |
| Охудеп      | 22.0000           | 22.0000 | 22.0000 | 22.0000  | 22.0000    | 22.0000 |
| No. atoms   | <b>37.</b> 9620 ' | 37.5807 | 37.5699 | 37.7561  | 37.7593    | 37.4109 |
|             |                   |         |         |          |            |         |

.

SELECTED ANALYSES FROM : JAN83 : 2, 4, 9-10, 13, 15, 26, 46-47, 70, 74, 82-83, 193, 195, 203-204, 211

4502/16.6. 4502/16.6. 4502/75.9. 4502/75.9. 4502/44.3. 4502/91.6. BI 1. BI 2. BIOT 1. BIOT 2. BIOTITE. BI 1. 35.2726 34.4696 37.2328 35.5935 36.7750 S102 34.5352 TI02 2.9055 2.8712 1.0302 .9721 1.6758 1.0758 14.9380 16.2475 16.6040 13.9688 19.0084 17.2283 19.9249 15.5652 16.0773 AL203 18.9859 18.4424 18.3870 FEO .1636 .1040 .1079 .0878 .1196 MNO 9.8991 12.2079 12.5298 9.1965 13.1391 9.8373 MCO .0518 0.0000 .0119 0.0000 0.0000 CAO .0547 NA2O .0849 .0914 .1869 .1779 .1920 : .2625 к20 9.0107 9.2734 8.5079 8.5326 9.4395 9.2565 ZNO .1987 .2200 .2336 .0889 .1681 .2182 89.7769 TOTAL. 91.4989 92.7283 93.5577 93.5226 92.4775 SI 5.4862 5.5196 ( 5.6088 5.7415 5.5549 5.6920 TI .3471 .3379 .1261 .1127 .1967 .1252 2.8403 AL 3.0429 3.0632 2.6796 2.7157 3.1698 FE 2.4502 2.4063 2.5867 2.4485 2.6006 2.0812 .0159 2.2942 .0225 .0137 2.1390 MN MG .0115 .0141 3.0308 .0162 2.3436 0.0000 .0093 .0087 .0020 0.0000 0.0000 CA .0599 .0591 NA .0266 .0282 .0541 .0801 ĸ 1.8262 1.8514 1.7662 1.6787 1.8795 1.8279 ZN .0233 .0254 .0281 .0101 .0194 .0250 22.0000 22.0000 22.0000 Oxygen 22.0000 22.0000 22.0000 37.5716 37.5508 37.8384 37.6543 37.6328 37.7165 No. atoms

SELECTED ANALYSES FROM : JAN82 : 16, 34, 38, 40, 43-44, 46-48, 59-60, 96-97, 103, 105-105, 110-112, 115-116, 122, 130, 137

...

.

4

••

BIOTITE (ANU)

1

BIOTITE (AU)

|           | 2/4A.<br>BI1. | 2/7A.<br>BI1. | 2/7A.<br>BI c Ilm. | 2/7A.<br>BI 3. | 2/7A.<br>BI 4. | 4496/53.6.<br>BI l. | 4496/53.6.<br>BI 2. |
|-----------|---------------|---------------|--------------------|----------------|----------------|---------------------|---------------------|
| SIO2      | 36.5900       | 36.3200       | 34.2400            | 35.8800        | 35.9000        | 37.7800             | 38.6200             |
| TIO2      | 1.7700        | 1.1500        | 1.0900             | 1.0700         | 1.1200         | .7100               | .4300               |
| AL203     | 15.5200       | 17.8700       | 17.8300            | 17.9800        | 18.0200        | 12.0000             | 11.6600             |
| FEO       | 17.4200       | 17.9300       | 20.0100            | 18.4200        | 18.1000        | 15.7600             | 15.4900             |
| MNO       | .3300         | 0.0000        | .1800              | 0.0000         | 0.0000         | .7200               | .7200               |
| MGO       | 11.1000       | 11.6800       | 11.4700            | 11.5100        | 11.4100        | 15.6900             | 16.2100             |
| CAO       | 0.0000        | 0.0000        | 0.0000             | 0.0000         | 0.0000         | .1200               | 0.0000              |
| K20       | 9.5900        | 9.5200        | 8.0300             | 9.6700         | 9.5100         | 9.3200              | 9.4300              |
| NA2O      | .2500         | .2400         | .2200              | .2100          | 0.0000         | .3100               | .2900               |
| a         | •3300         | .1300         | •0500              | .1200          | 0.0000         | .2200               | .1500               |
|           | 91.5104       | 94.2926       | 92.9095            | 94.3547        | 94.0600        | 91.7036             | 92.3684             |
| 0=F,CL    | .1390         | .0547         | .0211              | .0505          | 0.0000         | .0926               | .0632               |
| TOTAL     | 91.5104       | 94.2926       | 92.9095            | 94.3547        |                |                     |                     |
| IUING     | 71.5104       | 94.2920       | 32.3032            | 94.3547        | 94.0600        | 91.7036             | 92.3684             |
| SI        | 5.7187        | 5.5269        | 5.3451             | 5.4818         | 5.5015         | 5.8858              | 5.9664              |
| TI        | <b>.</b> 2080 | .1316         | .1280              | .1229          | .1291          | .0832               | •0500               |
| AL        | 2.8596        | 3.2059        | 3.2814             | 3.2385         | 3.2556         | 2.2040              | 2.1237              |
| FE        | 2.2770        | 2.2819        | 2.6124             | 2.3536         | 2.3198         | 2.0534              | 2.0014              |
| MN        | .0437         | 0.0000        | .0238              | 0.0000         | 0.0000         | •0950               | .0942               |
| MG        | 2.5855        | 2.6489        | 2.6685             | 2.6207         | 2.6059         | 3.6429              | 3.7322              |
| CA        | 0.0000        | 0.0000        | 0.0000             | 0.0000         | 0.0000         | .0200               | 0.0000              |
| К         | 1.9122        | 1.8482        | 1.5993             | 1.8848         | 1.8593         | 1.8524              | 1.8586              |
| NA        | .0770         | .0720         | .0677              | .0632          | 0.0000         | .0952               | .0883               |
| a         | .0000         | .0000         | .0000              | .0000          | 0.0000         | •0000               | .0000               |
| 0,0H,CL,F | 22.0000       | 22.0000       | 22.0000            | 22.0000        | 22.0000        | 22.0000             | 22.0000             |
| No. atoms | 37.6815       | 37.7153       | 37.7262            | 37.7657        | 37.6711        | 37.9320             | 37.9148             |

|   |            |            |            | II -       | 10                           |             |             |            |
|---|------------|------------|------------|------------|------------------------------|-------------|-------------|------------|
|   |            |            |            | 11 -       | 10                           | · .         |             |            |
|   |            | (          |            |            | •                            | •           |             |            |
|   | BIOTITES   | (ANU)      |            |            |                              |             |             |            |
|   |            | 4496/53.6. | 4496/53.6. | 4496/53.6. | 4496/53.6.4                  | 496/125.8.4 | 496/125.8.4 | 496/125.8. |
|   |            | BI 3.      | BI 3A.     | BI4/C2.    | BI 4/K.                      | BI 1.       | BI 2.       | BI 3.      |
|   | S102       | 38.0900    | 38.8800    | 38.1000    | 39.5900                      | 35.4600     | 35,9200     | 34.9400    |
|   | T102       | .5900      | .6400      | .3000      | .5300                        | 1.2100      | 1.3000      | 1.1900     |
|   | NL203      | 11.3400    | 11.3800    | 11.8000    | 11.9800                      | 19.0700     | 18.8400     | 18.4800    |
|   | FDO        | 14.6800    | 15.2300    | 15.7300    | 17.2000                      | 19.1000     | 19.0600     | 19.2800    |
|   | MNO        | .6400      | .7700      | .6900      | .9100                        | 0.0000      | 0.0000      | 0.0000     |
|   | MGO        | 16.0300    | 15.9400    | 16.2400    | 16.3300                      | 9.6100      | 9.7100      | 9.5800     |
|   | CV0        | .1500      | .1500      | 0.000.0    | .0900                        | 0.000       | 0.0000      | 0.0000     |
|   | K20        | 8.8900     | 9.2300     | 9.5700     | 9.9200                       | 9.4800      | 9.5100      | 9.4300     |
|   | NA2O       | .2400      | 0.0000     | .2600      | .1800                        | .2000       | .2400       | .2000      |
|   | a          | .1900      | .2300      | .1700      | .2200                        | 0.0000      | .1000       | 0.000      |
|   |            | 90.0399    | 91.4815    | 92.1441    | 96.0236                      | 94.1300     | 94.2589     | 93.1000    |
|   | O=F,CL     | .0800      | .0969      | .0716      | .0926                        | 0.0000      | .0421       | 0.0000     |
|   |            |            |            |            |                              |             | ·           |            |
|   | TOTAL      | 90.0399    | 91.4815    | 92.1441    | 96.0236                      | 94.1300     | 94.2589     | 93.1000    |
|   |            |            |            |            |                              |             |             |            |
|   | SI         | 5.9968     | 6.0302     | 5.9162     | 5.9222                       | 5.4553      | 5.4976      | 5.4530     |
| · | TI .       | .0699      | .0747      | .0350      | .0596                        | .1400       | .1496       | .1397      |
|   | AL.        | 2.1048     | 2.0808     | 2.1602     | 2.1127                       | 3.4587      | 3.3994      | 3.4002     |
|   | FE         | 1.9329     | 1.9755     | 2.0428     | 2.1518                       | 2.4575      | 2.4397      | 2.5165     |
|   | MN         | .0853      | .1012      | .0908      | .1153                        | 0.0000      | 0.0000      | 0.0000     |
| · | MG         | 3.7612     | 3.6845     | 3.7583     | 3.6405                       | 2.2033      | 2.2148      | 2.2282     |
|   | CA         | .0253      | .0249      | 0.0000     | .0144                        | 0.0000      | 0.0000      | 0.0000     |
|   | K          | 1.7856     | 1.8264     | 1.8959     | 1.8932                       | 1.8607      | 1.8570      | 1.8776     |
|   | NA<br>CL   | .0745      | 0.0000     | .0796      | .0531                        | .0606       | .0724       | .0615      |
| • | CL         | .0000      | •0000      | .0000      | .0000                        | 0.0000      | .0000       | 0.0000     |
|   |            | 22.0000    |            |            | <b>2</b> 2 <sup>1</sup> 0000 |             | 22.0000     |            |
|   | 0,011,CL,F | 22.0000    | 22.0000    | 22.0000    | 22.0000                      | 22.0000     | 22.0000     | 22.0000    |
|   | No. atoms  | 37.8363    | 37.7982    | 37.9787    | 37.9629                      | 37.6362     | 37.6305     | 37.6768    |

|             |           |           |            |            |               |           | •         |     |
|-------------|-----------|-----------|------------|------------|---------------|-----------|-----------|-----|
|             |           |           |            |            |               |           |           |     |
|             |           |           | . <b>.</b> |            |               |           | •         |     |
|             |           | •         |            |            |               |           |           |     |
|             |           | ٠.        |            |            |               |           |           |     |
|             | 4502/19 3 | 4502/19 3 | 4502/19 3  | 4502/19.3. | 4507/10 3     | 4502/10 2 | 4502/10 2 |     |
|             | BI2.      | BI 3.     | BI 4.      | BI 5.      | BI 1.         | BI 6.     | BI 7.     |     |
|             | 0121      |           |            | 01 5.      | 5             | 51 0.     |           |     |
| S102        | 34.2300   | 33.5400   | 32.6200    | 33.9200    | 33.6600       | 33.9400   | 33.6400   |     |
| <b>TIO2</b> | 3.1900    | 3.0900    | 3.0000     | 3.1300     | 2.8600        | 3.1100    | 3.0700    |     |
| AL203       | 18.1600   | 17.8600   | 18.2700    | 18.6400    | 18.8300       | 18.4400   | 18.7900   |     |
| FEO         | 22.6300   | 22.2400   | 20.7700    | 21.6700    | 22.2400       | 21.8300   | 21.8400   |     |
| MNO         | 0.0000    | 0.0000    | 0.0000     | 0.0000     | 0.0000        | 0.0000    | 0.0000    |     |
| MCO         | 6.9000    | 6.6700    | 6.3600     | 6.8700     | 6.6300        | 6.7100    | 6.6700    |     |
| CAO         | .0900     | .1000     | .1200      | 0.0000     | .1100         | 0.0000    | 0.0000    |     |
| K20         | 9.5500    | 9.4300    | 9.4000     | 9.6300     | 9.0500        | 9.7300    | 9.6500    |     |
| NA2O        | .1500     | 0.0000    | .1300      | .1300      | .1800         | .1500     | · .2700   |     |
| a           | •0900     | .0800     | .1000      | 0.0000     | •0500         | .0700     | .0700     |     |
|             | 94.6110   | 92.6731   | 90.3489    | 93.9900    | 93.3995       | 93.6852   | 93.7052   |     |
| O=F,CL      | .0379     | .0337     | .0421      | • 0.0000   | .0211         | .0295     | .0295     |     |
|             |           |           |            | 010000     | TOLIL         |           |           |     |
| BYCOND F    | 04 (1)10  | 02 (22)   |            |            |               |           |           |     |
| TOTAL       | 94.6110   | 92.6731   | 90.3489    | 93.9900    | 93.3995       | 93.6852   | 93.7052   |     |
|             |           |           |            |            | •             |           |           |     |
| SI          | 5.3469    | 5.3506    | 5.3128     | 5.3248     | 5.3112        | 5.3441    | 5.2979    |     |
| TI          | .3747     | .3707     | •3675      | .3695      | -3394         | .3683     | .3636     |     |
| AL          | 3.3442    | 3.3590    | 3.5080     | 3.4497     | 3.5028        | 3.4231    | 3.4887    |     |
| FE          | 2.9563    | 2.9672    | 2.8291     | 2.8450     | 2.9348        | 2.8747    | 2.8766    | . 2 |
| HN          | 0.0000    | 0.0000    | 0.0000     | 0.0000     | 0.000         | 0.0000    | 0.0000    |     |
| hg          | 1.6063    | 1.5858    | 1.5437     | 1.6073     | 1.5591        | 1.5746    | 1.5655    |     |
| CA          | .0151     | .0171     | .0209      | 0.0000     | -0186         | 0.0000    | 0.0000    |     |
| K<br>NA     | 1.9032    | 1.9192    | · 1.9532   | 1.9287     | 1.8218        | 1.9546    | 1.9389    |     |
|             | .0462     | 0.0000    | .0417      | .0402      | <b>.</b> 0560 | .0465     | .0838     |     |
| æ           | .0000     | .0000     | .0000      | 0.0000     | .0000         | .0000     | .0000     |     |
| 0,0H,CL,F   | 22.0000   | 22.0000   | 22.0000    | 22.0000    | 22.0000       | 22.0000   | 22.0000   |     |
| No. atoms   | 37.5928   | 37.5697   | 37.5770    | 37.5652    | 37.5437       | 37.5858   | 37.6149   |     |

**,** 

### II - 14

|           | 1500 (10 0 |                     | 4502/27 2           | 4502/27 2           | 4502/27 2           | 4502/27 3           |
|-----------|------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|           |            | 4502/37.3.<br>BI 1. | 4502/37.3.<br>BI 2. | 4502/37.3.<br>BI 4. | 4502/37.3.<br>BI 5. | 4502/37.3.<br>Bi 3. |
|           | BI+spl.    | ы 1.                | BI 2.               | DI 4.               | 51 5.               | 61 5.               |
| S102      | 33.6400    | 35.0300             | 35.5800             | 33.8500             | 36.2300             | 38.2400             |
| T102      | 2.8800     | 1.1100              | 1.3900              | 1.3500              | 1.1700              | 1.3100              |
| AL203     | 18.8000    | 18.4900             | 18.6200             | 17.6600             | 18.9000             | 19.5300             |
| FEO       | 22.3200    | 20.1700             | 17.1100             | 18.1500             | 17.5000             | 18.8300             |
| MIHO      | 0.0000     | 0.0000              | 0.0000              | 0.0000              | 0.0000              | 0.0000              |
| MGO       | 6.2300     | 9.9900              | 10.4100             | 10.3300             | 10.8300             | 11.6200             |
| CAO       | 0.0000     | .1400               | 0.0000              | .1000               | 0.0000              | 0.0000              |
| к20       | 9.4700     | 9.0000              | 9.2800              | 8.4000              | 9.7500              | 10.0300             |
| NA20      | .1900      | .1300               | .1500               | .1700               | .2700               | .2100               |
| a.        | .1100      | .2300               | .1600               | .2000               | .1500               | .2300               |
|           | 93.1768    | 93.3215             | 92.0262             | 89.3678             | 94.1684             | 99.0315             |
| O=F,CL    | .0463      | .0969               | .0674               | .0842               | .0632               | .0969               |
| -         |            |                     |                     |                     |                     |                     |
|           |            |                     |                     |                     |                     |                     |
| TOTAL     | 93.1768    | 93.3215             | 92.0262             | 89.3678             | 94.1684             | 99.0315             |
|           |            |                     |                     |                     |                     |                     |
| SI        | 5.3265     | 5.4268              | 5.5150              | 5.4358              | 5.5054              | 5.5179              |
| TI        | .3429      | .1293               | .1620               | .1630               | .1337               | .1422               |
| AL.       | 3.5094     | 3.3770              | 3.4025              | 3.3434              | 3.3859              | 3.3224              |
| FE        | 2.9556     | 2.6133              | 2.2180              | 2.4376              | 2.2240              | 2.2724              |
| MN        | 0.0000     | 0.0000              | 0.0000              | 0.0000              | 0.0000              | 0.0000              |
| MG        | 1.4701     | 2.3065              | 2.4047              | 2.4722              | 2.4526              | 2.4989              |
| CA        | 0.0000     | .0232               | 0.0000              | .0172               | 0.0000              | 0.0000              |
| ĸ         | 1.9130     | 1.7788              | 1.8351              | 1.7209              | 1.8902              | 1.8465              |
| NA        | .0593      | .0397               | .0458               | .0538               | .0809               | .0597               |
| æ         | .0000      | •0000               | .0000               | .0000               | •0000               | •0000               |
|           |            |                     |                     |                     |                     |                     |
| 0,0H,CL,F | 22.0000    | 22.0000             | 22.0000             | 22.0000             | 22.0000             | 22.0000             |
| · · ·     |            | -                   | -                   | -                   |                     | _                   |
| No. atoms | 27 5760    | 27 6046             | 27 6022             | 37 6440             | 37 (707             | 27 6600             |
| NO. atoms | 37.5768    | 37.6946             | 37.5832             | 37.6440             | 37.6727             | 37.6600             |
|           |            |                     |                     |                     |                     |                     |

SELECTED ANALYSES FROM :SEP82 : 15, 22, 25

SELECTED ANALYSES FROM :SEP82 : 14

,

SILLIMANITE (AU)

U.

.

•

-

## BIOTITE (AU)

t

|             | 4496/29.6. | 4502/25.4. | 4502/25.4. |           | 4496/29.6. |
|-------------|------------|------------|------------|-----------|------------|
|             | BI 1.      | #2 BI1.    | BI 2.      |           | SILL.      |
| SI02        | 36.4308    | 37.0379    | 36.2698    | S102      | 34.5212    |
| <b>TIO2</b> | 1.2924     | 1.7536     | 1.6013     | TIO2      | 0.0000     |
| AL203       | 18.0743    | 17.0963    | 17.0649    | AL203     | 55.1664    |
| FEO         | 16.4039    | 17.6918    | 17.7048    | FEO       | .1799      |
| MNO         | .0811      | .1043      | .1223      | MNO       | .0161      |
| MGO         | 9.4449     | 9.7020     | 9.6694     | MGO       | .0078      |
| CAO         | 0.0000     | 0.0000     | 0.0000     | CAO       | 0.0000     |
| NA2O        | .1958      | .1027      | .0920      | NA2O      | .0021      |
| к20         | 9.1204     | 8.8239     | 9.1029     | K20       | .0009      |
| ZNO         | .1224      | .0646      | .0238      | ZNO       | .0553      |
| TOTAL       | 91.1660    | 92.3,771   | 91.6512    | TOTAL     | 89.9497    |
| SI          | 5.6950     | 5.7355     | 5 6940     |           |            |
| TI          | .1519      | .2042      | 5.6849     | SI        | 1.0347     |
| AL          | 3.3310     | 3.1212     | .1888      | TI        | 0.0000     |
| FE          | 2.1446     | 2.2913     | 3.1533     | AL        | 1.9494     |
| MN          | .0107      | .0137      | 2.3208     | FE        | .0045      |
| MG          | 2.2004     | 2.2391     | .0162      | MN        | .0004      |
| CA          | 0.0000     | 0.0000     | 2.2587     | MG        | .0003      |
| NA          | .0603      | .0313      | 0.0000     | CA        | 0.0000     |
| K           | 1.8190     | 1.7433     | .0284      | NA        | .0001      |
| ZN          | .0141      | .0074      | 1.8203     | ĸ         | 0000       |
| 41          | •0141      | .0074      | .0028      | ZN        | .0012      |
| Oxygen      | 22.0000    | 22.0000    | 22.0000    | 0xygen    | 5.0000     |
| No. atoms   | 37.4271    | 37.3870    | 37.4741    | No, atoms | 7.9907     |

| SPINELS (AUGANU) | ANU: | 1-18, | AU: | 19-31 |
|------------------|------|-------|-----|-------|
| *************    |      |       |     |       |

|           | 4502/19.3.<br>JI. | 4502/19.3.<br>J2 CORE. | 4502/19.3.<br>J2 RIM. | 4502/19.3.<br>J3 RIM. | 4502/19.3.<br>J3 CORE. | 4502/37.3.<br>J1CORE. | 4502/37.3.<br>J1 RIM. | 4502/37.3.<br>J2. |
|-----------|-------------------|------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|-------------------|
| SI02      | 0.0000            | .3500                  | 0.0000                | 0.0000                | 0.0000                 | 0.0000                | 0.0000                | 0.0000            |
| TI02      | 0.0000            | 0.0000                 | 0.0000                | 0.0000                | 0.0000                 | 0.0000                | .2200                 | 0.0000            |
| AL203     | 55.5000           | 52.7600                | 54.7000               | 55.0600               | 55.7000                | 53.4100               | 53.6700               | 54.0000           |
| FEO       | 23.0200           | 20.8000                | 22.4500               | 22.2700               | 22.4300                | 11.4200               | 11.4800               | 11.7300           |
| MINO      | .2900             | .1900                  | .2500                 | .1600                 | .1800                  | .2400                 | .2000                 | .2300             |
| MGO       | 1.3000            | 1.1700                 | 1.1200                | 1.0400                | 1.2100                 | 1.2000                | 1.0700                | 1.1400            |
| CAO       | 0.0000            | 0.0000                 | 0.0000                | 0.0000                | 0.0000                 | 0.0000                | 0.0000                | 0.0000            |
| NA2O      | 0.0000            | 0.0000                 | 0.0000                | 0.0000                | 0.0000                 | 0.0000                | 0.0000                | 0.0000            |
| ZNO       | 17.4000           | 16.0800                | 17.1700               | 17.3400               | 17.7000                | 27.5800               | 28.0900               | 26.9600           |
| TOTAL     | 97.5100           | 91.3500                | 95.6900               | 95.8700               | 97.2200                | 93.8500               | 94.7300               | 94.0600 -         |
| SI        | 0.0000            | .0112                  | 0.0000                | 0.0000                | 0.0000                 | 0.0000                | 0.0000                | 0.0000            |
| TI        | 0.0000            | 0.0000                 | 0.0000                | 0.0000                | 0.0000                 | 0.0000                | .0052                 | 0.0000            |
| AL.       | 1.9762            | 1.9875                 | 1.9831                | 1.9897                | 1.9855                 | 1.9930                | 1.9871                | 2.0032            |
| FE        | .5815             | .5558                  | .5774                 | .5709                 | .5672                  | .3023                 | .3015                 | .3087             |
| MN        | .0074             | .0051                  | .0065                 | .0042                 | .0046                  | .0064                 | .0053                 | .0061             |
| MG        | .0585             | .0557                  | .0513                 | .0475                 | .0545                  | .0566                 | .0501                 | .0535             |
| CA        | 0.0000            | 0.0000                 | 0.0000                | 0.0000                | 0.0000                 | 0.0000                | 0.0000                | 0.0000            |
| NA        | 0.0000            | 0.0000                 | 0.000                 | 0.000                 | 0.0000                 | 0.000                 | 0.0000                | 0.0000            |
| ZN        | .3884             | .3797                  | .3902                 | .3928                 | .3955                  | .6451                 | .6520                 | .6269             |
| Oxygen    | 4.0000            | 4.0000                 | 4.0000                | 4.0000                | 4.0000                 | 4.0000                | 4.0000                | 4.0000            |
| No. atoms | 7.0119            | 6.9951                 | 7.0085                | 7.0051                | 7.0073                 | 7.0035                | 7.0012                | 6.9984            |

.

.

•

.

¢

|           | 4502/37.3. | 4502/37.3. | 4502/37.3. | 4502/37.3. | 4502/37.3. | 4502/37.3. | 4502/37.3. | 4502/42.1. |
|-----------|------------|------------|------------|------------|------------|------------|------------|------------|
|           | J3 RIM.    | J4.        | J5.        | J 6.       | J 7.       | J 8.       | J 3 CORE.  | J (corr.). |
| SI02      | 0.0000     | 0.0000     | .2400      | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| T102      | 0.0000     | .1200      | 0.0000     | .1400      | .1400      | 0.0000     | 0.0000     | .1200      |
| AL203     | 53.2000    | 54.0200    | 53.4000    | 59.4600    | 55.1400    | 62.6800    | 53.7100    | 53.0900    |
| FEO       | 11.4600    | 11.5500    | 11.2600    | 12.8500    | 11.7400    | 13.3900    | 11.5400    | 12.3500    |
| MINO      | .2900      | .2800      | .1600      | 0.0000     | .1500      | .1900      | .2500      | .1500      |
| MGO       | 1.2000     | 1.1600     | .9800      | 1.1800     | 1.1900     | 1.2600     | 1.1000     | .8700      |
| CAO       | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| NA2O      | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| ZNO       | 27.1900    | 27.0300    | 29.4400    | 29.4400    | 27.8000    | 32.3200    | 27.0700    | 26.8000    |
| TOTAL     | 93.3400    | 94.1600    | 95.4800    | 103.0700   | 96.1600    | 109.8400   | 93.6700    | 93.3800    |
| SI        | 0.0000     | 0.0000     | .0075      | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| TI        | 0.0000     | .0028      | 0.0000     | .0030      | .0032      | 0.0000     | 0.0000     | .0029      |
| AL.       | 1.9944     | 2.0010     | 1.9722     | 2.0083     | 2.0004     | 1.9976     | 2.0024     | 1.9929     |
| FE        | .3048      | .3035      | .2950      | .3079      | .3021      | .3027      | .3052      | .3289      |
| MN        | .0078      | .0075      | .0042      | 0.0000     | .0039      | .0044      | .0067      | .0040      |
| MG        | .0569      | .0543      | .0458      | .0504      | .0546      | .0508      | .0518      | .0413      |
| CA        | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| NA        | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| ZN        | .6390      | .6276      | .6816      | .6233      | .6322      | .6457      | .6326      | .6306      |
| Oxygen    | 4.0000     | 4.0000     | 4.0000     | 4.0000     | 4.0000     | 4.0000     | 4.0000     | 4.0000     |
| No. atoms | 7.0028     | 6.9967     | 7.0064     | 6.9929     | 6.9965     | 7.0012     | 6.9988     | 7.0007     |

,

X

•

|   | 4502/42.1. 4502/25.4. | 4502/25.4. | 4502/25.4. | 4502/25.4. | 4502/91.6. | 4502/29.9. | 4502/48.6. |
|---|-----------------------|------------|------------|------------|------------|------------|------------|
| , | J2.SPIN. CORE.        | SPN RIM1.  | SPN RIM2.  | J 1.       | GAHNITE 1. | GAHNITE 1. | GAHNITE.   |

| S102       | 0.0000  | .0163    | .0225    | .0145    | .0324   | .0104    | .0110   | .0320   |
|------------|---------|----------|----------|----------|---------|----------|---------|---------|
| TI02       | .1200   | 0.0000   | 0.0000   | .0126    | .0444   | 0.0000   | 0.0000  | 0.0000  |
| AL203      | 53.2500 | 59.2065  | 58.8150  | 59.2990  | 56.7236 | 58.5463  | 54.5901 | 54.8462 |
| FEO        | 12.2100 | 11.2751  | 10.0208  | 10.4514  | 9.8453  | 8.4861   | 16.9902 | 12.5851 |
| MNO        | .1700   | .1184    | .1104    | .1318    | .1371   | .0611    | .0785   | .6044   |
| MGO        | .7100   | 1.3815   | 1.1343   | 1.3404   | 1.2812  | 1.2517   | 1.7669  | 1.5969  |
| CAO        | 0.0000  | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000  | 0.0000  |
| NA2O       | 0.0000  | .6338    | .6648    | .6457    | .5721   | .8628    | .5832   | .7401   |
| <b>ZNO</b> | 26.8500 | 32.2244  | 33.2335  | 32.2681  | 24.3204 | 35.2693  | 23.9343 | 29.5371 |
| TOTAL      | 93.3100 | 104.8560 | 104.0013 | 104.1635 | 92.9565 | 104.4877 | 97.9542 | 99.9418 |
|            |         |          |          |          | :       |          |         |         |
| SI         | 0.0000  | .0005    | .0006    | .0004    | .0010   | .0003    | .0003   | .0010   |
| TI         | .0029   | 0.0000   | 0.0000   | .0003    | .0010   | 0.0000   | 0.0000  | 0.0000  |
| AL.        | 1.9992  | 1.9835   | 1.9892   | 1.9939   | 2.0698  | 1.9794   | 1.9542  | 1.9442  |
| FE         | .3252   | .2680    | .2404    | .2493    | .2548   | .2035    | .4315   | .3165   |
| MIN        | .0046   | .0028    | .0027    | .0032    | .0036   | .0015    | .0020   | .0154   |
| MG         | .0337   | .0585    | .0485    | .0570    | .0591   | -0535    | .0800   | .0716   |
| CA         | 0.0000  | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000  | 0.0000  |
| NA         | 0.0000  | .0355    | .0376    | .0363    | .0349   | .0488    | .0349   | .0439   |
| ZN         | .6319   | .6767    | .7046    | .6801    | .5563   | .7475    | .5371   | .6564   |
| 0xygen     | 4.0000  | 4.0000   | 4.0000   | 4.0000   | 4.0000  | 4.0000   | 4.0000  | 4.0000  |
| No. atoms  | 6.9975  | 7.0255   | 7.0236   | 7.0205   | 6.9805  | 7.0344   | 7.0400  | 7.0489  |

|           | 4502/47.1C.   | 1/2.     | 1/2.4     | 483/149.1. | 4496/98.4. | 4496/26.9. | 4496/26.9. |
|-----------|---------------|----------|-----------|------------|------------|------------|------------|
|           | GAHNITE.      | GAHNITE. | J2 COR 2. | J.         | J.         | J core.    | J rim.     |
| SI02      | .0234         | 0.0000   | .0116     | .0585      | 0.0000     | .0123      | .0251      |
| TIO2      | 0.0000        | .0065    | 0.0000    | 0.0000     | 0.0000     | .0460      | 0.0000     |
| AL203     | 57.4798       | 60.0157  | 60.1833   | 59.3466    | 58.5106    | 56.8408    | 56.9228    |
| FEO       | 7.7183        | 18.6766  | 18.7545   | 8.3069     | 11.0871    | 14.5972    | 13.2665    |
| MNO       | .1073         | .2537    | .2790     | .1791      | .0942      | .0359      | .0601      |
| MGO       | .4530         | 2.2832   | 2.2880    | 1.3200     | 1.6077     | 1.6595     | 1.4549     |
| CAO       | 0.0000        | 0.0000   | 0.0000    | .0030      | 0.0000     | 0.0000     | 0.0000     |
| NA2O      | .8018         | •5867    | .5489     | .8411      | .9149      | .8137      | .8654      |
| ZNO       | 37.1460       | 22.1463  | 21.8581   | 33.5283    | 31.1367    | 27.4651    | 28.7181    |
| TOTAL     | 103.7296      | 103.9687 | 103.9234  | 103.5835   | 103.3512   | 101.4705   | 101.3129   |
| SI        | .0007         | 0.0000   | .0003     | .0017      | 0.0000     | .0004      | .0007      |
| TI        | 0.0000        | .0001    | 0.0000    | 0.0000     | 0.0000     | .0010      | 0.0000     |
| AL.       | <b>1.9763</b> | 1.9886   | 1.9920    | 2.0027     | 1.9832     | 1.9648     | 1.9723     |
| FE        | .1883         | .4390    | .4403     | .1989      | .2666      | .3579      | .3261      |
| MIN       | .0027         | .0060    | .0066     | .0043      | .0023      | .0009      | .0015      |
| MG        | .0197         | .0956    | .0957     | .0563      | .0689      | .0725      | .0637      |
| CA        | 0.0000        | 0.0000   | 0.0000    | .0001      | 0.0000     | 0.0000     | 0.0000     |
| NA        | .0461         | .0325    | .0304     | .0474      | .0518      | .0470      | .0501      |
| ZN        | .8006         | .4600    | •4535     | .7093      | .6616      | •5951      | .6237      |
| Oxygen    | 4.0000        | 4.0000   | 4.0000    | 4.0000     | 4.0000     | 4.0000     | 4.0000     |
| No. atoms | 7.0342        | 7.0219   | 7.0189    | 7.0207     | 7.0343     | 7.0397     | 7.0382     |

¢

•

## CUMMINGTONITE-GRUNERITE (ANU)

•

|           | 2/1B.   | 2/18.   | 2/1B.       | 2/18.        | 2/4A.   | 2/4A.   | 2/4A.   | 4496/53.6.       |
|-----------|---------|---------|-------------|--------------|---------|---------|---------|------------------|
|           | К1.     | К2.     | КЗ.         | К4.          | к1.     | К2.     | КЗ.     | К1.              |
| S102      | 49.9900 | 49.4900 | 50.2100     | 49.5700      | 50.7000 | 51.0600 | 50.3900 | 51.1400          |
| TIO2      | 0.0000  | .1500   | 0.0000      | .1500        | 0.0000  | .1000   | .1100   | 0.0000           |
| AL203     | .2400   | .2600   | .3800       | 0.0000       | .1900   | .3200   | .2100   | .3000            |
| FEO       | 26.3600 | 25.4300 | 26.1100     | 26.3300      | 29.6700 | 29.8100 | 30.0000 | 25.4700          |
| MNO       | 11.5700 | 11.1000 | 11.5600     | 11.6100      | 5.3500  | 5.5200  | 5.3500  | 5.4400           |
| M00       | 8.2700  | 8.5600  | 8.2200      | 7.9400       | 10.0100 | 9.7700  | 9.7500  | 13.2100          |
| CAO       | 1.0800  | 1.1400  | 1.1700      | 1.0700       | .4000   | .5600   | .4900   | .3200            |
| к20       | 0.0000  | 0.0000  | 0.0000      | 0.0000       | 0.0000  | 0.0000  | 0.0000  | 0.0000           |
| NA2O      | .2200   | .3100   | .2200       | 0.0000       | 0.0000  | .1700   | .2300   | .2800            |
| a.        | .0600   | .0600   | .0900       | 0.0000       | 0.0000  | 0.0000  | 0.0000  | 0.0000           |
|           | 97.5373 | 96.2473 | 97.5810     | 96.6700      | 96.3200 | 97.3100 | 96.5300 | 96 <b>.16</b> 00 |
| O=F,CL    | .0253   | .0253   | .0379       | 0.0000       | 0.0000  | 0.0000  | 0,0000  | 0.0000           |
|           |         |         | <del></del> | <del>,</del> |         |         |         | ·                |
| TOTAL     | 97.5373 | 96.2473 | 97.5810     | 96.6700      | 96.3200 | 97.3100 | 96.5300 | 96.1600          |
| SI        | 7.8806  | 7.8735  | 7.8901      | 7.9064       | 7.9636  | 7.9473  | 7.9262  | 7.8927           |
| TI        | 0.0000  | .0179   | 0.0000      | .0180        | 0.0000  | .0117   | .0130   | 0.0000           |
| AL        | .0446   | .0488   | .0704       | 0.0000       | .0352   | .0587   | .0389   | .0546            |
| FE        | 3.4753  | 3.3836  | 3.4314      | 3.5123       | 3.8976  | 3.8804  | 3.9465  | 3.2875           |
| MN        | 1.5450  | 1.4958  | 1.5387      | 1.5686       | .7118   | .7278   | .7128   | .7112            |
| MG        | 1.9430  | 2.0296  | 1.9251      | 1.8874       | 2.3432  | 2.2663  | 2.2856  | 3.0384           |
| CÃ        | .1824   | .1943   | .1970       | .1829        | .0673   | .0934   | .0826   | .0529            |
| ĸ         | 0.0000  | 0.0000  | 0.0000      | 0.0000       | 0.0000  | 0.0000  | 0.0000  | 0.0000           |
| NA        | .0684   | .0972   | .0681       | 0.0000       | 0.0000  | .0521   | .0713   | .0852            |
| a'        | .0000   | .0000   | .0000       | 0.0000       | 0.0000  | 0.0000  | 0.0000  | 0.0000           |
| 0,0H,CL,F | 23.0000 | 23.0000 | 23.0000     | 23.0000      | 23.0000 | 23.0000 | 23.0000 | 23.0000          |
| No. atoms | 38.1392 | 38.1407 | 38.1207     | 38.0756      | 38.0188 | 38.0377 | 38.0772 | 38.1226          |

|           | 4496/53.6.<br>K2. | 4496/53.6.<br>K2A. | 4496/53.6.<br>K3. | 4496/53.6.<br>K4.  | 4496/60.1.<br>Kl. | 4496/60.1.<br>K2. | 4496/60.1.<br>K3. | 4496/60.1.<br>K4. |
|-----------|-------------------|--------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|
| SI02      | 49.7100           | 51.5900            | 51.4800           | 51.1300            | 51.5100           | 47.4100           | 51.3400           | 51.5900           |
| TI02      | 0.0000            | 0.0000             | .1300             | 0.0000             | .1200             | 0.0000            | 0.0000            | 0.0000            |
| AL203     | .3500             | .4200              | .4600             | .4000              | .3800             | .1900             | .2000             | .2400             |
| FEO       | 23.9700           | 25.0800            | 25.5700           | 25.1800            | 30.6700           | 27.9500           | 30.7700           | 31.0300           |
| MNO       | 5.3600            | 5.7500             | 5.6800            | 6.0300             | 10.3400           | 9.1800            | 10.6500           | 10.8200           |
| MGO       | 12.4100           | 12.9300            | 12.9700           | 12.9200            | 6.8300            | 6.3200            | 6.5200            | 6.7300            |
| CAO       | .5600             | .4600              | .3600             | .6000              | .5500             | .5000             | .5300             | .5000             |
| K20       | 0.0000            | 0.0000             | 0.0000            | 0.0000             | 0.0000            | 0.0000            | 0.0000            | 0.0000            |
| NA2O      | .3900             | .2500              | .2700             | .2500              | .2000             | .2200             | 0.0000            | .3300             |
| a'        | 0.0000            | .0500              | 0.0000            | 0.0000             | .1200             | .0900             | 0.0000            | .0700             |
|           | 92.7500           | 96.3195            | 96.9200           | 96.5100            | 100.2147          | 91.4810           | 100.0100          | 101.0152          |
| 0=F,CL    | 0.0000            | .0211              | 0.0000            | 0.0000             | •0505             | .0379             | 0.0000            | .0295             |
| TOTAL     | 92,7500           | 96.3195            | 96.9200           | 96.5100            | 100.2147          | 91.4810           | 100.0100          | 101.0152          |
| SI        | 7.9340            | 7.9245             | 7.8859            | 7.8778             | 7.9435            | 7.9942            | 7.9746            | 7.9341            |
| TI        | 0.0000            | 0.0000             | .0150             | 0.0000             | .0139             | 0.0000            | 0.0000            | 0.0000            |
| AL.       | .0659             | .0761              | .0831             | .0727              | .0691             | .0378             | .0366             | .0435             |
| FE        | 3.1996            | 3.2219             | 3.2758            | 3.2446             | 3.9556            | 3.9415            | 3.9972            | 3.9911            |
| MIN       | .7246             | .7481              | .7370             | .7870              | 1.3507            | 1.3112            | 1.4012            | 1.4095            |
| MG        | 2.9519            | 2.9599             | 2.9610            | 2.9667             | 1.5697            | 1.5882            | 1.5093            | 1.5425            |
| CA        | .0958             | .0757              | .0591             | .0991              | .0909             | .0903             | .0882             | .0824             |
| ĸ         | 0.0000            | 0.0000             | 0.0000            | 0.0000             | 0.0000            | 0.0000            | 0.0000            | 0.0000            |
| NA        | .1227             | .0757              | .0815             | •0759 <sub>~</sub> | .0608             | .0731             | 0.0000            | .1000             |
| a         | 0.0000            | .0000              | 0.0000            | 0.0000             | •0000             | .0000             | 0.0000            | .0000             |
| 0,0H,CL,F | 23.0000           | 23.0000            | 23.0000           | 23.0000            | 23.0000           | 23.0000           | 23.0000           | 23.0000           |
| No. atoms | 38.0943           | 38.0818            | 38.0983           | 38.1236            | 38.0541           | 38.0363           | 38.0072           | 38.1032           |

•

-

.

|           |                 |                 |                 |                 | 4496/72.3.      |                  |                  |         |
|-----------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|---------|
|           | к1.             | К2.             | КЗ.             | К1.             | K2(poik.).      | кз.              | К1.              | К2.     |
| S102      | 48.4400         | 49.5400         | 49.6100         | 48.9500         | 49.0000         | 48.9100          | 50.7700          | 50.6200 |
| T102      | 0.0000          | 0.0000          | 0.0000          | 0.0000          | .1000           | 0.0000           | 0.0000           | 0.0000  |
| AL203     | .4100           | .5500           | .3200           | .2100           | .2300           | .2400            | .3700            | .3300   |
| FEO       | 28,9800         | 29.7400         | 29.4500         | 35.3000         | 35.3300         | 36.0500          | 30.0500          | 28,9600 |
| MNO       | 2.3000          | 2.3200          | 2.2400          | 6.9900          | 6.8300          | 7.1000           | 6.8300           | 7.0300  |
| MGO       | 11.4400         | 11.7900         | 11.6500         | 5.7200          | 5.6800          | 5.6000           | 8.4100           | 8.7600  |
| CAO       | .2200           | .2200           | .2400           | .2800           | .3700           | .3600            | 1.2600           | 1.2200  |
| K20       | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000           | 0.0000  |
| NA2O      | .2300           | .3700           | .2500           | 0.0000          | .1900           | .2000            | .3700            | .2500   |
| a.        | .0500           | 0.0000          | 0.0000          | •0700           | .1000           | .0800            | 0.0000           | .0800   |
|           | 91.8595         | 94.5300         | 93.7600         | 51.2252         | 97.4089         | 98.2031          | 98.0600          | 96.9131 |
| O=F,CL    | .0211           | 0.0000          | 0.0000          | .0295           | :0421           | .0337            | 0.0000           | .0337   |
|           |                 |                 | <del></del>     |                 |                 |                  | <del></del>      |         |
| TOTAL     | 91.8595         | 94.5300         | 93.7600         | 97.2252         | 97.4089         | 98.2031          | 98.0600          | 96.9131 |
|           | 7 0071          | 7 05 47         | 7 01 40         |                 | 7 0000          | 7 0510           | 7 0242           | 7.9450  |
| SI        | 7.8871          | 7.8547          | 7.9140          | 7.9018          | 7.8892          | 7.8519<br>0.0000 | 7.9242<br>0.0000 | 0.0000  |
| TI        | 0.0000          | 0.0000          | 0.0000          | 0.0000          | .0121           |                  | .0681            | .0611   |
| AL        | .0787           | .1028           | .0602           | -0400           | .0437           | .0454            | 3.9226           | 3.8014  |
| FE        | 3.9462          | 3.9436          | 3.9290<br>.3027 | 4.7657          | 4.7572          | 4.8401           | .9030            | .9346   |
| MN<br>MG  | .3172<br>2.7760 | .3116<br>2.7859 | 2.7697          | .9558<br>1.3761 | .9315<br>1.3629 | .9655<br>1.3398  | 1.9563           | 2.0491  |
| CA        |                 |                 | .0410           |                 | .0638           | .0619            | .2107            | .2052   |
|           | .0384           | .0374           |                 | .0484           |                 |                  | 0.0000           | 0.0000  |
| ĸ         | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           |                  | .0773   |
| NA        | .0738           | .1156           | .0786           | 0.0000          | .0603           | .0633            | .1138            | .0000   |
| CL.       | .0000           | 0.0000          | 0.0000          | .0000           | .0000           | .0000            | 0.0000           | .0000   |
| 0,0H,CL,F | 23.0000         | 23.0000         | 23.0000         | 23.0000         | 23.0000         | 23.0000          | 23.0000          | 23.0000 |
| No. atoms | 38.1175         | 38.1517         | 38.0953         | 38.0877         | 38.1206         | 38.1679          | 38.0986          | 38.0740 |

|            | 4502/56.9.4<br>K3. | 502/65.1A.4<br>K 1. | 502/65.1A.4:<br>K2. | 502/65.1A.4<br>K3. | 502/65.1A.4<br>K4. | 502/65.1A.4<br>K5. | 502/65.1A.4<br>FIB K. | 502/65.1B.<br>Kl. |
|------------|--------------------|---------------------|---------------------|--------------------|--------------------|--------------------|-----------------------|-------------------|
|            |                    |                     |                     |                    |                    |                    |                       |                   |
| SI02       | 50.4600            | 51.7100             | 48.5800             | 48.7300            | 48.5400            | 48.3700            | 48.0800               | 47.6300           |
| TI02       | 0.0000             | 0.0000              | 0.0000              | .1600              | 0.0000             | 0.0000             | 0.0000                | 0.0000            |
| AL203      | .1600              | .3800               | .3800               | .2400              | .1900              | .1700              | .2400                 | .2100             |
| FEO        | 29.5200            | 34.6800             | 36.3400             | 36.4900            | 36.3800            | 36.3000            | 36.0700               | 35.4900           |
| MNO        | 6.9600             | 7.7100              | 8.0300              | 8.1500             | 7.9400             | 7.9000             | 7.9800                | 7.7000            |
| MGO        | 8.0900             | 3.6400              | 3.7300              | 3.8000             | 3.6200             | 3.7100             | 3.6900                | 3.6000            |
| CAO        | 1.1400             | .3300               | .3700               | .4100              | .4100              | .3400              | .3200                 | .4100             |
| K20        | 0.0000             | 0.0000              | 0.0000              | 0.0000             | 0.0000             | 0.0000             | 0.0000                | 0.0000            |
| NA2O       | .1600              | 0.0000              | .2400               | .2400              | .2200              | .2300              | .3400                 | .3000             |
| a          | 0.0000             | 0.0000              | .1300               | .1200              | 0.0000             | .1000              | .0700                 | .0500             |
|            | 96.4900            | 98.4500             | 97.2526             | 97.8347            | 97.3000            | 96.6989            | 96.4952               | 95.1795           |
| O=F,CL     | 0.0000             | 0.0000              | .0547               | -0505              | 0.0000             | .0421              | .0295                 | .0211             |
| TOTAL      | 96.4900            | 98.4500             | 97.2526             | 97.8347            | 97.3000            | 96,6989            | 96.4952               | 95.1795           |
| IUINL      | 90.4900            | 30.4300             | 97.2020             | 9/.034/            | 97.3000            | 30.0303            | 30.4332               | 32.1/32           |
| SI         | 7.9917             | 8.1794              | 7.9183              | 7.9049             | 7.9394             | 7.9393             | 7.9199                | 7.9445            |
| TI         | 0.0000             | 0.0000              | 0.0000              | .0195              | 0.0000             | 0.0000             | 0.0000                | 0.0000            |
| AL         | .0299              | .0709               | .0730               | .0459              | .0366              | .0329              | .0466                 | .0413             |
| FE         | 3,9101             | 4.5878              | 4.9538              | 4.9505             | 4.9765             | 4.9830             | 4.9691                | 4.9507            |
| MN         | .9337              | 1.0330              | 1.1087              | 1.1199             | 1.1001             | 1.0984             | 1.1134                | 1.0879            |
| MG         | 1.9095             | .8581               | .9061               | .9187              | .8824              | .9075              | .9059                 | .8949             |
| CA         | .1935              | .0559               | -0646               | .0713              | .0719              | .0598              | .0565                 | .0733             |
| к          | 0.0000             | 0.0000              | 0.0000              | 0.0000             | 0.0000             | 0.0000             | 0.0000                | 0.0000            |
| NA         | .0499              | 0.0000              | .0771               | .0767 -            | .0709              | .0744              | .1104                 | .0986             |
| æ          | 0.0000             | 0.0000              | .0000               | .0000              | 0.0000             | .0000              | .0000                 | •0000             |
| 0,011,CL,F | 23.0000            | 23.0000             | 23.0000             | 23.0000            | 23.0000            | 23.0000            | 23.0000               | 23.0000           |
| No. atoms  | 38.0183            | 37.7853             | 38.1016             | 38.1074            | 38.0777            | 38.0953            | 38.1218               | 38.0911           |

•

.

•

| II – 1 | 19 |  |
|--------|----|--|
|--------|----|--|

,

|           | K2 2ry.  | КЗ.     | К4.     | K5 (2ry?). | К6.     | K7 2ry?. | К1.     | K1 CORE. |
|-----------|----------|---------|---------|------------|---------|----------|---------|----------|
| S102      | 48.0200  | 48.2000 | 48.3200 | 48.4100    | 48.3400 | 48.5800  | 49.3900 | 50.0600  |
| TIO2      | 0.0000   | 0.0000  | 0.0000  | 0.0000     | 0.0000  | 0.0000   | 0.0000  | 0.0000   |
| AL203     | .2900    | .3800   | .1900   | .2600      | .1400   | .2700    | .3700   | .2200    |
| FEO       | 35.8900  | 36.6200 | 37.1200 | 36.9500    | 36.6600 | 36.8500  | 32.1000 | 33.3600  |
| MNO       | 7.7100   | 8.1400  | 8.2300  | 8.0400     | 8.0700  | 8.0600   | 3.8500  | 4.0600   |
| MGO       | 3.6000   | 3.5300  | 3.7300  | 3.6500     | 3.6900  | 3.7000   | 8.3900  | 8.5900   |
| CAO       | .4100    | .4300   | .4400   | .3800      | .3000   | .4400    | .2900   | .2800    |
| к20       | 0.0000   | 0.0000  | 0.0000  | 0.0000     | 0.0000  | 0.0000   | 0.0000  | 0.0000   |
| NA2O      | .1300    | .2600   | .2300   | .3400      | .2000   | .3000    | .3300   | .3100    |
| CL.       | .1000    | .0800   | .0900   | .0900      | .0600   | .1100    | .0600   | .0500    |
| i         |          |         |         |            |         |          |         |          |
|           | 95.7289  | 97.3031 | 97.9710 | 97.7410    | 97.2073 | 97.8468  | 94.5273 | 96.7195  |
| O=F,CL    | .0421    | .0337   | .0379   | .0379      | .0253   | .0463    | .0253   | .0211    |
|           | <u> </u> |         |         |            |         | ······   |         |          |
| TOTAL     | 95.7289  | 97.3031 | 97.9710 | 97.7410    | 97.2073 | 97.8468  | 94.5273 | 96.7195  |
| SI        | 7.9488   | 7.8902  | 7.8724  | 7.8912     | 7.9195  | 7.8980   | 7.9644  | 7.9289   |
| TI        | 0.0000   | 0.0000  | 0.0000  | 0.0000     | 0.0000  | 0.0000   | 0.0000  | 0.0000   |
| AL        | .0566    | .0733   | .0365   | .0500      | .0270   | .0517    | .0703   | .0411    |
| FE        | 4.9685   | 5.0134  | 5.0578  | 5.0373     | 5.0230  | 5.0104   | 4.3291  | 4.4190   |
| MN        | 1.0810   | 1.1287  | 1.1358  | 1.1101     | 1.1199  | 1.1100   | .5259   | .5447    |
| MG        | .8881    | .8612   | .9057   | .8867      | .9009   | .8965    | 2.0163  | 2.0277   |
| CA        | .0727    | .0754   | .0768   | .0664      | .0527   | .0766    | .0501   | .0475    |
| К         | 0.0000   | 0.0000  | 0.0000  | 0.0000     | 0.0000  | 0.0000   | 0.0000  | 0.0000   |
| NA        | .0424    | .0839   | .0738   | .1092      | .0646   | .0961    | .1049   | .0968    |
| CL.       | .0000    | .0000   | .0000   | .0000      | .0000   | .0000    | .0000   | .0000    |
|           |          |         |         |            |         |          |         |          |
| 0,0H,CL,F | 23.0000  | 23.0000 | 23.0000 | 23.0000    | 23.0000 | 23.0000  | 23.0000 | 23.0000  |
| No. atoms | 38.0581  | 38.1261 | 38.1587 | 38.1508    | 38.1076 | 38.1395  | 38.0611 | 38.1056  |
|           |          |         |         |            |         |          |         |          |

4502/65.18.4502/65.18.4502/65.18.4502/65.18.4502/65.18.4502/65.18.4502/65.18. 4502/66.0. 4502/66.0.

|           | 4502/66.0.<br>К2. | 4502/66.0.<br>КЗ. | 4502/66.0.<br>K4. | 4502/66.0.<br>K5. | 4502/66.0.<br>K6. | 4502/66.0.<br>K7. | AVERAGE .<br>of 46. |
|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|
| G. 102    | 40.7000           |                   |                   |                   |                   |                   |                     |
| SI02      | 49.7200           | 49.7100           | 49.1000           | 50.2500           | 49.0300           | 49.8100           | 49.6346             |
| T102      | .1800             | 0.0000            | 0.0000            | 0.0000            | 0.0000            | 0.0000            | .0261               |
| AL203     | .2900             | .2900             | .2900             | .3000             | .2600             | .3500             | .2841               |
| FEO       | 33.6100           | 33.6000           | 33.2200           | 33.6500           | 32.0800           | 32.9300           | 31.7211             |
| MNO       | 3.9000            | 3.8900            | 3.8500            | 3.9000            | 3.7700            | 3.8600            | 6.8402              |
| MGO       | 8.2000            | 8.2600            | 8.1600            | 8.3700            | 8.0000            | 8.6000            | 7.4948              |
| CAO       | .3700             | .2800             | .2800             | .2800             | .2800             | .2800             | -4985               |
| К20       | 0.0000            | 0.0000            | 0.0000            | 0.0000            | 0.0000            | 0.0000            | 0.0000              |
| NA2O      | .1700             | .2500             | .2500             | .2500             | .2300             | .2500             | .2267               |
| a         | .0900             | 0.0000            | 0.0000            | 0.000             | .1200             | 0.000             | .0487               |
|           | 96.1510           | 96.2800           | 95.1500           | 97.0000           | 93.2647           | 96.0800           | 96.5697             |
| O=F,CL    | .0379             | 0.0000            | 0.0000            | 0.0000            | .0505             | 0.0000            | .0205               |
|           |                   |                   |                   |                   |                   |                   |                     |
| TOTAL     | 96.1510           | 96.2800           | 95.1500           | 97.0000           | 93.2647           | 96.0800           | 96.5697             |
|           |                   |                   |                   |                   |                   |                   |                     |
| SI        | 7.9224            | 7.9296            | 7.9269            | 7.9435            | 8.0040            | 7.9331            | 7.9267              |
| TI        | .0216             | 0.0000            | 0.0000            | 0.0000            | 0.0000            | 0.000             | .0031               |
| AL.       | .0545             | .0545             | .0552             | .0559             | .0500             | .0657             | .0534               |
| FE        | 4.4789            | 4.4825            | 4.4854            | 4.4487            | 4.3798            | 4.3862            | 4.2467              |
| MN        | .5264             | .5256             | •5265             | .5222             | .5213             | .5207             | .9260               |
| MG        | 1.9473            | 1.9637            | 1.9633            | 1.9719            | 1.9463            | 2.0413            | 1.7736              |
| CA        | .0632             | .0479             | .0484             | .0474             | .0490             | .0478             | .0850               |
| ĸ         | 0.0000            | 0.0000            | 0.0000            | 0.0000            | 0.0000            | 0.0000            | 0.0000              |
| NA        | .0534             | .0786             | .0795             | .0779             | .0740             | .0785             | .0714               |
| сг.       | .0000             | 0.0000            | 0.0000            | 0.0000            | .0000             | 0.0000            | .0000               |
|           |                   |                   |                   |                   |                   |                   |                     |
| 0,0H,CL,F | 23.0000           | 23.0000           | 23.0000           | 23.0000           | 23.0000           | 23.0000           | 23.0000             |
| No. atoms | 38.0676           | 38.0824           | 38.0853           | 38.0675           | 38.0246           | 38.0734           | 38.0859             |

4

ç

÷

SELECTED ANALYSES FROM : JAN83 : 61-62, 68, 130-131, 158-159, 165-168, 179, 183, 199-200

## CUMMINGTONITE - GRUNERITE SERIES (AU)

|           | 2/9A.   | 2/9A.   | 4545/42.8. | 2/9B.   | 2/9B.4   | 483/143.6.4 | 483/143.6.4 | 483/143.6. |
|-----------|---------|---------|------------|---------|----------|-------------|-------------|------------|
|           | AMPH 1. | AMPH 2. | AMPH.      | DANN 1. | DANN 2.  | P/A ? 3.    | P/A ? 4.    | P/A?6.     |
| S102      | 48.0288 | 48.0693 | 53.5728    | 49.4152 | 48.4304  | 44.3967     | 45.5436     | 45.2369    |
| TIO2      | 0.0000  | .0175   | .0121      | .0578   | 0.0000   | .0235       | 0.0000      | .0064      |
| AL203     | .0825   | .1386   | .3281      | .0876   | .0784    | .1107       | .0956       | .1103      |
| FEO       | 32.4453 | 30.2935 | 17.5749    | 25.1066 | 24.9139  | 32.7859     | 33.1937     | 33.1246    |
| MNO       | 10.7091 | 11.1747 | 4.4094     | 9.3409  | 9.6059   | 8.6433      | 8.6497      | 7.9564     |
| MGO       | 2.5850  | 3.9151  | 12.5366    | 5.2981  | 5.2671   | 4.3654      | 4.6532      | 5.1954     |
| CAO       | .1452   | •2759   | 9.2899     | 5.7061  | 5.2541   | 1.2810      | 1.1612      | 1.1473     |
| NA2O      | .0400   | .0269   | .0365      | .0413   | .1275    | .0497       | .0438       | .0389      |
| K20       | .0198   | 0.0000  | .0920      | .1006   | .1060    | .0151       | .0013       | .0146      |
| ZNO       | .1081   | .1852   | .1046      | .1345   | : 0.0000 | .2368       | .1821       | .1550      |
| TOTAL     | 94.1638 | 94.0967 | 97.9569    | 95.2887 | 93.7833  | 91.9081     | 93.5242     | 92.9858    |
| SI        | 8.0898  | 8.0404  | 7.9502     | 7.9928  | 7.9766   | 7.7430      | 7.7765      | 7.7498     |
| TI        | 0.0000  | .0022   | .0014      | .0070   | 0.0000   | .0031       | 0.0000      | .0008      |
| AL        | .0164   | .0273   | .0574      | .0167   | .0152    | .0228       | .0192       | .0223      |
| FE        | 4.5705  | 4.2378  | 2.1812     | 3.3963  | 3.4318   | 4.7821      | 4.7401      | 4.7459     |
| MIN       | 1.5279  | 1.5833  | .5543      | 1.2798  | 1.3401   | 1.2769      | 1.2510      | 1.1546     |
| MG        | .6489   | .9760   | 2.7726     | 1.2772  | 1.2929   | 1.1347      | 1.1841      | 1.3265     |
| CA        | .0262   | .0494   | 1.4772     | .9889   | .9272    | .2394       | .2125       | .2106      |
| NA        | .0133   | .0089   | .0107      | .0132   | .0414    | .0171       | .0147       | .0131      |
| к         | .0043   | 0.0000  | .0174      | .0208   | .0223    | .0034       | .0003       | .0032      |
| ZN        | .0135   | .0229   | .0115      | .0161   | 0.0000   | .0305       | .0230       | .0196      |
| Oxygen    | 23-0000 | 23.0000 | 23.0000    | 23.0000 | 23.0000  | 23.0000     | 23.0000     | 23.0000    |
| No. atoms | 37.9107 | 37.9481 | 38.0338    | 38.0088 | 38.0476  | 38.2526     | 38.2214     | 38.2464    |

•

•

|           | 4483/143.6.4 | 483/143.6.4 | \$23/143.6. | 2/13d.   | 4526/89.2. | 4526/89.2. | 4526/89.2. |
|-----------|--------------|-------------|-------------|----------|------------|------------|------------|
|           | P/A?7.       | P/A?8.      | P/A?9.      | K1.      | P/K.       | P/K?1.     | P/K?2.     |
| SI02      | 44.7078      | 44.5015     | 43.1500     | 53.1773  | 53.5533    | 54.9452    | 54.6872    |
| TI02      | .0680        | .0384       | 0.0000      | .0032    | 0.0000     | .0033      | .0271      |
| AL203     | .1204        | .0831       | .0768       | .1003    | .1111      | .0869      | .0992      |
| FEO       | 32.4695      | 32.6469     | 32.2081     | 27.3644  | 21.6421    | 22.6694    | 22.7029    |
| MINO      | 8,1027       | 7.7619      | 7.8722      | 9.3145   | 10.3583    | 10.7418    | 10.4373    |
| MGO       | 4.6829       | 5.1493      | 5.0467      | 7.2680   | 10.4094    | 9.6400     | 9.9607     |
| CAO       | 1.1966       | 1.4317      | 1.7720      | 2.4845   | 1.7205     | 1.9071     | 1.9722     |
| NA20      | .0081        | .0459       | .0374       | .0438    | .0544      | .0107      | .0062      |
| K20       | .0121        | 0.0000      | 0.0000      | 0.0000   | .0301      | .0114      | .0269      |
| ZNO       | .1424        | .1735       | .1055       | .1374    | .1821      | 0.0000     | .1306      |
| TOTAL.    | 91.5105      | 91.8322     | 90.2687     | 99.8934  | 98.0613    | 100.0158   | 100.0503   |
| SI        | 7.7822       | 7.7267      | 7.6593      | 8.1025   | 8.1173     | 8.1777     | 8.1413     |
| TI        | .0089        | .0050       | 0.0000      | • • 0004 | 0.0000     | .0004      | .0030      |
| AL.       | .0247        | .0170       | .0161       | .0180    | .0199      | .0152      | -0174      |
| FE        | 4.7269       | 4.7406      | 4.7813      | 3.4870   | 2.7435     | 2.8217     | 2.8266     |
| MN        | 1.1947       | 1.1416      | 1.1836      | 1.2022   | 1.3299     | 1.3542     | 1.3162     |
| MG        | 1.2148       | 1.3324      | 1.3350      | 1.6504   | 2.3514     | 2.1383     | 2.2099     |
| CA        | .2232        | .2664       | .3370       | •4056    | .2794      | .3041      | .3146      |
| NA        | .0028        | .0157       | .0131       | .0132    | .0163      | .0031      | .0018      |
| ĸ         | .0027        | 0.0000      | 0.0000      | 0.0000   | .0058      | .0022      | .0051      |
| ZN        | .0183        | .0223       | .0138       | .0155    | .0204      | 0.0000     | .0144      |
| Oxygen    | 23.0000      | 23.0000     | 23.0000     | 23.0000  | 23.0000    | 23.0000    | 23.0000    |
| No. atoms | 38.1992      | 38.2676     | 38.3393     | 37.8946  | 37.8838    | 37.8169    | 37.8503    |

٠

¢

SELECTED ANALYSES FROM :SEP82 : 5-8, 29-30

## CUMMINGTONITE - GRUNERITE SERIES (AU)

,

|           | 4502/66.0A.4 | 502/66.0A.4 | 502/66.0A.4 | 502/66.OA. | 2/9BA.    | 2/9BA.    |
|-----------|--------------|-------------|-------------|------------|-----------|-----------|
|           | AMPH1.       | AMPH2.      | AMPH3.      | AMPH4      | UNKSIL 1. | UNKSIL 2. |
|           |              |             |             |            |           |           |
| S102      | 36.1731      | 47.4385     | 47.5718     | 50.9544    | 51.2203   | 50.7360   |
| TI02      | .0436        | .0140       | .0192       | .0215      | .0042     | .0032     |
| AL203     | .1347        | .3745       | .1289       | .1551      | .0547     | .0312     |
| FEO       | 30.9884      | 35.0563     | 33.5596     | 34.0786    | 31.3479   | 26.9377   |
| MNO       | 3.1387       | 3.6569      | 3.9833      | 3.6812     | 11.4116   | 11.5545   |
| MGO (     | 7.4103       | 7.5143      | 8.2479      | 8.3963     | 4.3045    | 4.9997    |
| CYO (     | .2441        | .4537       | .2567       | .2570      | .6800     | 3.7853    |
| NA2O      | .0220        | .0233       | .0323       | .0315      | .1800     | .0376     |
| K2O       | 0.0000       | .0177       | 0.0000      | 0.0000     | .0190     | .0153     |
| ZNO       | .1529        | .1986       | .1040       | .1386      | .1049     | .0985     |
| TOTAL     | 78.3078      | 94.7478     | 93.9037     | 97.7142    | 99.3271   | 98.1990   |
| SI        | 7.3846       | 7.8023      | 7.8424      | 7.9857     | 8.0779    | 8.0215    |
| TI        | .0067        | .0017       | .0024       | .0025      | .0005     | .0004     |
| al        | .0324        | .0726       | .0251       | .0287      | .0102     | .0058     |
| FE        | 5.2907       | 4.8220      | 4.6269      | 4.4667     | 4.1347    | 3.5619    |
| MIN       | .5427        | .5095       | .5562       | .4887      | 1.5245    | 1.5474    |
| MG        | 2.2545       | 1.8419      | 2.0264      | 1.9611     | 1.0117    | 1.1781    |
| CA        | •0534        | .0800       | .0453       | .0432      | .1149     | .6413     |
| NA        | .0089        | .0076       | .0105       | .0097      | .0559     | .0117     |
| к         | 0.0000       | .0037       | 0.0000      | 0.0000     | .0038     | .0031     |
| ZN        | .0231        | .0241       | .0127       | .0161      | .0122     | .0115     |
| Oxygen    | 23.0000      | 23.0000     | 23.0000     | 23.0000    | 23.0000   | 23.0000   |
| No. atoms | 38.5970      | 38.1653     | 38.1479     | 38.0023    | 37.9463   | 37.9825   |

#### SELECTED ANALYSES, FROM : JAN83 : 68, 121-124, 142, 156, 164

### ACTINOLITE (AU)

•

|             | 4545/42.8. | 4478/85.8. | 4478/85.8. | 4478/85.8. | 4478/85.8. | 2/9B.4    | 483/143.6.4 | 483/143.6. |
|-------------|------------|------------|------------|------------|------------|-----------|-------------|------------|
|             | Amph.      | HED NPK.   | HBD POIK.  | HBD 3.     | HED 4.     | MN-ACTIN. | P/A ? l.    | P/A?5.     |
| SI02        | 53.5728    | 51.7275    | 51.6746    | 50.9627    | 51.9444    | 50.9427   | 47.5912     | 48.2146    |
| <b>TIO2</b> | .0121      | .3504      | .0467      | .1598      | .0374      | .0033     | 0.0000      | .0329      |
| AL203       | .3281      | 3.2773     | .9874      | 2.3743     | .9246      | .2804     | .3328       | .3442      |
| FEO         | 17.5749    | 17.9882    | 18.7898    | 18.2565    | 19.1744    | 23.8463   | 27.3259     | 26.1673    |
| MNO         | 4.4094     | 1.7065     | 1.0778     | 1.0345     | 1.1365     | 5.6751    | 3.8908      | 3.6499     |
| MGO         | 12.5366    | 12.1372    | 11.3228    | 11.2894    | 11.3643    | 5.7337    | 4.9890      | 5.5931     |
| CAO         | 9.2899     | 10.4409    | 11.2989    | 11.3713    | 11.5564    | 9.8170    | 9.9204      | 10.1929    |
| NA2O        | .0365      | .1258      | .0601      | .0925      | .0441      | .0449     | .0107       | .0517      |
| K20         | .0920      | .4464      | .0327      | .2732      | .0148      | .0654     | 0.0000      | .0124      |
| ZNO         | .1046      | .2720      | .6495      | .1902      | .2241      | .0278     | .1076       | .1278      |
| TOTAL       | 97.9569    | 98.4722    | 95.9403    | 96.0044    | 96.4210    | 96.4366   | 94.1684     | 94.3868    |
| SI          | 7.9502     | 7.6190     | 7.8536     | 7.7153     | 7.8540     | 8.0084    | 7.8144      | 7.8384     |
| TI          | .0014      | .0388      | .0053      | .0182      | .0043      | .0004     | 0.0000      | .0040      |
| AL.         | .0574      | .5691      | .1769      | .4238      | .1648      | .0520     | .0644       | .0660      |
| FE          | 2.1812     | 2.2159     | 2.3883     | 2.3115     | 2.4246     | 3.1352    | 3.7525      | 3.5578     |
| MN          | •5543      | .2129      | .1388      | .1327      | .1456      | .7557     | .5411       | .5026      |
| MG          | 2.7726     | 2.6643     | 2.5646     | 2.5471     | 2.5608     | 1.3433    | 1.2208      | 1.3551     |
| CA          | 1.4772     | 1.6478     | 1.8400     | 1.8446     | 1.8723     | 1.6536    | 1.7454      | 1.7756     |
| NA          | .0107      | .0365      | .0180      | .0276      | .0131      | .0139     | .0035       | .0166      |
| ĸ           | .0174      | .0839      | .0063      | .0528      | .0029      | .0131     | 0.0000      | .0026      |
| ZN          | .0115      | .0296      | .0730      | .0213      | .0250      | .0032     | .0131       | .0154      |
| Oxygen      | 23.0000    | 23.0000    | 23.0000    | 23.0000    | 23.0000    | 23.0000   | 23.0000     | 23.0000    |
| No. atoms   | 38.0338    | 38.1176    | 38.0648    | 38.0949    | 38.0673    | 37.9788   | 38.1552     | 38.1341    |

. بر

هد

•

SELECTED ANALYSES FROM : JAN83 : 80-81, 84, 87, 95-97

,

|           | 4526/90.6.<br>AMPH 1. | 4526/90.6.<br>AMPH 2. | 4526/90.6.<br>P INT(1). |           | 4526/90.6. |             |               |
|-----------|-----------------------|-----------------------|-------------------------|-----------|------------|-------------|---------------|
|           | Ampril.               | Antri 2.              | P INT(1).               | P INT(4). | DARK 2.L   | WMATRIX 1.0 | KMATRIX 2.    |
| S102      | 53.5422               | 52.9589               | 51.3411                 | 50.7837   | 53,7800    | 53.1299     | 54.1229       |
| TIO2      | .0155                 | .0044                 | 0.0000                  | .0011     | .0220      | 0.0000      | 0.0000        |
| AL203     | .2818                 | .1779                 | .3245                   | .1298     | .1062      | .1139       | .0980         |
| FEO       | 17,9319               | 18,2347               | 17.5250                 | 15.6142   | 17.7680    | 16.6898     | 17.2004       |
| MNO       | 8,8151                | 10.0266               | 11.6129                 | 10.4546   | 11.0619    | 10.7372     | 11.0366       |
| MGO       | 12.6592               | 13.2104               | 12.9704                 | 12.4719   | 13.3378    | 13.0329     | 13.4379       |
| CAO       | 4.5070                | 2.5802                | 1.9179                  | 5.4725    | 2.0208     | 4.2847      | 2.1379        |
| NA2O      | .0801                 | .0550                 | .0998                   | .0534     | .0547      | .0460       | .0368         |
| K20       | .0568                 | .0283                 | .0100                   | .0226     | .0036      | .0129       | .0126         |
| ZNO       | .2074                 | .2004                 | .2694                   | .1430     | .2160      | .1294       | .0708         |
|           |                       |                       |                         |           |            |             |               |
| TOTAL     | 98.0970               | 97.4768               | 96.0710                 | 95.1468   | 98.3710    | 98.1767     | 98.1539       |
|           |                       |                       |                         |           |            |             |               |
|           |                       |                       |                         |           |            |             |               |
| SI        | 7.9948                | 7.9791                | 7.9019                  | 7.8742    | 8.0180     | 7.9516      | 8.0536        |
| TI        | .0017                 | .0005                 | 0.0000                  | .0001     | .0025      | 0.0000      | 0.0000        |
| AL.       | .0496                 | .0316                 | .0589                   | .0237     | .0187      | .0201       | .0172         |
| FE        | 2.2393                | 2.2977                | 2.2558                  | 2.0248    | 2.2154     | 2.0890      | 2.1405        |
| MIN       | 1.1149                | 1.2796                | 1.5140                  | 1.3731    | 1.3970     | 1.3612      | 1.3911        |
| MG        | 2.8171                | 2.9663                | 2.9751                  | 2.8820    | 2.9636     | 2.9070      | 2.9801        |
| CA        | .7211                 | .4165                 | .3163                   | .9092     | .3228      | .6871       | .3409         |
| NA        | .0236                 | .0163                 | .0303                   | .0163     | .0161      | .0136       | .0108         |
| к         | .0108                 | .0054                 | .0020                   | .0045     | .0007      | .0025       | .0024         |
| ZN        | .0229                 | .0223                 | .0306                   | .0164     | .0238      | .0143       | <b>.</b> 0078 |
|           |                       |                       |                         |           |            |             |               |
| Oxygen    | 23.0000               | 23.0000               | 23.0000                 | 23.0000   | 23.0000    | 22.0000     | 22 0000       |
|           | ~J \$0000             | 23.0000               | 23.0000                 | 23.0000   | 23.0000    | 23.0000     | 23.0000       |
|           |                       |                       |                         |           |            |             |               |
| No. atoms | 37.9959               | 38.0155               | 38.0848                 | 38.1243   | 37.9784    | 38.0463     | 37.9444       |
|           |                       |                       |                         |           |            |             |               |

SELECTED ANALYSES FROM : JAN83 : 64-66, 132-133, 137, 139, 172-173, 17

•

SELECTED ANALYSES FROM :SEP82 : 33

ی -

<u>ب</u>

•

RHODONITE (AU)

.

ć

TIRODITE (AU)

|           |            |          |                |             |         | ACTINOLITE ( | 50)<br>14# |
|-----------|------------|----------|----------------|-------------|---------|--------------|------------|
|           | 2/9A.      | 2/9A.    |                | 478/68.1. 4 |         |              |            |
|           | - P2 (A) . | Pl (B) 🛛 | ~ P3           | P ?1.       | P ? 2.  |              | 2/9BA.     |
|           |            |          |                |             | 40.000  |              | K1.        |
| 5102      | 45.2469    | 45.5706  | 47.3195        | 46.2650     | 45.3998 |              |            |
| Г102      | 0.0000     | .0188    | .0055          | 0.0000      | .0201   | SI02         | 52.4173    |
| AL203     | .0031      | .0157    | 0.0000         | .0114       | .0118   | TI02         | .0063      |
| FEO       | 17.9518    | 17.9518  | 17.8025        | 16.4226     | 16.4569 | AL203        | .3493      |
| MNO       | 27.2267    | 26.5880  | 27.6047        | 27.7733     | 27.8989 | FEO          | 23.4745    |
| MGO       | .7724      | .7852    | .7699          | .5153       | .5627   | MNO          | 5.2669     |
| CAO       | 5.3792     | 5.9759   | 6.1043         | 7.5195      | 7.5121  | MGO          | 6.4662     |
| NA2O      | .0026      | .0050    | .0095          | 0.0000      | .0265   | CNO          | 10.8098    |
| K20       | .0008      | .0059    | 0.0000         | .0152       | .0230   |              | .0418      |
| ZNO       | .1821      | .2361    | .1512          | .1770       | .3226   | NA2O         | .0780      |
|           |            |          |                |             |         | K20          | .0668      |
| TOTAL     | 96.7656    | 97.1530  | 99.7671        | 98.6993     | 98.2344 | ZNO          | •0000      |
|           |            |          |                |             |         | TOTAL        | 98.9769    |
| SI        | 1.0008     | 1.0016   | 1.0087         | 1.0001      | .9912   |              |            |
| TI        | 0.0000     | .0003    | • <b>.0001</b> | 0.0000      | .0003   | SI           | 7.9886     |
| AL.       | .0001      | .0004    | 0.0000         | .0003       | .0003   |              | .0007      |
| FE        | .3321      | .3300    | .3174          | .2969       | .3005   | TI           | .0628      |
| MIN       | .5101      | .4950    | .4985          | .5086       | .5159   | NL.          | 2,9920     |
| MG        | .0255      | .0257    | .0245          | .0166       | .0183   | FE           | .6799      |
| CA        | .1275      | .1407    | .1394          | .1742       | .1757   | MN           | 1.4687     |
| NA        | .0001      | .0002    | .0004          | 0.0000      | .0011   | MG           | 1.7653     |
| ĸ         | .0000      | .0002    | 0.0000         | .0004       | .0006   | CA           | .0126      |
| ZN        | .0030      | .0038    | .0024          | .0028       | .0052   | NA           | .0152      |
|           |            |          |                |             |         | K            | .0075      |
|           |            |          |                |             | -       | ZN           | •0075      |
| Oxygen    | 3.0000     | 3.0000   | 3.0000         | 3.0000      | 3.0000  |              |            |
|           |            |          |                |             |         | Oxygen       | 23.0000    |
| No. atoms | 4.9992     | 4.9980   | 4.9914         | 4.9999      | 5.0092  |              |            |
|           |            |          |                |             |         | No. atoms    | 37.9930    |

| RHODONI   | TES (AU)       |            |            |               |          |           |          |
|-----------|----------------|------------|------------|---------------|----------|-----------|----------|
|           | 4478/68.1.     | 4478/68.1. | 4478/62.8. |               |          | RHODONITE | (AU)     |
|           | P73.           | P 7 4.     | Pb 1.      | Pb 2.         | P1.      |           |          |
| S102      | 45.6893        | 47.2935    | 46.5254    | 46.6346       | 49.4976  |           | 2/5A-1.  |
| T102      | .0371          | 0.0000     | 0,0000     | .0249         | 0.0000   |           | PXM2.    |
| AL203     | .0029          | .0142      | .0022      | .0154         | .0048    | •         |          |
| FEO       | 16.5107        | 16.3634    | 16.2566    | 16.4612       | 17.1914  | SI02      | 46.5300  |
| MNO ···   | 28.0632        | 27.7888    | 27.5235    | 27.3470       | 30.2349  | T102      | 0.0000   |
| 150       | .5118          | .5388      | .7162      | .7644         | .5842    | AL203     | .2100    |
| CNO       | 7.1591         | 7.7386     | 7.5416     | 7.5370        | 5.7590   | FEO       | 18.0700  |
| NAZO      | .0107          | .0079      | .0307      | .0112         | .0194    | KNO       | 30.4200  |
| K20       | 0.0000         | .0010      | .0058      | 0.0000        | .0260    | MGO       | 0.0000   |
| ZNO       | .1639          | .2592      | .2391      | .1430         | .1161    | CAO       | 4.7800   |
| 200       | •1033          | .2.552     | •2331      | • • • • • • • |          | К20       | 0.0000   |
| TOTAL     | 98.1487        | 100.0054   | 98.8411    | 98,9387       | 103.4334 | NA2O      | 0.0000   |
| TOTAL     | 30.1401        | 100.0034   | 70.0411    | 30.3307       | 10314334 | a         | 0.0000   |
|           | 1 ·            |            |            |               |          |           |          |
| SI        | .9962          | 1.0053     | 1.0018     | 1.0022        | 1.0160   |           | 100.0100 |
| TI        | .0006          | 0.0000     | 0.0000     | .0004         | 0.0000   | 0=F,CL    | 0.0000   |
|           | .0001          | .0004      | .0001      | .0004         | .0001    |           |          |
| лL<br>Se  | .3011          | .2909      | .2928      | .2959         | .2951    |           | v        |
| FE        |                | •5004      | .5020      | .4978         | .5257    | TOTAL     | 100.0100 |
| HN<br>MG  | .5183<br>.0166 | .0171      | .0230      | .0245         | .0179    | •         |          |
|           | .1673          | .1763      | .1740      | .1736         | .1267    |           |          |
| CA        | .0005          | .0003      | .0013      | .0005         | .0008    | SI        | 1.0011   |
| . NA      | 0.0000         | .0003      | .0002      | 0.0000        | .0007    | TI        | 0.0000   |
| K         | .0026          | .0000      | .0038      | .0023         | .0018    | AL.       | .0053    |
| ZN        | .0026          | -0041      | .0038      | .0023         | .0010    | FE        | .3252    |
|           | •              |            |            |               |          | MN        | .5544    |
|           | 2 0000         | 3.0000     | 3.0000     | 3.0000        | 3.0000   | MG        | 0.0000   |
| Oxygen    | 3.0000         | 3.0000     | 3.0000     | 3.0000        | 3.0000   | CA        | .1102    |
|           |                |            |            |               |          | ĸ         | 0.0000   |
|           | 6 0014         | 4.9947     | 4.9989     | 4.9974        | 4.9847   | NA        | 0.0000   |
| No. atoms | 5.0034         | 4.3347     | 4.3303     | 4.77/4        | 4.3047   | a.        | 0.0000   |
| •         |                |            |            |               |          |           |          |
|           | •              |            | •••••      |               |          |           |          |
|           |                |            |            |               |          | O,OH,CL,F | 3.0000   |
|           | •              |            |            |               |          |           |          |
|           |                |            | _          |               |          |           |          |

No. atoms 4.9962

•

SELECTED ANALYSES FROM : JAN83 : 78-79, 88-89, 98-99, 146-149, 151, 180-181, 186, 201-202

•

PYROXMANGITE (AU) .,

|        | Pl.           | P1(2).     |         |         | 4526/90.6.<br>BRITE A 1. | BRITE A 2. | 2/9B.<br>P1(PRIM)2. |
|--------|---------------|------------|---------|---------|--------------------------|------------|---------------------|
| S102   | 47.9037       | 47.7686    | 44.5233 | 44.1271 | 48.6032                  | 48.6983    | 46.5767             |
| T102   | 0.0000        | .0089      | 0.0000  | .0195   | 0.0000                   | 0.0000     | .0261               |
| AL203  | 0.0000        | .0219      | .0036   | .0200   | .0278                    | .0086      | .0056               |
| FEO    | 17.2238       | 17.8564    | 14.6516 | 14.8152 | 14.9009                  | 15.0380    | 21.7786             |
| MNO    | 27.0903       | 27.2098    | 29.1463 | 29.1000 | 30.7981                  | 30.5211    | 26.4441             |
| hgo    | 3.2347        | 3.4889     | 3.5007  | 3.4690  | 3.0377                   | 3.0865     | 1.2606              |
| CAO    | 4.0524        | 3.5973     | 3.8367  | 3.7689  | 3.8975                   | 4.0979     | 3.1708              |
| NA20   | .0085         | .0224      | .0239   | 0.0000  | 0.0000                   | .0092      | .0287               |
| K20    | .0053         | 0.0000     | .0073   | .0076   | 0.0000                   | 0.0000     | 0.0000              |
| ZNO    | .3204         | .1954      | .1958   | .1924   | .2100                    | .1434      | .1625               |
| TOTAL  | 99.8391       | . 100.1696 | 95.8892 | 95.5197 | 101.4752                 | 101.6030   | 99.4537             |
| SI     | 1.0080        | 1.0036     | •9858   | .9827   | 1.0079                   | 1.0079     | 1.0035              |
| TI     | 0.0000        | .0001      | 0.0000  | .0003   | 0.0000                   | 0.0000     | .0004               |
| AL.    | 0.0000        | .0005      | .0001   | .0005   | .0007                    | .0002      | .0001               |
| FE     | .3031         | .3138      | .2713   | •2759   | •2584                    | .2603      | .3924               |
| MN     | <b>.</b> 4829 | .4842      | .5466   | .5489   | .5410                    | •5351      | .4826               |
| MG     | .1014         | .1092      | .1155   | .1151   | .0939                    | • •0952    | .0405               |
| CA     | .0914         | .0810      | .0910   | .0899   | .0866                    | •0909      | .0732               |
| NA ·   | .0004         | .0009      | .0010   | 0.0000  | 0.0000                   | .0004      |                     |
| κ      | .0001         | 0.0000     | .0002   | .0002   | 0.0000                   | 0.000      | 0.0000              |
| ZN     | .0050         | .0030      | .0032   | .0032   | .0032                    | .0022      | .0026               |
| Oxygen | 3.0000        | 3.0000     | 3.0000  | 3.0000  | 3.0000                   | 3.0000     | 3.0000              |

II - 23

| PYROXMAN  | GITE (AU) | ł.      | II - 2   | 4               |          |          |           |
|-----------|-----------|---------|----------|-----------------|----------|----------|-----------|
|           | 2/98.     | 2/98.   | 2/93.    | 2/98.           | 2/13d.   | 2/130.   | Sturtite. |
|           | P2N.      | P2B.    |          | MAPYROS?2.      | P1.      | P2.      | P 1.      |
| S102      | 47.0623   | 46.5978 | 47.7582  | 47.9134         | 48.4870  | 48.3842  | 47.7142   |
| T102      | 0.0000    | 0.0000  | 0.0000   | 0.0000          | 0.0000   | .0087    | 0.0000    |
| · AL203   | .0008     | 0.0000  | .0063    | .0677           | .0091    | .0178    | .2986     |
| FEO       | 22.0544   | 21.5457 | 20.4061  | 24.2101         | 20.5455  | 20.4836  | 22.7769   |
| H110      | 26.9676   | 25.9070 | 27.9736  | 16.9664         | 24.7025  | 24.8012  | 24.9780   |
| MGO       | 1.2911    | 1.2526  | 1.1102   | 1.4379          | 1.8881   | 1.8476   | 1.3225    |
| CNO       | 2.9467    | 3.0237  | 3.2395   | · <b>.</b> 5896 | 5.1054   | 5.2156   | 3.1941    |
| NA20      | .0298     | .0323   | .0376    | .0657           | .0196    | 0.0000   | .0083     |
| к20       | .0027     | .0081   | .0164    | .0683           | 0.0000   | 0.0000   | .1362     |
| ZNO       | .2570     | .2010   | .0540    | .1845           | .2475    | .2883    | .1663     |
| TOTAL     | 100.6124  | 98.5682 | 100.6019 | 91.5036         | 101.0047 | 101.0470 | 100.5951  |
| SI .      | 1.0633    | 1.0097  | 1.0125   | 1.0760          | 1.0131   | 1.0115   | 1.0097    |
| TI        | 0.0000    | 0.0000  | 0.0000   | 0.0000;         | 0.0000   | .0001    | 0.0000    |
| NL.       | .0000     | 0.0000  | .0002    | .0018           | .0002    | .0004    | .0074     |
| FE        | .3932     | .3904   | .3618    | .4547           | .3590    | .3581    | .4031     |
| MN        | .4870     | .4755   | .5024    | .3227           | .4372    | .4392    | .4477     |
| MG        | .0410     | .0404   | .0351    | .0481           | .0588    | .0576    | .0417     |
| CA        | .0673     | .0702   | .0736    | .0142           | .1143    | .1168    | .0724     |
| NA        | .0013     | .0014   | .0016    | .0029           | .0008    | 0.0000   | :0003     |
| K         | .0001     | .0002   | .0004    | .0020           | 0.0000   | 0.000    | .0037     |
| ZN ·      | •0040     | .0032   | .0008    | .0031           | •0038    | .0045    | •0026     |
| Oxygen    | 3.0000    | 3.0000  | 3.0000   | 3.0000          | 3.0000   | 3.0000   | 3.0000    |
| No. atoms | - 4.9973  | 4.9911  | 4.9884   | 4.9255          | 4.9872   | 4.9882   | 4.9886    |

.

.

SELECTED ANALYSES FROM :SEP82 : 32, 38

| P | (RC | Xr | AN | GI | TE | : ( | AU | ) |
|---|-----|----|----|----|----|-----|----|---|
|   | *** | ** | ** | ** | ** | **  | ** | ŧ |
|   |     |    |    |    |    |     |    |   |
|   |     |    |    |    |    |     |    |   |

|           | •                |                  |
|-----------|------------------|------------------|
|           | 2/9ВА.<br>РХМ 1. | 2/9BA.<br>PXM 2. |
| S102      | 47.4453          | 46.8969          |
| TIO2      | 0.0000           | .0062            |
| AL203     | .0166            | .0056            |
| FEO       | 21.3954          | 21.2515          |
| MNO       | 27.2372          | 27.1671          |
| MGO       | 1.1265           | 1.2670           |
| CAO       | 3.3941           | 3.2321           |
| NA20      | .0054            | •0245            |
| K20       | .0260            | 0.0000           |
| ZNO       | .1660            | .1623            |
| TOTAL     | 100.8125         | 100.0132         |
| SI        | 1.0070           | 1.0043           |
| TI        | 0.0000           | .0001            |
| AL        | .0004            | .0001            |
| FE        | .3798            | .3806            |
| HN .      | .4897            | .4928            |
| ng        | .0356            | .0404            |
| CA .      | .0772            | .0742            |
| NA        | .0002            | .0010            |
| ĸ         | .0007            | 0.0000           |
| 211       | .0026            | .0026            |
| Oxygen    | 3.0000           | 3.0000           |
| No. atoms | 4.9933           | 4.9961           |

• . .

|                                                                  | 4526/89.2.<br>P/R?1.                                                                     |                                                                                           |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| SI02<br>TI02<br>AL203<br>FEO<br>MNO<br>MCO<br>CAO<br>NA20<br>K20 | 49.8494<br>0.0000<br>.0261<br>18.2466<br>26.8728<br>2.5295<br>4.7235<br>3.0063<br>.0048  | 49.5233<br>0.0000<br>.0198<br>17.8806<br>27.0886<br>2.4189<br>4.6207<br>.0026<br>0.0000   |
| ZNO                                                              | .1583                                                                                    | .2724                                                                                     |
| TOTAL                                                            | 102.4173                                                                                 | 101.8269                                                                                  |
| si<br>ti<br>fe<br>in<br>ca<br>na<br>k<br>zn                      | 1.0192<br>0.0000<br>.0006<br>.3120<br>.4654<br>.0771<br>.1035<br>.0003<br>.0001<br>.0024 | 1.0194<br>0.0000<br>.0005<br>.3078<br>.4723<br>.0742<br>.1019<br>.0001<br>0.0000<br>.0041 |
| Oxygen                                                           | 3.0000                                                                                   | 3.0000                                                                                    |
| No. atoms                                                        | 4.9806                                                                                   | 4.9804                                                                                    |

.

•

SELECTED ANALYSES FROM : JAN82 : 7, 10-12, 22-25, 28, 31

PYROXMANGITE (ANU)

| PYROXMANGITE (ANU) |          |          |          |                 |            |  |
|--------------------|----------|----------|----------|-----------------|------------|--|
|                    | 2/18.    | 2/1B.    | 2/1B.    | 2/1B.           | ,<br>2/5A. |  |
|                    | PXM1.    | PXM2.    | PXM3.    | PXM4.           | PXM1.      |  |
|                    |          |          |          |                 |            |  |
| S102               | 46.0100  | 46.3900  | 46.1100  | 46.3700         | 45.6600    |  |
| <b>TIO2</b>        | .1400    | .2000    | .2000    | .1400           | 0.0000     |  |
| AL203              | .1800    | .1100    | 0.0000   | 0.0000          | .1200      |  |
| FEO                | 19.9300  | 20.2300  | 19.0200  | 19.6500         | 21.2000    |  |
| MNO                | 27.9900  | 28.5300  | 28.6900  | 28.1500         | 28.4100    |  |
| MGO                | 2.1200   | 2.1600   | 2.0500   | 2.0600          | 1.3600     |  |
| CAO !              | 3.4100   | 3.3700   | 3.8100   | 3.3500          | 2.6000     |  |
| N20                | 0.0000   | 0.0000   | 0.0000   | 0.0000          | 0.0000     |  |
| NA2O               | .2500    | .3700    | .2200    | .3000           | .3500      |  |
| a'                 | 0.0000   | 0.0000   | 0.0000   | 0.0000          | 0.0000     |  |
|                    | 100.0300 | 101.3600 | 100.1000 | 100.0200        | 99.7000    |  |
| O=F,CL             | 0.0000   | 0.0000   | 0.0000   | 0.0000          | 0.0000     |  |
| ·                  |          |          |          |                 |            |  |
| TOTAL              | 100.0300 | 101.3600 | 100.1000 | 100.0200        | 99.7000    |  |
|                    | 0000     |          | 0.075    |                 |            |  |
| SI                 | -9860    | .9831    | .9875    | .9923           | .9891      |  |
| TI                 | .0023    | -0032    | .0032    | .0023<br>0.0000 | 0.0000     |  |
| AL.                | .0045    | .0027    | 0.0000   |                 | .0031      |  |
| FE                 | .3572    | .3586    | .3407    | .3517           | .3841      |  |
| MN                 | .5081    | .5122    | .5204    | .5103           | .5213      |  |
| MG                 | .0677    | .0682    | .0654    | .0657           | .0439      |  |
| CA                 | .0783    | .0765    | .0874    | .0768           | .0604      |  |
| ĸ                  | 0.0000   | 0.0000   | 0.0000   | 0.0000          | 0.0000     |  |
| NA                 | .0106    | -0155    | .0093    | .0127           | .0149      |  |
| æ                  | 0.0000   | 0.0000   | 0.0000   | 0.0000          | 0.0000     |  |
| 0,0H,CL,F          | 3.0000   | 3.0000   | 3.0000   | 3.0000          | 3.0000     |  |
| No. atoms          | 5.0147   | 5.0200   | 5.0140   | 5.0117          | 5.0168     |  |

|           | 2/5A.<br>PXM2. | 2/5A.<br>PXM3. | 2/5A.<br>PXM4. | 2/5A-I.<br>PXM1. | 2/5A-I.<br>PXM3. |
|-----------|----------------|----------------|----------------|------------------|------------------|
| SI02      | 45.9200        | 45.7000        | 45.5500        | 46.1300          | 46.3000          |
| T102      | 0.0000         | 0.0000         | 0.0000         | 0.0000           | 0.0000           |
| AL203     | 0.0000         | 0.0000         | .2000          | 0.0000           | .1100            |
| FEO       | 20.1500        | 20.2300        | 20.6200        | 21.3300          | 20.4700          |
| MNO       | 29.6800        | 29.1800        | 29.0500        | 29.1400          | 28.9600          |
| MGO       | 1.2900         | 1.3500         | 1.3600         | 1.4500           | 1.3000           |
| CAO       | 2.8400         | 2.8000         | 2.7500         | 2.6500           | 2.8700           |
| K20       | 0.0000         | 0.0000         | 0.0000         | 0.0000           | 0.0000           |
| NA2O      | .2000          | •3600          | .3100          | 0.0000           | 0.0000           |
| ď         | 0.0000         | 0.0000         | 0.0000         | 0.0000           | 0.0000           |
|           | 100.0800       | 99.6200        | 99.8400        | 100.7000         | 100.0100         |
| 0=F,CL    | 0.0000         | 0.0000         | 0.0000         | 0.0000           | 0.0000           |
| TOTAL     | 100.0800       | 99.6200        | 99.8400        | 100.7000         | 100.0100         |
|           | •              |                |                |                  |                  |
| SI        | .9911          |                | -9860          | .9900            | .9960            |
| TI        | 0.0000         | 0.0000         | 0.0000         | 0.0000           | 0.0000           |
| AL.       | 0.0000         | 0.0000         | .0051          | 0.0000           | .0028            |
| FE        | .3637          | .3667          | .3733          | .3829            | .3683            |
| MN        | -5426          | •5358          | .5327          | .5297            | .5277            |
| MG        | .0415          | .0436          | .0439          | .0464            | .0417            |
| CA        | .0657          | •0650          | .0638          | .0609            | .0662            |
| ĸ         | 0.0000         | 0.0000         | 0.0000         | 0.0000           | 0.0000           |
| NA        | .0085          | .0154          | .0132          | 0.0000           | 0.0000           |
| æ         | 0.0000         | 0.0000         | 0.0000         | 0.0000           | 0.0000           |
| 0,0H,CL,F | 3.0000         | 3.0000         | 3.0000         | 3.0000           | 3.0000           |
| No. atoms | 5.0131         | 5.0171         | 5.0180         | 5.0100           | 5.0026           |

.

•

·

¢

SELECTED ANALYSES FROM : JAN83 : 94, 134, 138, 140, 170-171, 205-209

HEDENBERGITE (AU)

|           | 4526/90.6. | 4478/68.1. | 4478/68.1. | 4478/68.1. | 4478/62.8. | 4478/62.8. |
|-----------|------------|------------|------------|------------|------------|------------|
|           | DARK 1.    | HED ? 1.   | HED 2.     | нз.        | Hed 1.     | Hed 2.     |
|           |            | 10 1000    | 17 2025    | 46 0006    | 40 7710    | 10 (145    |
| SI02      | 52.3226    | 49.1032    | 47.2935    | 46.8996    | 48.7712    | 48.6145    |
| , TIO2    | .0194      | .0244      | 0.0000     | 0.0000     | .0090      | .0230      |
| AL203     | .1739      | .1108      | .1136      | .0661      | .0899      | .1696      |
| FEO       | 12.2383    | 18.5682    | 18.8675    |            | 18.3321    | 17.5578    |
| MNO       | 8.8494     | 8.6804     | 8.7151     | 9.0490     | 8.7145     | 8.9159     |
| MGO       | 9.7934     | 2.4767     | 2.2476     | 1.8668     | 2.8725     | 3.2750     |
| CAO       | 15.7314    | 19.5319    | 19.8099    | 19.9954    | 20.4583    | 20.0684    |
| NA2O      | .0223      | .0220      | .0366      | .0212      | .0376      | .0186      |
| K2O '     | 0.0000     | .0021      | 0.0000     | 0.0000     | p.0000     | 0.0000     |
| ZNO       | 0.0000     | .0762      | .0636      | .1349      | .1710      | .3026      |
|           |            |            |            |            |            |            |
| TOTAL     | 99.1507    | 98.5959    | 97.1474    | 97.5096    | 99.4561    | 98.9454    |
|           |            |            |            |            |            |            |
| SI        | 2.0361     | 2.0177     | 1.9898     | 1.9789     | 1.9935     | 1.9920     |
| TI        | .0006      | .0008      | 0.0000     | 0.0000     | .0003      | .0007      |
| AL        | .0080      | .0054      | .0056      | .0033      | .0043      | .0082      |
| FE        | .3983      | .6381      | .6639      | .6873      | .6267      | .6017      |
| MN        | .2917      | .3021      | .3106      | .3234      | .3017      | .3095      |
| MG        | .5680      | .1517      | .1409      | .1174      | .1750      | .2000      |
| CA        | .6559      | .8600      | .8931      | .9040      | .8960      | .8811      |
| NA        | .0017      | .0018      | .0030      | .0018      | .0030      | .0015      |
| ĸ         | 0.0000     | .0001      | 0.0000     | 0.0000     | 0.0000     | 0.0000     |
| 2N        | 0.0000     | .0023      | .0020      | .0042      | .0052      | .0092      |
| 20        | 0.0000     | .0025      | .0020      | .0042      | .0052      | .0052      |
|           |            |            |            |            |            |            |
| Oxygen    | 6.0000     | 6.0000     | 6.0000     | 6.0000     | 6.0000     | 6.0000     |
|           |            |            |            |            |            |            |
| No. atoms | 9,9602     | 9.9799     | 10.0090    | 10.0202    | 10.0056    | 10.0039    |
|           |            |            |            |            |            |            |

|           | 4526/89.2.<br>Hed <sup>'</sup> 1. | 4526/89.2.<br>Н 2. | 4526/89.2.<br>Н 3. | 4526/89.2.<br>Н 4. | 4526/89.2.<br>Н 5. |
|-----------|-----------------------------------|--------------------|--------------------|--------------------|--------------------|
| SIO2      | 54.5386                           | 51.1835            | 52.0753            | 51.3192            | 51.3301            |
| TI02      | 0.0000                            | 0.0000             | 0.0000             | 0.0000             | .0322              |
| AL203     | .1776                             | .0447              | .1209              | .0463              | .1839              |
| FEO       | 16.6904                           | 18.4906            | 15.1460            | 14.2346            | 15.4085            |
| MNO       | 8.1320                            | 9.2193             | 6.6290             | 7.4644             | 8.3000             |
| MGO       | 8.3680                            | 7.9197             | 7.6504             | 6.7705             | 6.8419             |
| CAO       | 15.6484                           | 11.1780            | 18.1219            | 20.3172            | 17.4620            |
| NA20      | .0321                             | .0545              | .0840              | .0711              | 0.0000             |
| K20       | •0380                             | .0003              | .0376              | 0.0000             | .0019              |
| 2N0       | .0338                             | .1427              | 0.0000             | .1553              | .0300              |
| TOTAL.    | 103.6589                          | 98.2333            | 99.8651            | 100.3786           | 99.5905            |
| SI        | 2.0509                            | 2.0520             | 2.0346             | 2.0126             | 2.0278             |
| TI        | 0.0000                            | 0.0000             | 0.0000             | 0.0000             | .0010              |
| AL.       | .0079                             | .0021              | .0056              | .0021              | .0086              |
| FE        | <b>₀</b> 5249                     | . 6200             | .4949              | .4669              | .5091              |
| MN        | .2590                             | .3131              | .2194              | .2480              | .2777              |
| MG        | .4690                             | .4732              | .4455              | .3957              | .4028              |
| CA        | .6305                             | .4802              | .7586              | .8538              | .7392              |
| NA        | .0024                             | .0043              | .0065              | .0055              | 0.0000             |
| ĸ         | .0018                             | .0000              | .0019              | 0.0000             | .0001              |
| ZN        | .0009                             | .0042              | 0.0000             | .0045              | .0009              |
| Oxygen    | 6.0000                            | 6.0000             | 6.0000             | 6.0000             | 6.0000             |
| No. atoms | 9.9473                            | 9.9491             | 9.9668             | 9.9891             | 9.9670             |

•

SELECTED ANALYSES FROM : JAN83 : 85-86, 93, 100-102

### KANOITE (AU)

| 4526/90.6. | 4526/90.6. | 4526/90.6. 4526/90.6. 4526/90.6. 4526/90.6. |
|------------|------------|---------------------------------------------|
| P INT(2).  | P INT(3).  | BRIGHT 2.GY EXSLN 1.GY EXSLN 2.GY EXSLN 3.  |

| SIO2      | 48.3558 | 47.6038 | 50.7323  | 50.7245  | 50.3369     | 49.8629  |
|-----------|---------|---------|----------|----------|-------------|----------|
| T102      | .0189   | .0163   | 0.0000   | .0205    | 0.0000      | 0.0000   |
| AL203     | .0916   | .0850   | .0807    | .0880    | .1025       | .1170    |
| FEO       | 17.4441 | 16.9876 | 17.3954  | 18.5433  | 18.8297     | 17.5292  |
| MINO      | 20.1532 | 19.2389 | 20.3722  | 19.3913  | 18.6970     | 19.8394  |
| MGO       | 9.9446  | 10.2838 | 9.3757   | 9.9400   | 10.2340     | 10.2328  |
| CAO       | 2.5831  | 2.6327  | 2.6616   | 2.2711   | 2.2186      | 3.2816   |
| NA2O      | .0408   | .0339   | .0437    | .0268    | .0417       | .0306    |
| K2O       | .0134   | .0082   | .0159    | .0105    | 0.0000      | 0.0000   |
| ZNO       | .2776   | .1462   | .1994    | .3559    | <b>4031</b> | .2385    |
| TOTAL     | 98.9231 | 97.0364 | 100.8769 | 101.3719 | 100.8635    | 101.1320 |
| SI        | 1.9817  | 1,9810  | 2.0234   | 2.0140   | 2.0080      | 1.9896   |
| TI        | .0006   | .0005   | 0.0000   | .0006    | 0.0000      | 0.0000   |
| AL        | -0044   | .0042   | .0038    | .0041    | .0048       | .0055    |
| FE        | .5979   | .5912   | .5802    | .6158    | .6282       | .5850    |
| MN        | .6996   | .6782   | .6882    | .6522    | .6318       | .6705    |
| MG        | .6074   | .6378   | .5573    | .5882    | .6084       | .6085    |
| CA        | .1134   | .1174   | .1137    | .0966    | .0948       | .1403    |
| NA        | .0033   | .0028   | .0034    | .0021    | .0033       | .0024    |
| к         | .0007   | .0004   | .0008    | .0005    | 0.0000      | 0.0000   |
| ZN        | .0084   | .0045   | .0059    | .0104    | .0119       | .0070    |
|           |         |         |          |          |             |          |
| Oxygen    | 6.0000  | 6.0000  | 6.0000   | 6.0000   | 6.0000      | 6.0000   |
| No. atoms | 10.0174 | 10.0181 | 9,9768   | 9.9846   | 9,9912      | 10.0089  |
| nu. acuis | 10.0114 | 10.0101 | 3.3108   | 7.7040   | 3.3312      | 10.0093  |

### SELECTED ANALYSES FROM :SEP82 : 10-12, 18

## STAUROLITE (AU)

•

|           | 4496/29.6.<br>STT 1 CORE. |         | 4496/29.6.<br>STT RIM 2. |         |
|-----------|---------------------------|---------|--------------------------|---------|
| SI02      | 27.2693                   | 27.0031 | 27.0498                  | 27.8439 |
| TI02      | .1777                     | .4917   | .2007                    | .5177   |
| AL203     | 51.6105                   | 51.4754 | 50.5348                  | 52.8197 |
| FEO       | 10.5636                   | 10.0956 | 10.6611                  | 11.5894 |
| MNO       | .1452                     | .1466   | .1207                    | .1453   |
| MGO       | 1.4018                    | 1.2831  | 1.3269                   | 1.4107  |
| CAO       | 0.0000                    | 0.0000  | 0.0000                   | 0.0000  |
| NA20      | .0979                     | •0823   | .0701                    | .0875   |
| K20       | 0.0000                    | .0189   | 0.0000                   | 0.0000  |
| ZNO       | 3.5808                    | 3.4102  | 3.6204                   | 3.6654  |
| TOTAL     | 94.8468                   | 94.0069 | 93.5845                  | 98.0796 |
| SI        | 7.8466                    | 7.8187  | 7.8999                   | 7.7821  |
| TI        | .0385                     | .1071   | .0441                    | .1088   |
| AL.       | 17.5080                   | 17.5715 | 17.3994                  | 17.4040 |
| FE        | 2.5421                    | 2.4447  | 2.6040                   | 2.7090  |
| MIN       | .0354                     | .0360   | .0299                    | .0344   |
| MG        | .6011                     | •5537   | •5775                    | .5876   |
| CA        | 0.0000                    | 0.0000  | 0.0000                   | 0.0000  |
| NA        | .0555                     | .0470   | .0403                    | .0482   |
| ĸ         | 0.0000                    | .0070   | 0.0000                   | 0.0000  |
| ZN        | .7615                     | .7297   | .7814                    | .7571   |
| Oxygen    | 46.0000                   | 46.0000 | 46.0000                  | 46.0000 |
| No. atoms | 75.3888                   | 75.3155 | 75.3765                  | 75.4313 |

| 11 | <br>28 |
|----|--------|
|    | 20     |

SELECTED ANALYSES FROM : JAN83 : 27, 30, 222-223, 210

### STAUROLITE (AU)

|            |         |                  |                  | 4496/26.9.      |                 |
|------------|---------|------------------|------------------|-----------------|-----------------|
|            | STT 1.  | STT 2.           | Staur 1.         | Staur 2.9       | Staurolite.     |
| S102       | 24.5022 | 27.4175          | 28,5552          | 28.4720         | 29.6031         |
| T102       | .5070   | .4668            | .1049            | .1516           | .3879           |
| AL203      | 46.9727 | 51.6854          | 51.9024          | 51.2780         | 53.3757         |
| FEO        | 11.8344 | 11.8342          | 11.9947          | 11.9430         | 11.6472         |
| MNO        | .1154   | .1022            | .0977            | .1506           | .1500           |
| MGO        | 1.2127  | 1.2934           | 1.4066           | 1.3282          | 1.5822          |
| CAO        | 0.0000  | 0.0000           | 0.0000           | 0.0000          | 0.0000          |
| NA2O       | .0982   | .0940            | .1266            | .1180           | .1115           |
| к20        | .0143   | 0.0000           | .0045            | 0.0000          | 0.0000          |
| ZNO        | 3.0652  | 3.2315           | 4.2672           | 4.0210          | 2.5219          |
| TOTAL      | 88.3221 | 96.1250          | 98.4598          | 97.4624         | 99.3795         |
| <b>C</b> 7 | 7 6670  | 7 0170           | 7 0000           | 0 0000          | 0.0074          |
| SI<br>TI   | 7.6670  | 7.8176           | 7.9829           | 8.0333          | 8.0874          |
| AL.        | 17.3282 | .1001<br>17.3740 | .0221<br>17.1061 | .0322           | .0797           |
| FE         | 3.0970  | 2.8220           |                  | 17.0567         | 17.1911         |
| FE<br>MN   | .0306   | .0247            | 2.8044<br>.0231  | 2.8182          | 2.6611          |
| MG         | .5655   | .5496            | .5860            | •5585           | .0347           |
| CA         | 0.0000  | 0.0000           | 0.0000           | 0.0000          | .6442<br>0.0000 |
| NA         | .0606   | .0528            | .0698            |                 |                 |
| K          | .00057  | 0.0000           | .0098            | .0656<br>0.0000 | .0600<br>0.0000 |
| ZN         | .7088   | .6809            | .8816            | .8384           |                 |
| 2.11       | ./000   | .0009            | .0010            | .8384           | .5092           |
| Oxygen     | 46.0000 | 46.0000          | 46.0000          | 46.0000         | 46.0000         |
| No. atoms  | 75.5827 | 75.4217          | 75.4777          | 75.4390         | 75.2673         |

SELECTED ANALYSES FROM : JAN83 : 20, 21, 23, 154, 198, 213-214, 216

¢

## CHLORITES (AU)

•

|           | 4502/91.6.<br>UNK3. |         | 4502/91.6.4<br>CHL spot1. | 483/149.1.<br>CHL?. | 4496/98.4.<br>CHL 1. | 4496/32<br>Chl. | 4496/85.7.<br>Chl. | 4496/85.7.<br>Chl. |
|-----------|---------------------|---------|---------------------------|---------------------|----------------------|-----------------|--------------------|--------------------|
| SI02      | 25.2080             | 24.8648 | 21.9214                   | 20.7613             | 25.4498              | 23.8958         | 25.9184            | 24.9618            |
| TIO2      | .0143               | .0395   | 0.0000                    | .0112               | .0622                | .0199           | •0747              | .0523              |
| AL203     | 20.7537             | 24.2633 | 22.5508                   | 22.0478             | 21.4939              | 20.2024         | 20.9598            | 19,1001            |
| FEO       | 35.1549             | 37.7737 | 40.6648                   | 41.1754             | 23.0228              | 22.1197         | 31.9802            | 33.1143            |
| MNO       | .9660               | .1111   | .1295                     | 1.1349              | .2506                | .0907           | 1.1460             | 1.4253             |
| MGO       | 4.2342              | 7.7270  | 2.7947                    | .5266               | 14.0196              | 13.9512         | 8.4692             | 5.4584             |
| CAO       | 0.0000              | .0623   | 0.0000                    | 0.0000              | 0.0000               | 0.0000          | 0.0000             | .0556              |
| NA2O      | .0168               | .0548   | .0020                     | 0.0000              | 0.0000               | 0.0000          | .0499              | .0435              |
| K20       | .8775               | .0090   | 0.0000                    | .0286               | 0.0000               | .0132           | 0.0000             | .0711              |
| ZNO       | .1123               | .2947   | .1831                     | .2376               | .4082                | .0819           | •5526              | .1923              |
| TOTAL     | 87.3377             | 95.2002 | 88.2463                   | 85.9234             | 84.7071              | 80.3748         | 89.1508            | 84.4747            |
| SI        | 5.6772              | 5.1102  | 5.0253                    | 4.9726              | 5.4957               | 5.4404          | 5.5906             | 5.7713             |
| TI        | .0024               | .0061   | 0.0000                    | .0020               | .0101                | .0034           | .0121              | .0091              |
| AL.       | 5.5103              | 5.8788  | 6.0945                    | 6.2256              | 5.4719               | 5.4225          | 5.3300             | 5.2062             |
| FE        | 6.6215              | 6.4925  | 7.7962                    | 8.2478              | 4.1578               | 4.2118          | 5.7691             | 6.4030             |
| MN        | .1843               | .0193   | .0251                     | .2302               | .0458                | .0175           | .2094              | .2791              |
| MG        | 1.4212              | 2.3667  | .9548                     | .1880               | 4.5118               | 4.7337          | 2.7225             | 1.8808             |
| CA        | 0.0000              | .0137   | 0.0000                    | 0.0000              | 0.0000               | 0.0000          | 0.0000             | .0138              |
| NA        | .0075               | .0222   | .0009                     | 0.0000              | 0.0000               | 0.0000          | .0212              | .0198              |
| ĸ         | .2521               | .0024   | 0.0000                    | .0087               | 0.0000               | .0038           | 0.0000             | .0210              |
| ZN        | .0187               | .0448   | .0310                     | .0421               | .0651                | .0138           | .0881              | .0329              |
| Oxygen    | 28.0000             | 28.0000 | 28.0000                   | 28.0000             | 28.0000              | 28.0000         | 28.0000            | 28.0000            |
| No. atoms | 47.6952             | 47.9566 | 47.9279                   | 47.9170             | 47.7583              | 47.8469         | 47.7430            | 47.6369            |

SELECTED ANALYSES FROM : JAN82 : 73-75, 139, 149-150, 205

# CHLORITES (ANU)

|           | 4496/67.3.<br>CHL2. | 4496/67.3.<br>CHL 3. | 4496/67.3.<br>CHL 1A. | 4502/37.3.<br>CHL. | 4502/42.1.<br>CHL 1. | 4502/42.1.<br>CHL2. | 4502/42.1.<br>CHL 3. |
|-----------|---------------------|----------------------|-----------------------|--------------------|----------------------|---------------------|----------------------|
|           |                     |                      |                       |                    |                      |                     |                      |
| SI02      | 20.8900             | 21.1700              | 22.7500               | 24.5600            | 24.5800              | 25.1500             | 23.9900              |
| T102      | .2800               | 0.0000               | .1300                 | .2300              | .3500                | .1200               | .2000                |
| AL203     | 16.5100             | 16.6000              | 18.7100               | 19.4600            | 20.1400              | 18.1400             | 20.6100              |
| FEO       | 26.1500             | 27.2600              | 28.5500               | 37.9600            | 33.9200              | 40.9500             | 34.0500              |
| MNO       | .6100               | .7600                | .6600                 | .4800              | -4000                | .5900               | .4100                |
| MGO .     | 9.5300              | 9.1400               | 11.0700               | 4.8400             | 7.4200               | 4.1500              | 7.2000               |
| CAO       | .1200               | .1000                | .0700                 | 0.0000             | 0.0000               | .1800               | 0.0000               |
| K20       | .0700               | 0.0000               | 0.0000                | .0900              | .1900                | 0.0000              | 0.0000               |
| NA20      | .4000               | .4900                | •3600                 | .1300              | .3200                | .2900               | .1800                |
| a         | .1600               | .1800                | .0800                 | 0.0000             | 0.0000               | •0600               | 0.0000               |
|           | 74.0462             | 74.9420              | 82.0431               | 87.7500            | 87.3200              | 89.3773             | 86.6400              |
| 0=F,CL    | .0674               | .0758                | .0337                 | 0.0000             | 0.0000               | .0253               | 0.0000               |
|           |                     | <del></del>          |                       |                    | <del> </del>         |                     | <del></del>          |
| TOTAL     | 74.0462             | 74.9420              | 82.0431               | 87.7500            | 87.3200              | 89.3773             | 86.6400              |
| SI        | 5.3950              | 5.4284               | 5.3049                | 5.5714             | 5.4838               | 5.6827              | 5.3971               |
| TI        | .0544               | 0.0000               | .0228                 | .0392              | .0587                | .0204               | .0338                |
| AL        | 5.0268              | 5.0182               | 5.1435                | 5.2043             | 5.2972               | 4.8322              | 5.4663               |
| FE        | 5.6481              | 5.8459               | 5.5677                | 7.2017             | 6.3290               | 7.7384              | 6.4065               |
| MN        | .1334               | .1651                | .1304                 | .0922              | .0756                | .1129               | .0781                |
| MG        | 3.6680              | 3.4928               | 3.8470                | 1.6363             | 2.4671               | 1.3975              | 2.4140               |
| CA        | .0332               | .0275                | .0175                 | 0.0000             | 0.0000               | .0436               | 0.0000               |
| ĸ         | .0231               | 0.0000               | 0.0000                | .0260              | .0541                | 0.0000              | 0.0000               |
| NA        | .2036               | .2476                | .1654                 | .0581              | .1407                | .1291               | .0798                |
| сL<br>С   | .0000               | .0000                | .0000                 | 0.0000             | 0.0000               | .0000               | 0.0000               |
|           |                     |                      |                       |                    |                      |                     |                      |
| 0,0H,CL,F | 28.0000             | 28.0000              | 28,0000               | 28.0000            | 28.0000              | 28.0000             | 28.0000              |
| No. atoms | 48.1856             | 48.2254              | 48.1991               | 47.8294            | 47.9063              | 47.9568             | 47,8758              |

SELECTED ANALYSES FROM : JAN83 : 127-129, 145, 152

PYROSMALITE (AU)

|           |          |          |           |              |           | ********  | ***        |            |
|-----------|----------|----------|-----------|--------------|-----------|-----------|------------|------------|
|           | 2/9B.    | 2/9B.    | 2/9B.     | 2/9B.        | 2/9A.     |           |            |            |
|           | PYROS 1. | PYROS 2. | PYROS 3.P | l (PRIM) PS. | PYROS-CL. |           | 4502/25.4. | 4502/25.4. |
| SI02      | 34.2335  | 34.9515  | 34.1265   | 34.7858      | 33.6036   |           | CHL 1.     | CHL2.      |
| TI02      | 0.0000   | 0.0000   | 0.0000    | .0056        | 0.0000    |           |            | 14         |
| AL203     | .0175    | .0223    | .0149     | .0093        | .0162     | SIO2      | 23.9330    | 20.1177    |
| FEO       | 29.0049  | 28.5247  | 28.7450   | 26.9088      | 28.0356   | T102      | .1112      | 0.0000     |
| MNO       | 22.2800  | 22.6585  | 22.9390   | 24.6293      | 23.8507   | AL203     | 20.6840    | 20.0489    |
| MGO       | .4721    | .5155    | .4472     | .4092        | .4594     | FEO       | 33.8951    | 32.1169    |
| CAO       | .0977    | .0895    | .0477     | .1139        | .0752     | MNO       | .2491      | .1780      |
| NA2O      | .0212    | .0359    | .0751     | .0121        | .0368     | MGO       | 5.3478     | 3.7087     |
| K20       | .0169    | .0076    | .0105     | 0.0000       | 0.0000    | CAO       | 0.0000     | 0.0000     |
| ZNO       | 0.0000   | 0.0000   | 0.0000    | .0342        | 0.0000    | NA2O      | .0080      | .0237      |
| 2110      | 0.0000   | 0.0000   | 0.0000    | .0342        | 0.0000    | K20       | •1536      | 0.0000     |
| TOTAL     | 86.1438  | 86.8055  | 86.4059   | 86.9082      | 86.0775   | ZNO       | -0848      | .8763      |
|           | •        |          |           |              |           | TOTAL     | 84.4666    | 77.0702    |
| SI        | 6.0877   | 6.1375   | 6.0643    | 6.1171       | 6.0175    |           |            |            |
| TI        | 0.0000   | 0.0000   | 0.0000    | .0007        | 0.0000    |           |            |            |
| AL.       | .0037    | .0046    | .0031     | .0019        | .0034     | SI        | 5.5242     | 5.1727     |
| FE        | 4.3137   | 4.1891   | 4.2720    | 3.9575       | 4.1987    | TI        | .0193      | 0.0000     |
| MN        | 3.3560   | 3.3703   | 3.4528    | 3.6687       | 3.6178    | AL.       | 5.6285     | 6.0773     |
| MG        | .1251    | .1349    | .1184     | .1072        | .1226     | FE        | 6.5431     | 6.9063     |
| CA        | .0186    | .0168    | .0091     | .0215        | .0144     | MN        | .0487      | .0388      |
| NA        | .0074    | .0124    | .0263     | .0042        | .0130     | MG        | 1.8396     | 1.4211     |
| ĸ         | .0038    | .0017    | .0024     | 0.0000       | 0.0000    | CA        | 0.0000     | 0.0000     |
| ZN        | 0.0000   | 0.0000   | 0.0000    | .0044        | 0.0000    | NA        | .0036      | .0120      |
|           | 010000   |          |           |              | 0.0000    | ĸ         | .0452      | 0.0000     |
|           |          |          |           |              |           | ZN        | .0145      | .1665      |
| Oxygen    | 20.0000  | 20.0000  | 20.0000   | 20.0000      | 20.0000   |           |            |            |
|           |          |          |           |              |           | Oxygen    | 28.0000    | 28.0000    |
| No. atoms | 33.9161  | 33.8673  | 33.9486   | 33.8832      | 33.9875   |           |            |            |
|           |          |          |           |              |           | No. atoms | 47.6666    | 47.7946    |

.

SELECTED ANALYSES FROM :SEP82 : 23,

CHLORITE (AU)

J

| Μ | A | N | G | A | N | P | Y | R | Q | S | М | A | L | I | Т | E |   | ( | A | U | 1)<br>* |  |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---------|--|
| * | * | * | * | ٠ | * | * | * | * | ÷ | * | * | * | * | * | * | * | ٠ | * | * | * | *       |  |

| SELECTED | ANALYSES | FROM | :SEP82 | : | 28, | 31, | 34 |  |
|----------|----------|------|--------|---|-----|-----|----|--|
|----------|----------|------|--------|---|-----|-----|----|--|

| ********   | ********** | r         |            |         |         |         |
|------------|------------|-----------|------------|---------|---------|---------|
|            |            |           | PYROSMALIT | E (AU)  |         |         |
| د          | 4478/68.1. | 2/9B.     | ********   | *****   |         |         |
|            | MN-PYROS.  | MNPYROS?. |            |         |         |         |
|            | 14-111001  |           |            | 2/9BA.  | 2/9BA.  | 2/9BA.  |
| S102       | 32.9609    | 31.1433   |            | K?1.    | UNK 3.  | 2/К2.   |
| T102       | .0047      | 0.0000    |            |         |         |         |
| AL203      | .0401      | .0240     | S102       | 35.3907 | 34.9783 | 35.0887 |
| FEO        | 26.0845    | 19.1962   | TIO2       | 0.0000  | .0303   | 0.0000  |
| MNO        | 25.8192    | 27.9390   | AL203      | 0.0000  | .0194   | .0622   |
| MGO        | .1224      | .3762     | FEO        | 28.7605 | 29.1218 | 28.7380 |
| CAO        | .1098      | .1756     | MINO       | 23.0740 | 23.5382 | 23.2096 |
| NA2O .     | 0.0000     | .0072     | MGO        | •4502   | .4126   | .4538   |
|            | 0.0000     | 0.0000    | CAO        | .1449   | .0663   | .1003   |
| K20        | .0256      | 0.0000    | NA2O :     | .0361   | 0.0000  | .0172   |
| ZNO        | .0250      | 0.0000    | к20        | .0018   | 0.0000  | 0.0000  |
| (TY YE ) T | 85.1672    | 78.8615   | ZNO        | .0793   | .0840   | .0431   |
| TOTAL      | 85.16/2    | /8.8013   |            |         |         | د       |
|            |            |           | TOTAL      | 87.9375 | 88.2509 | 87.7129 |
| SI         | 5.9927     | 6.0587    |            |         |         |         |
| TI         | .0006      | 0.0000    | SI         | C 1200  | 6.0791  | 6 1122  |
| AL.        | .0086      | .0055     |            | 6.1388  |         | 6.1123  |
| FE         | 3.9662     | 3.1232    | TI         | 0.0000  | .0040   | 0.0000  |
| MIN        | 3.9763     | 4.6040    | AL         | 0.0000  | .0040   | .0128   |
| MG         | .0332      | .1091     | FE         | 4.1722  | 4.2328  | 4.1867  |
| CA         | .0214      | .0366     | MN         | 3.3902  | 3.4652  | 3.4246  |
| NA         | 0.0000     | .0028     | MG         | .1164   | .1069   | .1178   |
| к          | 0.0000     | 0.0000    | CA         | .0269   | .0123   | .0187   |
| ZN         | .0034      | 0.0000    | NA         | .0123   | 0.0000  | .0059   |
|            |            |           | К          | .0004   | 0.0000  | 0.0000  |
|            |            |           | ZN         | .0102   | .0108   | .0055   |
| Oxygen     | 20.0000    | 20.0000   |            |         |         |         |
|            |            |           | Oxygen     | 20.0000 | 20.0000 | 20.0000 |
| No. atoms  | 34.0024    | 33.9398   | ••         |         |         |         |
|            |            |           | No. atoms  | 33.8676 | 33.9150 | 33.8843 |
|            |            |           |            | 33.0070 | 22.9120 | JJ.001J |

#### SELECTED ANALYSES FROM : JAN83 : 3, 72, 45, 155

SERICITE (AU)

.

SELECTED ANALYSES FROM : JAN82 : 123-124

| *******                                     | ****                                                                                                            |                                                                                                      |                                                                                                                   |                                                                                                                  |                                                                  |                                                                                                                  |                                                                                                      |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                             |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  | SERICITE                                                         | (ANU)                                                                                                            |                                                                                                      |
|                                             | 4502/16.6.                                                                                                      |                                                                                                      | 502/47.1C.4                                                                                                       | 483/149.1.                                                                                                       | ********                                                         | ****                                                                                                             |                                                                                                      |
|                                             | Mu/Ser.                                                                                                         | SERICITE.                                                                                            | SER.                                                                                                              | SER.                                                                                                             |                                                                  |                                                                                                                  |                                                                                                      |
|                                             |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  |                                                                  |                                                                                                                  | 4502/19.3.                                                                                           |
| SIO2                                        | 45.5379                                                                                                         | 52.1609                                                                                              | 46.4457                                                                                                           | 46.4143                                                                                                          |                                                                  | SER 1.                                                                                                           | SER 2.                                                                                               |
| TIO2                                        | .6015                                                                                                           | .0625                                                                                                | 0.0000                                                                                                            | .0112                                                                                                            |                                                                  |                                                                                                                  |                                                                                                      |
| AL203                                       | 31.7494                                                                                                         | 38.2515                                                                                              | 33.8315                                                                                                           | 27.3933                                                                                                          | S102                                                             | 42.9800                                                                                                          | 45.8500                                                                                              |
| FEO                                         | .8360                                                                                                           | .9810                                                                                                | 2.6466                                                                                                            | 7.0587                                                                                                           | T102                                                             | .2500                                                                                                            | .1800                                                                                                |
| MNO                                         | .0109                                                                                                           | .0333                                                                                                | .0417                                                                                                             | .2615                                                                                                            | AL203                                                            | 33.6600                                                                                                          | 35.8500                                                                                              |
| MGO                                         | .8725                                                                                                           | .7757                                                                                                | .6371                                                                                                             | .7769                                                                                                            | FEO                                                              | -9400                                                                                                            | •9500                                                                                                |
| CAO                                         | .0280                                                                                                           | .0177                                                                                                | 0.0000                                                                                                            | 0.0000                                                                                                           | MNO                                                              | 0.0000                                                                                                           | 0.0000                                                                                               |
| NA2O                                        | .1705                                                                                                           | .1036                                                                                                | .1891                                                                                                             | .0199                                                                                                            | MGO                                                              | .4700                                                                                                            | •8300                                                                                                |
| к20                                         | 11.3353                                                                                                         | 8.6093                                                                                               | 11.4489                                                                                                           | 10.7301                                                                                                          | CAO                                                              | .1400                                                                                                            | 0.0000                                                                                               |
| ZNO                                         | .0265                                                                                                           | .1637                                                                                                | .1564                                                                                                             | .2753                                                                                                            | K20                                                              | 10.7900                                                                                                          | 9.7900                                                                                               |
|                                             |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  | NA2O                                                             | .1100                                                                                                            | .3700                                                                                                |
| TOTAL                                       | 91.1685                                                                                                         | 101.1592                                                                                             | 95.3970                                                                                                           | 92.9412                                                                                                          | a.                                                               | 0.0000                                                                                                           | •0500                                                                                                |
|                                             |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  |                                                                  |                                                                                                                  |                                                                                                      |
|                                             |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  |                                                                  | 89.3400                                                                                                          | 93.6595                                                                                              |
| SI                                          |                                                                                                                 | 6.3824                                                                                               | 6.2487                                                                                                            | 6.5608                                                                                                           | O=F,CL                                                           | 0.0000                                                                                                           | .0211                                                                                                |
| TI                                          |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  |                                                                  |                                                                                                                  |                                                                                                      |
| AL                                          |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  |                                                                  |                                                                                                                  |                                                                                                      |
| FE                                          |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  | TOTAL                                                            | 89.3400                                                                                                          | 93.6595                                                                                              |
| MN                                          |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  |                                                                  |                                                                                                                  |                                                                                                      |
| MG                                          |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  |                                                                  |                                                                                                                  |                                                                                                      |
| CA                                          |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  | SI                                                               | 6.1206                                                                                                           | 6.1519                                                                                               |
| NA                                          |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  |                                                                  |                                                                                                                  | .0182                                                                                                |
| ĸ                                           |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  |                                                                  |                                                                                                                  | 5.6708                                                                                               |
| ZN                                          |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  | FE                                                               |                                                                                                                  | .1066                                                                                                |
|                                             |                                                                                                                 |                                                                                                      | .0150                                                                                                             | .0200                                                                                                            | MN                                                               |                                                                                                                  | 0.0000                                                                                               |
|                                             |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  |                                                                  |                                                                                                                  | .1660                                                                                                |
| Oxvaen                                      | 22.0000                                                                                                         | 22.0000                                                                                              | 22 0000                                                                                                           | 22 0000                                                                                                          |                                                                  |                                                                                                                  | 0.0000                                                                                               |
|                                             |                                                                                                                 | 2210000                                                                                              | 22.0000                                                                                                           | 22.0000                                                                                                          |                                                                  |                                                                                                                  |                                                                                                      |
|                                             |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  |                                                                  |                                                                                                                  | .0978                                                                                                |
| No. atoms                                   | 35,9996                                                                                                         | 35.5373                                                                                              | 36 0759                                                                                                           | 36 1257                                                                                                          |                                                                  |                                                                                                                  | .0000                                                                                                |
|                                             |                                                                                                                 | 6,10,00                                                                                              | 50.0755                                                                                                           | JU • 1 4 J /                                                                                                     |                                                                  |                                                                                                                  |                                                                                                      |
|                                             |                                                                                                                 |                                                                                                      |                                                                                                                   |                                                                                                                  | 0,0H,CL,F                                                        | 22.0000                                                                                                          | 22.0000                                                                                              |
| ti<br>Al<br>Fe<br>MN<br>CA<br>CA<br>NA<br>K | 6.3575<br>.0632<br>5.2256<br>.0976<br>.0013<br>.1815<br>.0042<br>.0469<br>2.0190<br>.0027<br>22.0000<br>35.9996 | 6.3824<br>.0058<br>5.5179<br>.1004<br>.0035<br>.1415<br>.0023<br>.0250<br>1.3440<br>.0148<br>22.0000 | 6.2487<br>0.0000<br>5.3661<br>.2978<br>.0048<br>.1277<br>0.0000<br>.0501<br>1.9651<br>.0156<br>22.0000<br>36.0759 | 6.5608<br>.0012<br>4.5650<br>.8345<br>.0313<br>.1637<br>0.0000<br>.0055<br>1.9350<br>.0288<br>22.0000<br>36.1257 | TOTAL<br>SI<br>TI<br>AL<br>FE<br>MN<br>MG<br>CA<br>K<br>NA<br>CL | 0.0000<br>89.3400<br>6.1206<br>.0268<br>5.6511<br>.1120<br>0.0000<br>.0997<br>.0214<br>1.9603<br>.0309<br>0.0000 | .021<br>93.659<br>93.659<br>.018<br>5.670<br>.106<br>0.000<br>.166<br>0.000<br>1.675<br>.097<br>.000 |

No. atoms 36.0226 35.8871

**ه** من

PARAGONITE, (AU)

.,

.

,

## STILPNOMELANE (AU)

|           |            |          |           | 483/116.1.4 | 107/116 1 |
|-----------|------------|----------|-----------|-------------|-----------|
|           | 4502/91.6. | · ·      | 4         | Mn-Bi?.     | Bi 2 ?.   |
|           | PARAG 1.   | PARAG 2. |           | MN-BI (.    | BI 2 7.   |
| SIO2      | 46.5704    | 45.1989  | S102      | 46.0775     | 45.2867   |
| TI02      | .0012      | .0161    | T102      | .0693       | 0.0000    |
| AL203     | 36.8154    | 36.5285  | AL203     | 4.7113      | 4.6021    |
| FEO       | 3.5986     | 1.2355   | FEO       | 30.9691     | 30.4896   |
| MNO       | .2746      | .0929    | MINO      | 9.7477      | 10.0140   |
| MGO       | .2542      | .0923    | MGO       | 1.1393      | 1.0930    |
| CAO       | .1809      | .1798    | CAO       | 0.0000      | 0.0000    |
| NA2O      | 6.7632     | 6.2487   | NA2O      | .0325       | .0488     |
| к20       | .9082      | 1.8796   | к20       | 4.1196      | 4.1862    |
| ZNO       | .0813      | .1123    | Z110      | .0669       | .0154     |
| TOTAL     | 95.4480    | 91.5846  | TOTAL     | 96.9332     | 95.7358   |
| SI        | 6.0493     | 6.0670   | SI        | 11.9204     | 11.8956   |
| TI        | .0001      | .0016    | TI        | .0135       | 0.0000    |
| AL.       | 5.6379     | 5.7805   | AL        | 1.4369      | 1.4251    |
| FE        | .3909      | .1387    | FE        | 6.7005      | 6.6980    |
| MIN       | .0302      | .0106    | MIN       | 2.1361      | 2.2281    |
| MG        | .0492      | .0185    | MG        | •4393       | .4279     |
| CA        | .0252      | .0259    | CA        | 0.0000      | 0.0000    |
| NA        | 1.7314     | 1.6530   | NA        | .0166       | .0253     |
| к         | .1505      | .3219    | к         | 1.3597      | 1.4029    |
| ZN        | .0078      | .0111    | ZN        | .0128       | .0030     |
| Oxygen    | 22.0000    | 22.0000  | Oxygen    | 36.0000     | 36.0000   |
| No. atoms | 36.0727    | 36.0286  | No. atoms | 60.0357     | 60.1060   |

#### SELECTED ANALYSES FROM : JAN83 : 217

SELECTED ANALYSES FROM : JAN83 : 184-185, 187-188

BERTHIERINE (AU)

,

•

## 'STURTITE'- HISINGERITE

|           | 4496/85.7.<br>Berth?. |           | Sturtite.<br>His 1. | Sturtite.<br>HIS 2. | Sturtite.<br>HIS 3. | Sturtite.<br>HIS 4. |
|-----------|-----------------------|-----------|---------------------|---------------------|---------------------|---------------------|
| SI02      | 19.3294               | SI02      | 27.7137             | 45.0424             | 43.6524             | 44.9521             |
| TIO2      | .0073                 | TIO2      | .0076               | 0.0000              | 0.0000              | .0141               |
| AL203     | 14.5851               | AL203     | .1318               | .0867               | .0809               | .1003               |
| FEO       | 34.3367               | FEO       | 17.7986             | 24.7893             | 22.1536             | 24.8574             |
| MNO       | 1.5545                | MNO       | 11.4449             | 21.6812             | 21,1920             | 21.2419             |
| MGO       | 3.5905                | MGO       | .5628               | .2511               | .2002               | .2262               |
| CAO       | 0.0000                | CAO       | .2425               | .7348               | .3600               | .3888               |
| NA20      | .0261                 | NA2O      | 1.0109              | 3.9034              | 13.2101             | .3380               |
| к20       | .0420                 | к20       | .0407               | .0361               | .3099               | .1031               |
| ZNO       | .1249                 | ZNO       | -0438               | 0.0000              | .0668               | 0.0000              |
| TOTAL.    | 73.5965               | TOTAL     | 58.9973             | SG - 5250           | 101.2259            | 92.2219             |
| SI        | 2.7064                | SI        | 1.0089              | 1.0057              | .9498               | 1.0371              |
| TI        | .0008                 | TI        | .0002               | 0.0000              | 0.0000              | .0002               |
| AL.       | 2.4075                | AL        | .0057               | .0023               | .0021               | .0027               |
| FE        | 4.0207                | FE        | .5419               | .4629               | .4031               | .4796               |
| MN        | -1844                 | MN        | .3529               | .4100               | .3906               | .4151               |
| MG        | .7492                 | MG        | .0305               | .0084               | .0065               | .0078               |
| CA        | 0.0000                | CA        | .0095               | .0176               | .0084               | .0096               |
| NA        | .0072                 | NA        | .0725               | .1718               | .5665               | .0154               |
| ĸ         | .0075                 | ĸ         | .0019               | .0010               | .0086               | .0030               |
| ZN        | -0129                 | ZN        | .0012               | 0.0000              | .0011               | 0.0000              |
| Oxygen    | 14.0000               | Oxygen    | 3.0000              | 3.0000              | 3.0000              | 3.0000              |
| No. atoms | 24.0965               | No. atoms | 5.0252              | 5.0796              | 5.3367              | 4.9705              |

SELECTED ANALYSES FROM : JAN83 : 32, 48, 49

....

GREENALITE? (AU)

.

"PUG" (AU)

....

¢

|           | 4502/48.6.<br>BN PUG. |           | 4502/48.6.<br>WHITE PUG. | 4502/48.6.<br>UN PUG 2. | 4502/48.6.<br>CLEARPUG2. |
|-----------|-----------------------|-----------|--------------------------|-------------------------|--------------------------|
| S102      | 29.3517               | S102      | 26.7766                  | 28.0915                 | 26.6304                  |
| T102      | 0.0000                | TIO2      | 0.0000                   | 0.0000                  | .0109                    |
| AL203     | 8.9074                | AL203     | 20.7263                  | 16.1344                 | 19.3879                  |
| FEO       | 35.9028               | FEO       | 29.7996                  | 33.4389                 | 31.0567                  |
| MINO      | .8951                 | MNO       | .4248                    | .7365                   | .5244                    |
| MGO       | 3.9686                | MGO       | 8.6957                   | 6.8408                  | 7.7205                   |
| CAO       | .5257                 | CAO       | .0025                    | .1634                   | .0838                    |
| NA20      | .0217                 | NA2O      | .0153                    | .0279                   | .0351                    |
| K2O       | .1008                 | K20       | .0202                    | .0684                   | .0518                    |
| ZNO       | .0514                 | ZNO       | 0.000                    | .1265                   | 0.0000                   |
| TOTAL.    | 79.7252               | TOTAL     | 86.4610                  | 85.6283                 | 85.5015                  |
| SI        | 3.6742                | SI        | 2.9178                   | 3.1757                  | 2,9673                   |
| TI        | 0.0000                | TI        | 0.0000                   | 0.0000                  | .0009                    |
| AL.       | 1.3145                | AL.       | 2.6626                   | 2.1504                  | 2.5469                   |
| FE        | 3.7586                | FE        | 2.7157                   | 3.1615                  | 2.8941                   |
| MN        | .0949                 | MN        | .0392                    | .0705                   | .0495                    |
| MG        | .7404                 | MG        | 1.4122                   | 1.1525                  | 1.2821                   |
| CA        | .0705                 | CA        | .0003                    | .0198                   | .0100                    |
| NA        | .0054                 | NA        | .0033                    | .0062                   | .0077                    |
| K         | .0161                 | ĸ         | .0028                    | .0099                   | .0074                    |
| ZN        | .0048                 | ZN        | 0.0000                   | .0106                   | 0.0000                   |
| Oxygen    | 14.0000               | 0xygen    | 14.0000                  | 14.0000                 | 14.0000                  |
| No. atoms | 23.6792               | No. atoms | 23.7539                  | 23.7572                 | 23.7660                  |

### SELECTED ANALYSES FROM : JAN83 : 125-126

SPHENE (AU)

|           | 2/9B.<br>SPHENE 1. | 2/9B.<br>SPHENE 2. |
|-----------|--------------------|--------------------|
| S102      | 31.6320            | 31,5876            |
| TIO2      | 32.8558            | 32.4145            |
| AL203     | 2.4317             | 2.0507             |
| FEO       | 2.4302             | 2.8351             |
| MINO      | .7269              | 1.0300             |
| MGO       | .3046              | .2671              |
| CAO       | 26.4980            | 25.9735            |
| NA2O      | .0564              | .0040              |
| к20       | .0437              | .0008              |
| ZNO       | .1554              | .0821              |
| TOTAL     | 97.1347            | 96.2454            |
| SI        | 1.0638             | 1.0737             |
| TI        | .8310              | .8286              |
| AL.       | .0964              | .0822              |
| FE        | .0684              | .0806              |
| MIN       | .0207              | .0297              |
| MG        | .0153              | .0135              |
| CA        | •9548              | .9460              |
| NA        | .0037              | .0003              |
| к         | .0019              | .0000              |
| ZN        | .0039              | .0021              |
| Oxygen    | 5.0000             | 5.0000             |
| No. atoms | 8.0598             | 8.0567             |

SELECTED ANALYSES FROM : JAN82 : 37, 145-146

ILMENITE (ANU)

|           | 2/7A.<br>ILM 1. | 4502/37.3.<br>ILM 1. | 4502/37.3.<br>ILM 2. |
|-----------|-----------------|----------------------|----------------------|
| S102      | 0.0000          | 0.0000               | 0.0000               |
| T102      | 52.4400         | 50.3600              | 44.9300              |
| AL.203    | 0.0000          | 0.0000               | 0.0000               |
| FEO       | 44.9900         | 43.7200              | 39.0200              |
| MINO      | 3.3100          | 4.4200               | 3.9100               |
| MGO       | 0.0000          | 1.3200               | 1.1800               |
| CAO       | 0.0000          | 0.0000               | 0.0000               |
| K20       | 0.0000          | 0.0000               | 0.0000               |
| NA20      | 0.0000          | .1900                | .1800                |
| CL.       | 0.0000          | 0.0000               | 0.0000               |
|           | 100.7400        | 100.0100             | 89.2200              |
| O=F,CL    | 0.0000          | 0.0000               | 0.0000               |
|           |                 |                      |                      |
| IOTAL     | 100.7400        | 100.0100             | 89.2200              |
| SI        | 0.0000          | 0.0000               | 0.0000               |
| TI        | .9917           | .9612                | .9612                |
| AL        | 0.0000          | 0.0000               | 0.0000               |
| FE        | .9461           | .9279                | .9283                |
| MN        | .0705           | .0950                | .0942                |
| MG        | 0.0000          | .0499                | .0500                |
| CA        | 0.0000          | 0.0000               | 0.0000               |
| к         | 0.0000          | 0.0000               | 0.0000               |
| NA        | 0.0000          | .0095                | .0101                |
| æ         | 0.0000          | 0.0000               | 0.0000               |
| 0,0H,CL,F | 3.0000          | 3.0000               | 3.0000               |
| No. atoms | 5.0083          | 5.0436               | 5.0438               |

|       | 4496/29.6. | 4502/25.4. | 4496/29.6. |
|-------|------------|------------|------------|
|       | ILM 1.     | ILM 1.     | ILM 2.     |
|       |            |            |            |
| SI02  | .0274      | .0268      | .0387      |
| TIO2  | 51.9244    | 51.2718    | 52.7263    |
| AL203 | .0432      | .0073      | .0108      |
| FEO   | 36.4796    | 38.7767    | 37.1466    |
| MNO   | .6212      | 2.0296     | .6135      |
| MGO   | .2100      | .0313      | .2028      |
| CAO   | 0.0000     | 0.0000     | 0.0000     |
| NA20  | 0.0000     | .0023      | 0.0000     |
| K20   | .0061      | .0305      | .0014      |
| ZNO   | .0540      | 0.0000     | .0419      |
|       |            |            |            |
| TOTAL | 89.3659    | 92.1763    | 90.7820    |
|       |            |            |            |
|       |            |            |            |
| SI    | .0007      | .0007      | .0010      |
| TI    | 1.0687     | 1.0384     | 1.0686     |
| AL    | .0014      | .0002      | .0003      |
| FE    | .8349      | .8733      | .8372      |
| MIN   | .0144      | .0463      | .0140      |
| MG    | .0086      | .0013      | .0081      |
| CA    | 0.0000     | 0.0000     | 0.0000     |
| NA    | 0.0000     | .0001      | 0.0000     |
| ĸ     | .0002      | .0010      | .0000      |
| ZN    | .0011      | 0.0000     | .0008      |
|       |            |            |            |

No. atoms 4.9300 4.9614 4.9302

3.0000

3.0000

SELECTED ANALYSES FROM : JAN83 : 163, 37-38

SELECTED ANALYSES FROM : JAN83 : 11, 75

¢

3.0000

Oxygen

ILMENITE (AU)

CALCITE

.

|           | 4483/143.6.<br>MnCcl. | 4502/48.6.<br>CO3. | 4502/48.6.<br>CO3 (#1). |           | 4502/75.9. | 1/2.              |
|-----------|-----------------------|--------------------|-------------------------|-----------|------------|-------------------|
|           |                       |                    |                         |           | ILM 1.     | ILMENITE.         |
| S102      | .0191                 | .0542              | .0155                   | SIO2      | .0130      |                   |
| TIO2      | 0.0000                | 0.0000             | .0163                   | TIO2      | 52.9409    | .0321             |
| AL 203    | .0145                 | .0093              | .0098                   | AL203     | 0.0000     | 52.0602           |
| FEO       | 1.1065                | 1.4560             | .5410                   | FEO       | 45.2022    | 0.0000<br>44.2791 |
| MINO      | 3.4170                | 9.0311             | 8.4969                  | MNO       | 1.4236     | 1.6498            |
| MGO       | .1578                 | .0658              | .0088                   | MGO       | .1046      |                   |
| CAO       | 48.9382               | 46.3622            | 23.6379                 | CÃO       | 0.0000     | .2149             |
| NA2O      | 0.0000                | .0171              | .0249                   | NA20      | 0.0000     | 0.0000            |
| K20       | 0.0000                | 0.0000             | .0114                   | K20       | 0.0000     | .0195             |
| ZNO       | 0.0000                | .0138              | .0943                   | ZNO       |            | 0.0000            |
|           |                       |                    |                         | 2400      | .0419      | •0259             |
| TOTAL     | 53.6531               | 57.0095            | 32.8568                 | TOTAL     | 99.7262    | 98.2815           |
| SI        | .0003                 | .0009              | .0005                   | SI        |            |                   |
| TI        | 0.0000                | 0.0000             | .0004                   | TI        | .0003      | .0008             |
| AL.       | .0003                 | .0002              | .0003                   | AL.       | 1.0050     | 1.0026            |
| FE        | .0164                 | .0207              | .0136                   |           | 0.0000     | 0.0000            |
| MN        | .0512                 | .1301              | .2170                   | FE        | 9542       | .9483             |
| MG        | .0042                 | .0017              | .0004                   | MN        | .0304      | .0358             |
| CA        | .9272                 | .8449              | .7637                   | MG        | .0039      | .0082             |
| NA        | 0.0000                | .0006              | .0015                   | CA        | 0.0000     | 0.0000            |
| ĸ         | 0.0000                | 0.0000             | -0004                   | NA        | 0.0000     | .0010             |
| ZN        | 0.0000                | .0002              | .0021                   | K         | 0.0000     | 0.0000            |
|           |                       | .0002              | .0021                   | ZN        | .0008      | .0005             |
| Oxygen    | 1.0000                | 1.0000             | 1.0000                  | Oxygen    | 3.0000     | 3.0000            |
| No. atoms | 1.9995                | 1.9993             | 2.0000                  | No. atoms | 4.9947     | 4.9971            |

SELECTED ANALYSES FROM :SEP82 : 13, 24, 39

ILMENITE (AU)

| SELECTED A | NALYSES FROM          | :JAN83 : 5, 6         | SELECTED AN | ALYSES FROM : J.   | SELECTED A | NALYSES FROM          | 1 :JAN82 : 1          | . <b>25, 12</b> 6, 129 |
|------------|-----------------------|-----------------------|-------------|--------------------|------------|-----------------------|-----------------------|------------------------|
| ANORTHITE  |                       |                       | ORTHOCLASE  |                    | ORTHOCLASE |                       |                       |                        |
|            | 4502/16.6.<br>PLAG 1. | 4502/16.6.<br>PLAG 2. | 0           | 1/2.<br>RTHOCLASE. |            | 4502/19.3.<br>FSPR 1. | 4502/19.3.<br>FSPR 2. | 4502/19.3.<br>FSPR 3.  |
| SI02       | 42.9317               | 42.5554               | SI02        | 63.6080            | S102       | 61.8500               | 61.8600               | 63.0300                |
| T102       | 0.0000                | .0212                 | TIO2        | .0173              | TIO2       | 0.0000                | 0.0000                | 0.0000                 |
| AL203      | 32.7135               | 32.2777               | AL203       | 18.4817            | AL203      | 18.4000               | 18.4600               | 18.5700                |
| FEO        | .0634                 | •0353                 | FEO         | .0341              | FEO        | 0.0000                | 0.0000                | 0.0000                 |
| MNO        | .0443                 | .0007                 | MNO         | 0.0000             | MNO        | 0.0000                | 0.0000                | 0.0000                 |
| MGO        | .0046                 | 0.0000                | MGO         | 0.0000             | MGO        | 0.0000                | 0.0000                | 0.0000                 |
| CAO        | 19.7715               | 19.8508               | CAO         | .0378              | CAO        | .1100                 | .1400                 | .1600                  |
| NA2O       | .3199                 | .3158                 | NA2O        | .6819              | к20        | 15.8800               | 15.8600               | 16.2300                |
| K20        | .0219                 | .0062                 | K20         | 15.5612            | NA2O       | .2400                 | .2300                 | .3300                  |
| ZNO        | .0150                 | .0152                 | ZNO         | .0646              | CL         | 0.0000                | 0.0000                | 0.0000                 |
|            |                       |                       |             |                    |            |                       |                       | 0.0000                 |
| TOTAL      | 95.8858               | 95.0783               | TOTAL       | 98.4866            |            | 96.4800               | 96.5500               | 98.3200                |
|            |                       | ••••••                |             |                    | O=F,CL     | 0.0000                | 0.0000                | 0.0000                 |
|            | •                     |                       |             |                    |            |                       |                       |                        |
| SI         | 2.0773                | 2.0778                | SI          | 2.9821             |            |                       |                       |                        |
| TI         | 0.0000                | .0008                 | TI          | .0006              | TOTAL      | 96.4800               | 96.5500               | 98.3200                |
| AL         | 1.8661                | 1.8580                | AL          | 1.0215             |            |                       |                       |                        |
| FE         | .0026                 | .0014                 | FE          | .0013              |            |                       |                       |                        |
| MN         | .0018                 | .0000                 | MN          | 0.0000             | SI         | 2.9678                | 2,9659                | 2.9705                 |
| MG         | .0003                 | 0.0000                | MG          | 0.0000             | TI         | 0.0000                | 0.0000                | 0.0000                 |
| CA         | 1.0251                | 1.0385                | CA          | .0019              | AL         | 1.0409                | 1.0434                | 1.0318                 |
| NA         | .0305                 | 0304                  | NA          | .0630              | FE         | 0.0000                | 0.0000                | 0.0000                 |
| K          | .0014                 | .0004                 | K           | .9308              | MN         | 0.0000                | 0.0000                | 0.0000                 |
| ZN         | .0005                 | .0005                 | ZN          | .0022              | MG         | 0.0000                | 0.0000                | 0.0000                 |
|            |                       |                       |             |                    | CA         | .0057                 | .0072                 | .0081                  |
|            |                       |                       |             |                    | ĸ          | .9721                 | .9701                 | .9759                  |
| Oxygen     | 8.0000                | 8.0000                | Oxygen      | 8.0000             | NA         | .0227                 | .0217                 | .0307                  |
|            |                       |                       |             |                    | CL.        | 0.0000                | 0.0000                | 0.0000                 |
|            |                       |                       |             |                    |            |                       |                       |                        |
| No. atoms  | 13.0055               | 13.0080               | No. atoms   | 13.0034            |            |                       |                       |                        |
|            |                       |                       |             |                    | O,OH,CL,F  | 8.0000                | 8.0000                | 8.0000                 |
|            |                       |                       |             |                    |            |                       |                       |                        |

34

1

t

.

No. atoms 13.0091 13.0084 13.0169

|                   | 4502/16.6 | 4502/16.6 | 4502/16.6 | 4502/16.6 | 4502/16.6 |                   | 4502/19.3 | 4502/19.3 | 4502/19.3 | 4502/19.3 | 4502/19.3 |
|-------------------|-----------|-----------|-----------|-----------|-----------|-------------------|-----------|-----------|-----------|-----------|-----------|
|                   | An 1      | An 2      | An 9      | An 4      | An 14     |                   | KF 1      | KF 2      | KF 3      | KF 4      | KF 5      |
| SiO <sub>2</sub>  | 43.30     | 43.72     | 44.05     | 43.10     | 43.03     | sio <sub>2</sub>  | 63.73     | 63.55     | 63.82     | 64.07     | 62,69     |
| T102              | 0.00      | 0.08      | 0.03      | 0.00      | 0.05      | A1203             | 19.66     | 19.67     | 19.64     | 19.60     | 19.30     |
| A1203             | 35.55     | 35.75     | 34.56     | 35.46     | 35.61     | Fe0               | .06       | 0.00      | 0.00      | 0.00      | 0.03      |
| Fe0               | 0.03      | 0.07      | 0.00      | 0.01      | 0.00      | CaO               | .02       | 0.00      | 0.03      | 0.16      | 0.00      |
| MgO               | 0.22      | 0.07      | 0.12      | 0.00      | 0.00      | Na <sub>2</sub> 0 | 0.46      | 0.48      | 0.46      | 0.41      | 0.45      |
| Ca0               | 19.95     | 20.56     | 19.13     | 20.08     | 20.10     | κ <sub>2</sub> 0  | 15.59     | 15.75     | 15.65     | 15.40     | 15.58     |
| Na <sub>2</sub> 0 | 0.25      | 0.26      | 0.98      | 0.19      | 0.24      | Pb0               | 1.84      | 2.29      | 1.71      | 1.68      | 1.22      |
| к <sub>2</sub> 0  | 0.00      | 0.04      | 0.20      | 0.00      | 0.00      |                   |           |           |           |           |           |
| -                 |           |           |           |           |           | TOTAL             | 101.37    | 101.74    | 101.30    | 101.32    | 99.27     |
| TOTAL             | 99.30     | 100.55    | 99.07     | 98.84     | 99.03     |                   |           |           |           |           |           |
|                   |           |           |           |           |           | Si                | 2.944     | 2.939     | 2.947     | 2.952     | 2.946     |
| Si                | 2.021     | 2.023     | 2.061     | 2.021     | 2.015     | Al                | 1.071     | 1.072     | 1.069     | 1.064     | 1.069     |
| Ti                | 0.000     | 0.003     | 0.001     | 0.000     | 0.002     | Fe                | 0.002     | 0.000     | 0.000     | 0.000     | 0.001     |
| Al                | 1.955     | 1.946     | 1,906     | 1.960     | 1.965     | Ca                | 0.001     | 0.000     | 0.001     | 0.008     | 0.000     |
| Fe                | 0.001     | 0.003     | 0.000     | 0.001     | 0.000     | Na                | 0.042     | 0.043     | 0.041     | 0.037     | 0.041     |
| Mg                | 0.015     | 0.005     | 0.009     | 0.000     | 0.000     | к                 | 0.919     | 0.929     | 0.922     | 0.905     | 0.934     |
| Ca                | 0.998     | 1.004     | 0.959     | 1.009     | 1.008     | Рb                | 0.023     | 0.029     | 0.021     | 0.021     | 0.015     |
| Na                | 0.023     | 0.024     | 0.089     | 0.018     | 0.021     |                   |           |           |           |           |           |
| к                 | 0.000     | 0.002     | 0.012     | 0.000     | 0.000     | Oxygen            | 8         | 8         | 8         | 8         | 8         |
| Oxygen            | 8         | 8         | 8         | 8         | 8         |                   |           |           |           |           |           |

PLAGIOCLASE (M.I.M.)

1

ORTHOCLASE (M.1.M.)

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                       | 4502/19.3 |
|---------------------------------------------------------------------------------------------|-----------|
| Al <sub>2</sub> 0 <sub>3</sub> 56.89 57.06 56.60 56.36 Ti0 <sub>2</sub> 0.00 0.00 0.00 0.01 | Hc 5      |
| $A1_{20_3}$ 56.89 57.06 56.60 56.36 $Ti0_2$ 0.00 0.00 0.00 0.01                             | 0.02      |
| Fe0 6.41 6.58 7.52 7.86 Al <sub>2</sub> 0 <sub>2</sub> 57.26 57.65 57.60 57.71              | 0.00      |
|                                                                                             | 57.03     |
| Mn0 0.09 0.04 0.20 0.15 Fe0 22.25 22.22 22.62 21.78                                         | 22.07     |
| Mg0 0.00 0.00 0.00 0.00 Mn0 0.18 0.10 0.13 0.14                                             | 0.14      |
| Zr0 36.50 36.66 36.35 35.32 Mg0 1.51 1.46 1.48 1.39                                         | 1.38      |
| Ca0 0.01 0.00 0.00 0.00                                                                     | 0.00      |
| TOTAL 100.13 100.74 100.92 99.70 Na <sub>2</sub> 0 0.59* 0.54 0.55 0.59                     | 0.59      |
| К <sub>2</sub> 0 0.01 0.02 0.00 0.00                                                        | 0.01      |
| $cr_20_3$ 0.15 0.11 0.15 0.10                                                               | 0.11      |
| Si 0.006 0.011 0.008 0.001 Zn0 17.98 17.80 17.90 18.30                                      | 18.11     |
| Al 2.010 2.003 1.994 2.006                                                                  |           |
| Fe 0.161 0.164 0.188 0.198 TOTAL 99.97 99.92 100.45 100.08                                  | 99.47     |
| Mn 0.003 0.001 0.005 0.004                                                                  |           |
| Mg 0.000 0.000 0.000 0.000                                                                  |           |
| Zn 0.808 0.806 0.802 0.788 Si 0.001 0.001 0.001                                             | 0.001     |
| Ti 0.000 0.000 0.000 0.000                                                                  | 0.000     |
| Oxygen 4 4 4 4 Al 1.980 1.989 1.582 1.990                                                   | 1.983     |
| Fe 0.546 0.552 0.545                                                                        | 0.545     |
| Mn 0.003 0.003 0.004                                                                        | 0.004     |
| Mg 0.066 0.064 0.064 0.061                                                                  | 0.061     |
| Ca 0.000 0.000 0.000 0.000                                                                  | 0.000     |
| Na 0.033 0.030 0.031 0.034                                                                  | 0.034     |
| K U.000 U.U01 U.000 0.000                                                                   | 0.001     |
| Cr 0.004 0.003 0.003 0.002                                                                  | 0.003     |

`.4

Zn

Oxygen

0.389

4

.

\* These high Na values are probably due to peak overlap with Zn.

0.386

4

0.395

4

0.395

4

0.385

4

II ł 36

r

\_

|                   | GREEN<br>BIOTITES | BROWN<br>BIOTITE | SERICITE |        |       |       |                   |                |            |            |            |            |
|-------------------|-------------------|------------------|----------|--------|-------|-------|-------------------|----------------|------------|------------|------------|------------|
|                   | (M.I.M.)          | (M.I.M.)         | (M.I.M.) |        |       |       | GREEN BI          | DTITES (M.I.M. | .)         |            |            |            |
|                   | CON'T             | ·····            |          |        |       |       |                   |                |            |            |            |            |
|                   |                   |                  |          |        |       |       |                   | 4502/47.1c     | 4502/47.lc | 4502/47.1c | 4502/47.lc | 4502/47.1c |
|                   | 4502              | 4502             | 4502     | 4502   | 4502  | 4502  |                   | Bt 1-Gn        | Bt 2-Gn    | Bt 3-Gn    | Bt 4–Gn    | Bt 5-Gn    |
|                   | /47.1c            | /19.3            | /47.lc   | /47.1c | /16.6 | /16.6 |                   |                |            |            |            |            |
|                   | Bt 7-Gn           | Bt 2-Bn          | Ser 1    | Ser 2  | Ser 2 | Ser 3 | Si0 <sub>2</sub>  | 33.23          | 33.49      | 32.99      | 34.04      | 32.81      |
|                   |                   |                  |          |        |       |       | Ti0 <sub>2</sub>  | 0.11           | 0.10       | 0.09       | 0.11       | 0.07       |
| Si02              | 32.85             | 34.96            | 45.73    | 45.47  | 45.96 | 48.85 | A1203             | 18.34          | 18.14      | 18.35      | 18.12      | 18.28      |
| Ti02              | 0.07              | 2.87             | 0.00     | 0.00   | 0.11  | 0.06  | Fe0               | 25.39          | 25.18      | 26.40      | 26.18      | 26.74      |
| A1203             | 18.35             | 19.41            | 33.50    | 34.53  | 35.83 | 31.63 | MnO               | 0.21           | 0.20       | 0.29       | 0.25       | 0.29       |
| Fe0               | 27.01             | 21.17            | 2.17     | 2.13   | 0.81  | 1.52  | MgO               | 5.93           | 6.00       | 5.52       | 5,69       | 5.31       |
| MinO              | 0.28              | 0.08             | 0.00     | 0.02   | n.a.* | n.a.+ | CaO               | 0.00           | 0.00       | 0.00       | 0.00       | 0.00       |
| MgO               | 5.28              | 6.38             | 0.51     | 0.55   | 0.59  | 1.72  | Na <sub>2</sub> 0 | 0.10           | 0.02       | 0.15       | 0.12       | 0.10       |
| CaO               | 0.03              | 0.00             | 0.01     | 0.00   | 0.26  | 0.08  | к <sub>2</sub> 0  | 9.03           | 8.89       | 8.80       | 9.14       | 8,50       |
| Na <sub>2</sub> 0 | 0.12              | 0.17             | 0.17     | 0.18   | 0.15  | 0.14  | с1 <sub>2</sub> 0 | 0.67           | 0.67       | 0.74       | 0.73       | 0.79       |
| κ <sub>2</sub> õ  | 8.45              | 9.53             | 10.22    | 10,47  | 11.36 | 11.34 | F <sub>2</sub> 0  | 0.00           | 1.20       | 0.00       | 0.00       | 1.52       |
| сī <sub>2</sub> 0 | <b>D.</b> 84      | 0.15             | 0.00     | 0.00   | 0.01  | 0.10  |                   |                |            |            |            |            |
| F20               | 0.74              | 0.00             | 0.00     | 2.31   | n.a.* | n.a.* | TOTAL             | 92.99          | 93.91      | 93.33      | 94.38      | 94.42      |
| TOTAL             | 94.02             | 94.66            | 92.31    | 95.15  | 95.08 | 95.44 |                   |                |            |            |            |            |
|                   |                   |                  |          |        |       |       | Si                | 5.391          | 5.383      | 5.361      | 5.454      | 5.294      |
|                   |                   |                  |          |        |       |       | Ti                | 0.014          | 0.012      | 0.011      | 0.013      | 0.009      |
| Si                | 5.318             | 5.411            | 6.290    | 6.111  | 6.140 | 6.511 | Al                | 3.506          | 3.437      | 3.515      | 3.421      | 3.477      |
| Ti                | 0.009             | 0.334            | 0.000    | 0.000  | 0.011 | 0.006 | Fe                | 3.445          | 3.385      | 3.587      | 3,508      | 3.608      |
| Al                | 3.501             | 3.542            | 5.430    | 5.469  | 5.642 | 4.968 | Mn                | 0.028          | 0.028      | 0.040      | 0.035      | 0.040      |
| Fe                | 3.657             | 2.734            | 0.249    | 0.239  | 0.090 | 0.170 | Mg                | 1.433          | 1.437      | 1.337      | 1.360      | 1.278      |
| Mn                | 0.039             | 0.010            | 0.000    | 0.019  | -     | -     | Ca                | 0.000          | 0.000      | 0.000      | 0.000      | 0.000      |
| Mg                | 1.275             | 1.472            | 0.105    | 0.111  | 0.118 | 0.342 | Na                | 0.033          | 0.007      | 0.048      | 0.037      | 0.033      |
| Ca                | 0.005             | 0.000            | 0.002    | 0.000  | 0.038 | 0.012 | к                 | 1.868          | 1.823      | 1.823      | 1.869      | 1.751      |
| Na                | 0.036             | 0.052            | 0.045    | 0.048  | 0.039 | 0.037 | Cl                | 0.151          | 0.149      | 0.166      | 0.162      | 0.177      |
| к                 | 1.745             | 1.881            | 1.794    | 1.708  | 1.937 | 1.928 | F                 | 0.000          | 0.430      | 0.000      | 0.000      | 0.547      |
| C1                | 0.189             | 0.033            | 0.000    | 0.000  | 0.001 | 0.018 |                   |                |            |            |            |            |
| F                 | 0.268             | 0.000            | 0.000    | 0.691  | -     | -     | Oxygen            | 22             | 22         | 22         | 22         | 22         |
| Oxygen            | 22                | 22               | 22       | 22     | 22    | 22    |                   |                |            |            |            |            |

1

N.A. Not Analysed

| ILMENITE (M.1.M.) |
|-------------------|
|-------------------|

|                      | (M.1.M.)  |           |           |           |           |           |           |           |           |
|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| TELLET TE            | (1.2.1.)  |           |           |           |           | *         |           |           |           |
|                      | 4502/19.3 | 4502/19.3 | 4502/19.3 | 4502/19.3 | 4502/19.3 | 4502/19.3 | 4502/19.3 | 4502/19.3 | 4502/19.3 |
|                      | Ilm 1     | Ilm 2     | llm 3     | Ilm 4     | Ilm 5     | llm 8     | Ilm 10    | Ilm 11    | Ilm 12    |
| SiO2                 | 0.03      | 0.01      | 0.01      | 0.02      | 0.01      | 0.07      | 0.01      | 0.04      | 0.00      |
| T102<br>A1203<br>Fe0 | 50.84     | 51.45     | 51.84     | 51.23     | 50.77     | 51.11     | 51.10     | 31.03     | 51.34     |
| A1203                | 0.02      | 0.01      | 0.00      | 0.00      | 0.01      | 0.00      | 0.01      | 0.01      | 0.01      |
| Fe0                  | 44.79     | 45.09     | 45.31     | 44.79     | 44.92     | 44.74     | 44.98     | 44.99     | 45.05     |
| MnO                  | 0.82      | 0.83      | 0.80      | 0.86      | 0.79      | 0.83      | 0.83      | 0.90      | 0.85      |
| MgO                  | 0.07      | 0.07      | 0.07      | 0.06      | 0.06      | 0.08      | 0.05      | 0.07      | 0.06      |
| CaO                  | 0.01      | 0.00      | 0.00      | 0.00      | 0.00      | 0.00      | 0.01      | 0.01      | 0.00      |
| Na20<br>Cr203        | 0.00      | 0.01      | 0.02      | 0.02      | 0.01      | 0.01      | 0.02      | 0.01      | 0.00      |
| Ur203                | 0.00      | 0.03      | 0.00      | 0.00      | 0.00      | 0.00      | 0.04      | 0.02      | 0.03      |
| ZnO                  | 0.02      | 0.00      | 0.00      | 0.07      | 0.08      | 0.03      | 0.08      | 0.00      | 0.12      |
| TOTAL                | 96.59     | 97.50     | 98.05     | 97.07     | 96.65     | 96.88     | 97.13     | 97.09     | 97.46     |
|                      |           |           |           |           |           | ,,,,,,    | 27.12     | 77.07     | 27.40     |
| Si                   | 0.001     | 0.000     | 0.000     | 0.001     | 0.000     | 0.002     | 0.000     | 0.001     | 0.000     |
| Ti                   | 0.999     | 1.001     | 1.002     | 1.001     | 0.998     | 1.000     | 0.000     | 0.001     | 0.000     |
| AI                   | 0.001     | 0.000     | 0.000     | 0.000     | 0.000     |           | 0.998     | 0.997     | 1.000     |
| Fe                   | 0.979     | 0.975     | 0.974     | 0.973     | 0.982     | 0.005     | 0.000     | 0.000     | 0.000     |
| Mn                   | 0.018     | 0.018     | 0.018     | 0.019     | 0.018     | 0.973     | 0.978     | 0.978     | 0.976     |
| Mg                   | 0.003     | 0.003     | 0.003     | 0.003     | 0.002     | 0.018     | 0.019     | 0.020     | 0.018     |
| Ca                   | 0.000     | 0.000     | 0.000     | 0.000     | 0.002     | 0.003     | 0.002     | 0.003     | 0.002     |
| Na                   | 0.000     | 0.000     | 0.001     |           |           | 0.000     | 0.000     | 0.000     | 0.000     |
| Cr                   | 0.000     | 0.001     | 0.000     | 0.001     | 0.000     | 0.006     | 0.001     | 0.000     | 0.000     |
| Zn                   | 0.000     | 0.001     |           | 0.000     | 0.000     | 0.000     | 0.001     | 0.000     | 0.000     |
| 211                  | 0.000     | 0.000     | 0.000     | 0.002     | 0.002     | 0.001     | 0.001     | 0.000     | 0.001     |
| Oxygen               | 3         | 3         | 3         | 3         | 3         | 3         | 3         | 3         | 3         |
| -                    |           |           |           |           | -         |           | -         | -         | -         |

-

i

#### FLUORAPATITE (ANU)

|                                                                                                                                 | 4502/19.3<br>Sil l                             | 4502/19.3<br>Sil 2                             | 4502/19.3<br>Sil 3                             | 4502/19.3<br>Sil 4                             | 4502/19.3<br>Sil 5                             |                                                                                                                                                                  | 4502/53.6<br>Ap 1                                                              | 4502/56.9<br>Ap 2                                                      |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|
| SiO <sub>2</sub><br>TiO <sub>2</sub><br>Al <sub>2</sub> O <sub>3</sub><br>FeO<br>Cr <sub>2</sub> O <sub>3</sub><br>ZnO<br>TOTAL | 37.29<br>0.19<br>61.80<br>0.44<br>0.00<br>0.06 | 37.37<br>0.30<br>61.88<br>0.63<br>0.02<br>0.01 | 37.30<br>0.05<br>61.67<br>0.27<br>0.03<br>0.00 | 37.38<br>0.03<br>61.82<br>0.27<br>0.02<br>0.04 | 37.42<br>0.05<br>61.96<br>0.23<br>0.03<br>0.00 | P <sub>2</sub> 0 <sub>5</sub> ·<br>Si0 <sub>2</sub><br>Ti0 <sub>2</sub><br>Al <sub>2</sub> 0 <sub>3</sub><br>Fe0<br>Mr0<br>Mg0<br>Ca0<br>Na <sub>2</sub> 0<br>Cl | 37.19<br>0.48<br>0.00<br>0.00<br>0.00<br>0.99<br>0.41<br>48.78<br>0.38<br>0.08 | 40.74<br>0.99<br>0.00<br>0.00<br>0.13<br>0.23<br>55.28<br>0.23<br>0.05 |
| Si<br>Ti<br>Al                                                                                                                  | 1.010<br>0.004<br>1.973                        | 1.009<br>0.000<br>1.969                        | 1.014<br>0.001<br>1.975                        | 1.013<br>0.001<br>1.976                        | 1.013<br>0.001<br>1.977                        | TOTAL                                                                                                                                                            | 88.31                                                                          | 97.65                                                                  |
| Fe<br>Cr<br>Zn                                                                                                                  | 0.010<br>0.000<br>0.001                        | 0.014<br>0.001<br>0.000                        | 0.006<br>0.001<br>0.000<br>5                   | 0.006<br>0.000<br>0.001                        | 0.005<br>0.001<br>0.000<br>5                   | P<br>Si<br>Ti<br>Al                                                                                                                                              | 2.824<br>0.043<br>0.000<br>0.000                                               | 2.794<br>0.080<br>0.000<br>0.000                                       |
| Oxygen                                                                                                                          | 5                                              | 5                                              | ¢                                              | ,                                              | 2                                              | Fe<br>Mn<br>Mg                                                                                                                                                   | 0.000<br>0.075<br>0.055                                                        | 0.000<br>0.009<br>0.028                                                |

Ca

Na

C1

Oxygen

SILLIMANITE (M.1.M.)

11 -

•

.

ß

4.799

0.036

0.007

12

19.781

19.765 TOTAL ATOMS

4.689

0.066

0.012

12

SPHENE (M.I.M.)

|                                | 2/9B     | 2/9B     | 2/9B     | 2/9B     | 2/9B     |
|--------------------------------|----------|----------|----------|----------|----------|
|                                | Sphn 2-1 | Sphn 2-2 | Sphn 2-4 | Sphn 3-3 | Sphn 4-4 |
|                                |          |          |          |          |          |
| SiO₂                           | 31.83    | 30.94    | 30.62    | 30.51    | 30.19    |
| TiO₂                           | 31.87    | 33.47    | 35.28    | 34.75    | 34.24    |
| Al <sub>2</sub> O <sub>3</sub> | 2.12     | 2.13     | 2.17     | 2.65     | 3.18     |
| FeO                            | 3.71     | 2.86     | 1.71     | 1.45     | 1.48     |
| MnO                            | 1.42     | 1.07     | 0.35     | 0.54     | 0.32     |
| MgO                            | 0.65     | 0.36     | 0.13     | 0.07     | 0.14     |
| CaO                            | 25.79    | 26.93    | 28.56    | 28.36    | 28.42    |
| Na <sub>2</sub> O              | 0.17     | 0.10     | 0.10     | 0.07     | 0.06     |
| K <sub>2</sub> O               | 0.00     | 0.00     | 0.03     | 0.00     | 0.00     |
| ZnO                            | 0.06     | 0.00     | 0.00     | 0.00     | 0.00     |
| Cl <sub>2</sub> O              | 0.03     | 0.01     | 0.01     | 0.05     | 0.01     |
|                                |          |          |          |          |          |
| Total                          | 97.75    | 97.87    | 98.96    | 98.45    | 98.04    |
|                                |          |          |          |          |          |
|                                |          |          |          |          |          |
| Si                             | 1.064    | 1.046    | 1.013    | 1.012    | 1.006    |
| Ti                             | 0.801    | 0.835    | 0.878    | 0.867    | 0.858    |
| Al                             | 0.084    | 0.083    | 0.085    | 0.103    | 0.125    |
| Fe                             | 0.014    | 0.079    | 0.047    | 0.040    | 0.041    |
| Mn                             | / 0.040  | 0.030    | 0.010    | 0.009    | 0.009    |
| Mg                             | 0.032    | 0.018    | 0.006    | 0.000    | 0.007    |
| Ca                             | 0.924    | 0.957    | 1.012    | 1.008    | 1.015    |
| Na                             | 0.011    | 0.006    | 0.006    | 0.015    | 0.004    |
| К                              | 0.000    | 0.000    | 0.001    | 0.000    | 0.000    |
| Zn                             | 0.001    | 0.000    | 0.000    | 0.000    | 0.000    |
| Cl                             | 0.001    | 0.000    | 0.000    | 0.002    | 0.000    |
|                                |          |          |          |          |          |
| Oxygens                        | 5        | 5        | 5        | 5        | 5        |

### APPENDIX III : ASSAY DATA

Drillhole locations:

١

| 1) | DH 4502 | - | See Fig. 2.4 |
|----|---------|---|--------------|
| 2) | DH 4496 | - | See Fig. 2.4 |
| 3) | DH 4483 | - | See Fig. 2.4 |
| 4) | DZ 2682 | _ | See Fig. 2.1 |

#### APPENDIX III: ASSAY DATA

مرین میں میں میں دور علی میں وقت میں اون میں اون میں اون میں اون میں اور میں میں اور اور اور اور اور اور اور ا

| DH4502 |  |
|--------|--|
|        |  |

| ,        |       |         | · · · |        |       |      |        |             |
|----------|-------|---------|-------|--------|-------|------|--------|-------------|
|          | ME    | TRES    |       |        |       |      |        |             |
| INTERVAL | FROM  | TO      | Pb %  | Ag ppm | Zn %  | Cu ક | Bi ppm | Fe 3 As 8   |
|          |       |         |       |        |       |      |        |             |
| . 1      | 4.80  | 16.70   | 0.00  | 0      | 0.00  | 0.00 | 0      | 0.00 0.000  |
| 2        | 16.70 | 17.10   | • •08 | 7      | .04   | 0.00 | 0      | 1.20 0.000  |
| 3        | 17.10 | 19.50   | .06   | 7      | .09   | .02  | 4      | 3.40 0.000  |
| 4        | 19.50 | 20.70   | 1.86  | 37     | .10   | .06  | 10     | 4.00 0.000  |
|          |       |         |       |        |       |      |        |             |
| 5        | 20.70 | 22.60   | .07   | 2      | .05   | .01  | 0      | 2.50 0.000  |
| 6        | 22.60 | 24.00   | .11   | 2      | .08   | .02  | 2      | 2.60 0.000  |
| 7        | 24.00 | 27.00   | 1.23  | 15     | .43   | .04  | 7      | 4.00 0.000  |
| 8        | 27.00 | 28.00   | 2,59  | 27     | .21   | .14  | 2      | 5.70 0.000  |
| 9        | 28.00 | 28.90   | 1.81  | 18     | .04   | .02  | 3      |             |
|          |       |         |       |        |       |      |        |             |
| 10       | 28.90 | 29.40   | .16   | 13     | •69   | .04  | 1      |             |
| 11       | 29.40 | 32.40   | .91   | 12     | •03   | .02  | 11     | 2.40 0.000  |
| 12       | 32.40 | 35.40   | 4.29  | 38     | .04   | .02  | 25     | 2.30 0.000  |
| 13       | 35.40 | 36.50   | 1.56  | 16     | .05   | .06  | 7      | 3.50 0.000  |
| 14       | 36.50 | 38.30   | 6.40  | 57     | .15   | .30  |        | 10.70 0.000 |
|          |       |         |       |        |       |      |        |             |
| 15       | 38.30 | 41.30   | 3.85  | 31     | 1.12  | •08  | 12     | 4.20 0.000  |
| 16       | 41.30 | 44.30   | 2.15  | 19     | .51   | .08  | 8      | 5,00 0.000  |
| 17       | 44.30 | 44.50   | 9.90  | 84     | 16.80 | .06  | 55     | 9.20 0.000  |
| 18       | 44.50 | 47.00   | 7.80  | 77     | 3.60  | .04  | 54     | 2.60 0.000  |
|          |       |         |       |        |       |      |        |             |
| 19       | 47.00 | 49.30   | 2.82  | 33     | 7.50  | .08  | 9      | 3.00 0.000  |
| 20       | 49.30 | 50.70   | 9.50  | 70     | 9.90  | .10  | 28     | 4.20 0.000  |
| 21       | 50.70 | 52.90   | 7.50  | 58     | 16.30 | .06  | 48     | 5.30 0.000  |
| 22       | 52.90 | 55.30   | 5.90  | 48     | 13.20 | .04  | 28     | 4.90 0.000  |
| 23       | 55.30 | 56.10   | 3.07  |        | 13.50 | .10  | 6      | 5.00 0.000  |
|          |       |         |       |        |       |      |        |             |
| 24       | 56.10 |         | 2.03  | 20     | 5.70  | •06  | 9      |             |
| 25       | 59.00 | 60:30   | 8.80  | 63     | 12.30 | •08  | 30     | 5.40 0.000  |
| 26       | 60.30 | 60.80   | .83   | 9      | 1.75  | .06  | 2      | 2.30 0.000  |
| 27       | 60.80 | 61.40   | 8.50  | 58     | 10.00 | .08  | 23     | 3.80 0.000  |
|          |       |         |       |        |       |      | 54     |             |
| 28       | 61.40 | 61.80   | 14.90 |        | 22.40 | .14  |        | 7.50 0.000  |
| 29       | 61.80 | 63.70   | 6.00  | 42     | 5.90  | •08  | - 25   | 3.00 0.000  |
| 30       | 63.70 | . 66.40 | .34   | 3      | 1.64  | •06  | 2      | 2.10 0.000  |
| 31       | 66.40 | 67.10   | 5.10  | 39     | 4.50  | .12  | 59     | 4.30 0.000  |
| 32       | 67.10 | 67.50   | 9.60  | 105    | 18.70 | .16  | 115    | 8.00 0.000  |
|          |       |         |       |        |       |      |        |             |
| 33       | 67.50 | 69.10   | 3.65  | 29     | 4.60  | .08  | 53     | 3.20 0.000  |
| 34       | 69.10 | 69.60   | 1.42  |        | 19.00 | .04  | 0      | 8.10 0.000  |
| 35       | 69.60 | 70.10   | 1.04  | 10     | 2.10  | .02  | 0      | 1.40 0.000  |
| 36       | 70.10 | 71.80   | 6.90  | 40     | 27.20 | .04  | 83     | 4.20 0.000  |
| 37       | 71.80 | 74.80   | .31   | 4      | .65   | .04  | 3      | 3.00 0.000  |
|          |       |         |       |        |       |      |        |             |
| 38       | 74.80 | 77.80   | .02   | 2      | .21   | .08  | 0      | 3.40 0.000  |
| 39       | 77.80 | 80.80   | .77   | 6      | .21   | .06  | 2      | 1.90 0.000  |
| 40       | 08.08 | 83.80   | 1.56  | 12     | •06   | .04  | 5      | 2.30 0.000  |
| 41       | 83.80 | 86.60   | .16   | 2      | .11   | .04  | 4      | 4.00 0.000  |
|          |       | 87.50   |       | 3      |       |      |        | 14.20 0.000 |
| 42       | 86.60 |         | .29   |        | .05   | .03  |        |             |
| 43       | 87.50 | 89.00   | .03   | 2      | •22   | .02  | 4      | 1.50 0.000  |
| 44       | 89.00 | 91.70   | .95   | 12     | •52   | .04  | 3      | 1.70 0.000  |
|          |       |         |       |        |       |      |        |             |
|          |       |         |       |        |       |      |        |             |

0 = NOT DETERMINED OR BELOW DETECTION LIMITS

#### APPENDIX IIIA: ASSAY DATA

# DH4496

>

|          | м      | ETRES  |            |        |              |      |         |                          |
|----------|--------|--------|------------|--------|--------------|------|---------|--------------------------|
| INTERVAL | FROM   | TO     | Pb %       | Ag ppm | Zn %         | Cu % | Bi ppm  | Fe % As %                |
| 1        | 19.80  | 21.70  | 0.00       | 0      | 0.00         | 0.00 | 0       | 0.00 0.000               |
| 2        | 21.70  | 24.70  | .05        | 6      | .05          | .02  | 0       | 2.30 0.000               |
| 3        | 24.70  | 27.10  | 3.09       | 31     | .11          | .10  | 1       | 5.30 0.000               |
| 4        | 27.10  | 27.80  | 1.44       | 23     | .22          | .22  |         | 10.40 0.000              |
| 5        | 27.80  | 30.80  | .43        | 13     | .04          | .04  | 3       | 2.60 0.000               |
| 6        | 30.80  | 33.80  | 1.76       | 22     | .15          | .02  | 6       | 2.00 0.000               |
| 7        | 33.80  | 36.80  | 1.90       | 25     | .05          | .02  | 10      | 2.80 0.000               |
| 8        | 36.80  | 38.70  | .11        | 5      | .10          | •02  | 0       | 2.20 0.000               |
| 9        | 38.70  | 40.60  | 1.46       | 19     | .06          | 0.00 | 0       | 2.00 0.000               |
| 10       | 40.60  | 42.00  | .15        | 5      | .07          | 0.00 | 0       | 2.60 0.000               |
| 11       | 42.00  | 45.00  | 2.08       | 19     | .10          | .02  | 14      | 2.60 0.000               |
| 12       | 45.00  | 47.20  | 8.10       | 59     | 2.40         | .02  | 49      | 3.50 0.000               |
| 13       | 47.20  | 48.40  | 2.43       | 22     | 1.59         | .02  | 28      | 2.30 0.000               |
| 14       | 48.40  | 51.20  | 5.30       | 53     | 3.90         | .04  | 36      | 1.70 0.000               |
| 15       | 51.20  | 53.60  | 5.40       | 52     | 20.00        | .02  | 25      | 4.60 0.000               |
| 16       | 53.60  | 56.50  | 12.10      | 136    | 16.90        | •08  | 44      | 5.20 0.000               |
| 17       | 56.50  | 58.00  | 5.30       | 37     | 7.20         | .16  | 7       | 3.20 0.000               |
| 18       | 58.00  | 58.80  | 8.00       | 54     | 14.30        | •08  | 4       | 6.00 0.000               |
| 19       | 58.80  | 59.80  | 4.10       | 28     | 7.10         | .08  | 2       | 3.20 0.000               |
| 20       | 59.80  | 60.30  | 4.31       | 41     | 2.30         | .04  | 28      | 1.50 0.000               |
| 21       | 60.30  | 60.70  | 28.30      | 215    | 13.30        | •08  | 176     | 5.20 0.000               |
| 22       | 60.70  | 63.70  | 1.87       | 15     | •75          | .06  | 17      | 2.20 0.000               |
| 23       | 63.70  | 66.70  | 3.09       | 35     | 1.29         | .04  | 17      | 3.20 0.000               |
| 24       | 66.70  | 69.20  | 1.02       | 21     | 1.11         | •08  | 11      | 2.40 0.000               |
| 25       | 69.20  | 72.20  | 1.29       | 34     | 1.27         | .20  | 16      | 3.70 0.000               |
| 26       | 72.20  | 73.50  | .64        | 13     | 1.11         | .12  | 4       | 3.10 0.000               |
| 27       | 73.50  | 75.70  | •57        | 12     | •83          | .10  | 5       | 3.00 0.000               |
| 28       | 75.70  | 77.20  | 1.62       | 26     | 1.30         | •08  | 20      | 3.90 0.000               |
| 29       | 77.20  | 79.00  | 5.50       | 69     | 5.60         | .07  | 65      | 3.60 0.000               |
| 30       | 79.00  | 80.40  | •57        | 9      | 7.90         | .19  | 9       | 7.20 0.000               |
| 31       | 80.40  | 81.20  | 3.73       |        | 10.80        | .07  | 44      | 5.60 0.000               |
| 32       | 81.20  | 81.80  | 9.10       |        | 24.10        | .08  |         | 10.60 0.000              |
| 33       | 81.80  | 82.10  | .93        | 36     | .87          | 0.00 | 3       | 1.80 0.000               |
| 34       | 82.10  | 82.50  | 23.20      | 311    | 6.70         | .15  | 177     | 3.40 0.000               |
| 35       | 82.50  | 83.20  | 4.16       | 50     | 2.50         | .04  | 32      | 1.60 0.000               |
| 36       | 83.20  | 83.70  | 9.10       |        | 16.60        | .10  |         | 14.20 0.000              |
| 37       | 83.70  | 86.10  | 1.20       | 23     | .15          | .05  | 7       | 1.50 0.000               |
| 38       | 86.10  | 89.10  | .20        | 7      | .13          | .06  | 2       | 2.10 0.000               |
| 39       | 89.10  | 92.10  | •60        | 12     | •54          | .01  | 4       | 1.50 0.000               |
| 40       | 92.10  | 95.10  | •54        | 18     | •70          | .03  | 2       | 2.70 0.000               |
| 41       | 95.10  | 98.10  | .29        | 6      | •78          | .01  | 0       | 2.20 0.000               |
| 42       |        |        | .07        | 6<br>7 | .78<br>19.00 | .02  | 0       | 4.20 0.000               |
|          | 100.70 |        | .10        |        |              | .01  | 0       | 6.20 0.000               |
|          | 101.20 |        | .01        | 2<br>7 | •56          | 0.00 | 0<br>18 | 1.50 0.000<br>2.40 0.000 |
|          | 104.20 |        | .11        | 3      | .57          | 0.00 | 10      | 2.10 0.000               |
|          |        | 112.20 | •27<br>•08 | 3      | .15<br>1.96  | .01  | 0       | 2.20 0.000               |
|          |        | 112.20 | .08        | 4      | •10          | 0.00 | 0       | 1.70 0.000               |
|          |        | 118.20 | .03        | 4      | .06          | 0.00 | 0       | 1.50 0.000               |
|          |        | 120.20 | .04        | 4      | .08          | 0.00 | 0       | 1.70 0.000               |
|          |        | 121.80 | .05        | 4      | .04<br>.16   | 0.00 | 1       | 1.50 0.000               |
|          |        | 123.40 | .07        | 4      | •10<br>•17   | 0.00 | 3       | 2.40 0.000               |
|          | 123.40 |        | .07        | 3      | .10          | .04  | 0       | 2.30 0.000               |
|          | ~      |        | •07        | 5      | •10          | •••  | 0       |                          |

|    |        |        |     |   |     |      |   | د          |
|----|--------|--------|-----|---|-----|------|---|------------|
| 54 | 123.70 | 124.30 | .03 | 1 | •03 | .02  | 0 | 3.80 0.000 |
| 55 | 124.30 | 125.90 | •08 | 3 | .04 | 0.00 | 0 | 1.80 0.000 |
| 56 | 125.90 | 127.10 | .17 | 0 | .14 | 0.00 | 0 | 2.00 0.000 |
|    |        |        |     |   |     |      |   |            |

0 = NOT DETERMINED OR BELOW DETECTION LIMITS

# APPENDIX IIIB: ASSAY DATA

# DH4483

2

|          | MI     | ETRES  |      |        |       |      |        |             |
|----------|--------|--------|------|--------|-------|------|--------|-------------|
| INTERVAL | FROM   | TO     | Pb % | Ag ppm | Zn %  | Cu % | Bi ppm | Fe % As %   |
| 1        | 5.40   | 32.00  |      | 0      |       | 0.00 | 0      |             |
| 2        | 32.00  | 33.10  | .67  | 17     |       |      | 12     |             |
| 3        | 33.10  | 35.50  |      |        | .04   |      | 2      |             |
|          |        |        | 1.21 | 12     |       |      |        |             |
| 4        | 35.50  | 36.30  |      |        | .10   | .01  |        |             |
| 5        | 36.30  | 38.00  | 5.30 |        | .07   |      |        | 3.60 .042   |
| 6        | 38.00  | 38.80  |      |        |       | •26  |        | 11.10 .720  |
| 7        | 38.80  | 41.10  |      |        | •39   |      |        | 7.30.245    |
| 8        | 41.10  | 43.40  |      | 11     | .05   |      | 14     |             |
| 9        | 43.40  | 44.50  |      | 3      | •36   |      |        | 3.00 .186   |
| 10       | 44.50  | 45.40  |      |        | 2.80  | .07  | 59     | 3.40 .064   |
| 11       | 45.40  | 48.40  | 4.10 | 28     | .03   | .05  | 11     | 3.00 .270   |
| 12       | 48.40  | 51.40  |      | 24     | •03   | .05  | 15     | 2.80 .152   |
| 13       | 51.40  | 53.00  | .14  | 0      |       |      | 0      |             |
| 14       | 53.00  |        |      | 4      |       |      |        | .40 0.000   |
| 15       | 53.80  |        |      | 1      |       |      |        | 1.90 0.000  |
| 16       | 54.30  | 55.00  |      |        |       |      |        |             |
| 10       | 55.00  |        |      | 1      | .03   |      |        | 2.20 .012   |
| 18       | 56.50  |        |      | 7      | .11   |      |        |             |
|          |        |        |      |        |       |      |        |             |
| 19       | 57.40  | 60.20  |      |        | •09   |      |        |             |
| 20       | 60.20  |        |      |        |       | .09  |        |             |
| 21       | 61.60  | 64.60  |      | 31     |       | .02  |        |             |
| 22       | 64.60  | 67.60  |      |        |       | .05  |        |             |
| 23       | 67.60  | 70.60  |      |        |       |      | 0      |             |
| 24       | 70.60  | 73.40  |      |        |       |      |        |             |
| 25       | 73.40  | 73.90  |      | 57     |       |      |        | .10 .054    |
| 26       | 73.90  | 75.70  |      |        | 11.40 | .10  | 48     |             |
| 27       | 75.70  | 76.30  | 1.33 | 17     | 2.40  | •08  | 7      | 1.60 .054   |
| 28       | 76.30  | 78.30  | 4.40 | 45     | 9.70  | •08  | 51     | 3.70 .225   |
| 29       | 78.30  | 80.40  | 1.79 | 30     | 8.40  | .14  | 16     | 3.60 .058   |
| 30       | 80.40  | 81.10  | 1.39 | 25     | 8.70  | •08  | 8      | 3.80 .375   |
| 31       | 81.10  | 84.10  |      | 33     | 2.90  |      | 14     |             |
| 32       | 84.10  | 87.10  |      | 30     |       |      | 13     |             |
| 33       | 87.10  | 90.10  |      |        |       |      | 9      |             |
| 34       | 90.10  | 92.20  |      |        | 3.90  |      | 20     | 3.40 .114   |
| 35       |        |        |      |        |       |      | 2      |             |
| 36       | 94.20  | 95.40  | .52  |        | 13.80 | .12  | 0      |             |
| 37       |        |        | 1.80 |        | 5.70  | .10  | 8      |             |
| 38       | 97.30  |        | .22  |        | 26.00 | •34  |        | 11.20 .050  |
| 39       |        | 100.80 | 2.33 |        | 10.40 | •28  | 10     | 6.10 .084   |
|          | 100.80 |        | 5.80 | 69     |       | .12  | 23     | 2.00 .046   |
|          | 103.80 |        | 2.38 | 36     |       | .12  | 13     |             |
|          | 105.80 |        | .82  |        |       | .12  | 15     |             |
|          |        |        |      | 23     |       |      |        |             |
|          | 107.50 |        | •62  | 11     | 1.06  | .14  | 0      |             |
|          | 110.00 |        | •55  | 12     | .65   | .20  | 0      |             |
|          | 112.20 |        | .62  | 10     | 1.25  | .52  | 0      | 6.90 .066   |
|          | 113.80 |        | .45  | 8      | .76   | .24  | 0      | 7.10 .014   |
|          | 115.40 |        | .29  |        | 28.00 | .03  |        | 15.20 0.000 |
|          | 115.70 |        | •97  | 17     | 2.10  | •38  | 4      | 6.20 .028   |
|          | 118.50 |        | •57  | 17     | 2.10  | 1.32 |        | 10.70 .044  |
|          | 120.60 |        | 2.76 | 62     | 1.56  | •38  | 14     |             |
|          | 123.20 |        | 2.49 | 39     | .26   | .10  | 15     |             |
|          | 124.20 |        | 1.07 | 20     | 1.06  | •30  | 2      |             |
| 53       | 126.00 | 127.40 | .09  | 9      | •32   | •50  | 0      | 15.00 .030  |
|          |        |        |      |        |       |      |        |             |

APPENDIX IIIB (CONT.)

| 54 127.40 | 130.40 | .18  | 9  | .32   | .06 | 0  | 3.50 | .016  |
|-----------|--------|------|----|-------|-----|----|------|-------|
| 55 130.40 | 133.40 | .19  | 20 | .46   | .02 | 3  | 2.10 | .022  |
| 56 133.40 | 135.30 | .03  | 3  | •38   | •08 | 2  | 5.20 | .010  |
| 57 135.30 | 136.60 | 1.60 | 41 | 5.70  | .10 | 0  | 3.90 | 0.000 |
| 58 136.60 | 139.60 | 2.16 | 42 | 3.20  | .02 | 9  | 2.10 | 0.000 |
| 59 139.60 | 141.60 | .40  | 9  | 6.40  | .10 | 0  | 2.50 | 0.000 |
| 60 141.60 | 143.40 | .09  | 15 | 3.10  | •06 | 9  | 2.50 | 0.000 |
| 61 143.40 | 144.70 | 1.00 | 30 | •96   | .17 | 14 | 1.10 | 0.000 |
| 62 144.70 | 146.40 | 1.36 | 42 | 4.00  | .08 | 15 | 1.60 | 0.000 |
| 63 146.40 | 149.40 | •59  | 16 | 13.80 | .06 | 18 | 3.00 | 0.000 |
| 64 149.40 | 150.90 | •70  | 18 | 3.90  | .04 | 12 | 2.70 | 0.000 |
| 65 150.90 | 153.90 | •56  | 15 | .14   | .14 | 2  | 3.70 | 0.000 |
|           |        |      |    |       |     |    |      |       |

0 = NOT DETERMINED OR BELOW DETECTION LIMITS

# APPENDIX IIIC: ASSAY DATA

,

DZ2682

-----

|          | MI     | ETRES  |       |        |       |      |        |            |
|----------|--------|--------|-------|--------|-------|------|--------|------------|
| INTERVAL | FROM   | TO     | Pb %  | Ag ppm | Zn %  | Cu % | Bi ppm | Fe % As %  |
| 1        | 8.40   | 18.30  | 0.00  | 0      | 0.00  | 0.00 | 0      | 0.00 0.000 |
| 2        | 18.30  | 19.20  | 4.20  | 138    | .40   | .13  | 0      | 0.00 0.000 |
| 3        | 19.20  | 20.70  | •60   | 14     | •20   | •04  | 0      | 0.00 0.000 |
| 4        | 20.70  | 34.10  | 0.00  | 0      | 0.00  | 0.00 | 0      | 0.00 0.000 |
| 5        | 34.10  | 37.50  | 1.20  | 16     | 1.80  | .07  | 9      | 0.00 0.000 |
| 6        | 37.50  | 39.90  | 8.00  | 90     | 4.00  | •15  | 51     | 0.00 .013  |
| 7        | 39.90  | 41.30  | 9.60  |        | 25.00 | •25  | 41     | 0.00 .006  |
| 8        | 41.30  | 42.10  | 1.60  | 22     | 2.40  | •03  | 9      | 0.00 .006  |
| 9        | 42.10  | 43.40  | 3.20  | 74     | 5.40  | •51  | 11     | 0.00 0.000 |
| 10       | 43.40  | 45.70  | 2.00  | 40     | 4.60  | •23  | 15     | 0.00 0.000 |
| 11       | 45.70  | 46.30  | .20   |        | 11.00 | .11  | 16     | 0.00 0.000 |
| 12       | 46.30  | 48.20  | .80   | 14     | 6.80  | .04  | 9      | 0.00 0.000 |
| 13       | 48.20  | 49.10  | .60   |        | 10.20 | .10  | 4      | 0.00 .033  |
| 14       | 49.10  | 50.70  | •60   | 14     | 5.80  | •08  | 9      | 0.00 .026  |
| 15       | 50.70  | 53.80  | .20   | 4      | 1.80  | .02  | 2      | 0.00 0.000 |
| 16       | 53.80  | 56.80  | .40   | 4      | •80   | •03  | 3      | 0.00 .030  |
| 17       | 56.80  | 59.90  | •60   | 6      | •40   | .04  | 2      | 0.00 0.000 |
| 18       | 59.90  | 62.90  | .20   | 0      | •20   | .01  | 0      | 0.00 0.000 |
| 19       | 62.90  | 66.00  | .20   | 4      | •40   | .01  | 0      | 0.00 .127  |
| 20       | 66.00  | 69.00  | .20   | 4      | •20   | •04  | 0      | 0.00 .050  |
| 21       | 69.00  | 72.10  | .20   | 4      | .20   | .04  | 2      | 0.00 .010  |
| 22       | 72.10  | 73.50  | .20   | 6      | 1.00  | •03  | 2      | 0.00 .013  |
| 23       | 73.50  | 74.70  | •80   | 16     | 5.40  | •08  | 12     | 0.00 .080  |
| 24       | 74.70  | 75.30  | .40   | 8      | 14.40 | •08  | 3      | 0.00 0.000 |
| 25       | 75.30  | 76.70  | .40   | 8      | .80   | .04  | 1      | 0.00 0.000 |
| 26       | 76.70  | 78.80  | 1.20  | 16     | 2.20  | •08  | 2      | 0.00 .130  |
| 27       | 78.80  | 79.40  | 31.40 | 288    | 6.40  | •36  | 48     | 0.00 0.000 |
| 28       | 79.40  | 80.20  | 2.20  | 36     | •40   | •24  | 7      | 0.00 .026  |
| 29       | 80.20  | 83.40  | .40   | 4      | •40   | •07  | 2      | 0.00 0.000 |
| 30       | 83.40  | 86.40  | .40   | 4      | .40   | •03  | 0      | 0.00 0.000 |
| 31       | 86.40  | 89.50  | .20   | 4      | •20   | .04  | 0      | 0.00 0.000 |
| 32       | 89.50  | 91.40  | .20   | 4      | .20   | .04  | 0      | 0.00 0.000 |
| 33       | 91.40  | 97.50  | 0.00  | 0      | 0.00  | 0.00 | 0      | 0.00 0.000 |
| 34       | 97.50  | 100.60 | .60   | 6      | .20   | .01  | 0      | 0.00 0.000 |
| 35       | 100.60 | 101.20 | .40   | 4      | .20   | .01  | 0      | 0.00 0.000 |
| 36       | 101.20 | 119.80 | 0.00  | 0      | 0.00  | 0.00 | 0      | 0.00 0.000 |

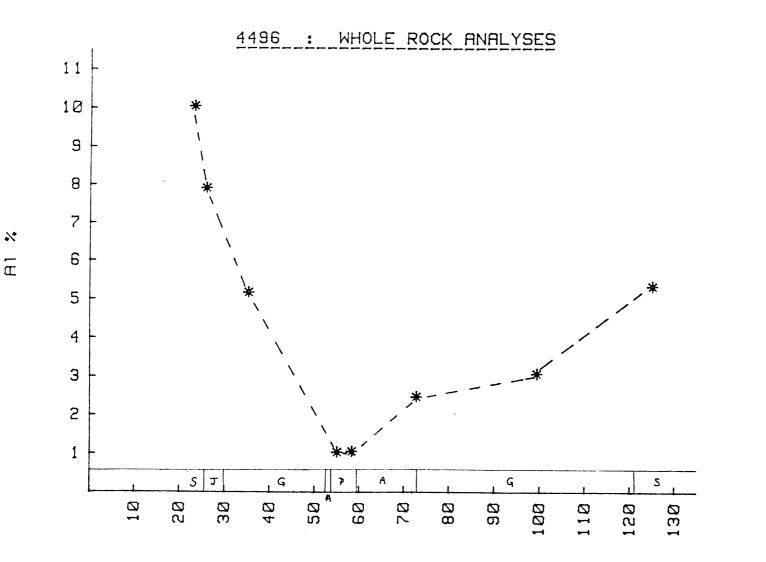
0 = NOT DETERMINED OR BELOW DETECTION LIMITS

### Appendix 4.

- A) Whole rock geochemical trends
- B) Base metal trends
- C) Mineral composition trends

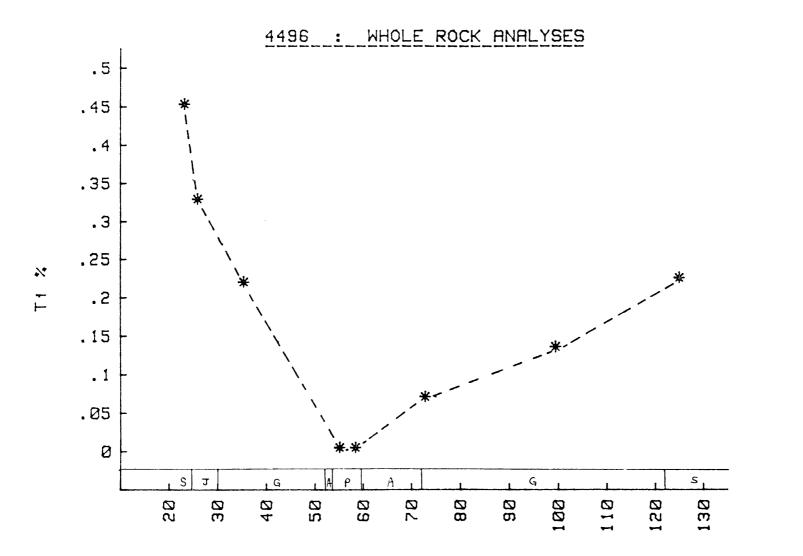
### Legend

- S : Sillimanite gneiss
- J : gahnite rich rocks
- G : garnet quartzite
- A : amphibole subzone
- P : pyroxenoid subzone

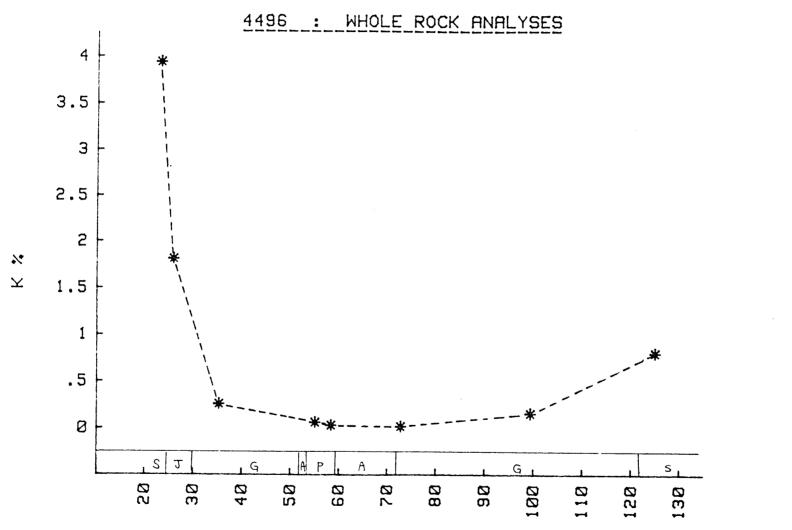

Circles represent green biotite. On the gahnite plot the inverted triangles

represent rim compositions, while the normal triangles represent core compositions. Triangles represent core compositions on (CaO + MnO/MgO) versus distance for garnet plots, and rim compsitions on (MgO/MgO + FeO) versus distance garnet plots.

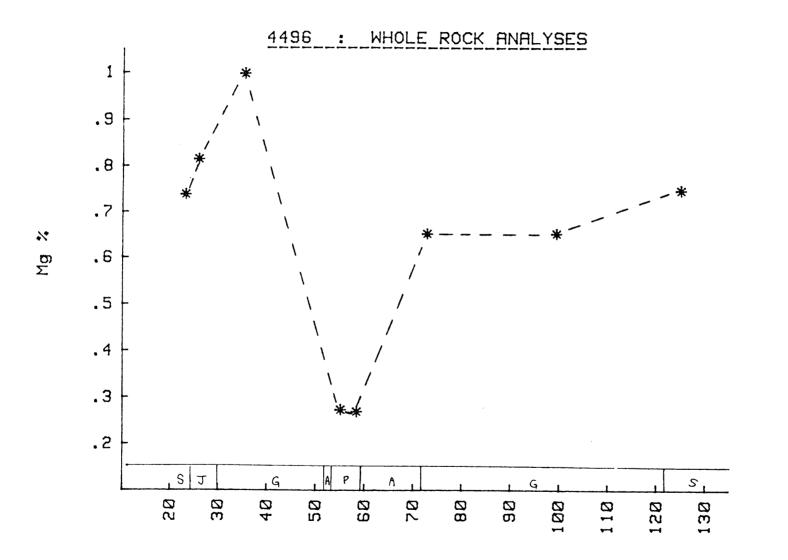
#### CONTENTS


- A) Whole-rock geochemical trendsDH 4496 : p IV 3 to 14
- B) Base Metal Trends
  DH 4496 : p IV 15 to 23
  DZ 2682 : p IV 24 to 31
  DH 4502 : p IV 32 to 33
  DH 4483 : p IV 34 to 37
- C) Mineral Composition Trends
  DH 4502 : p IV 38, IV 39, IV 42 to 47
  DH 4496 : p IV 40 to 41, IV 48

Diamond drill holes prefixed DZ are on the Zinc Corporation Lease; those prefixed DH or with no prefix are from the NBHC Leases.

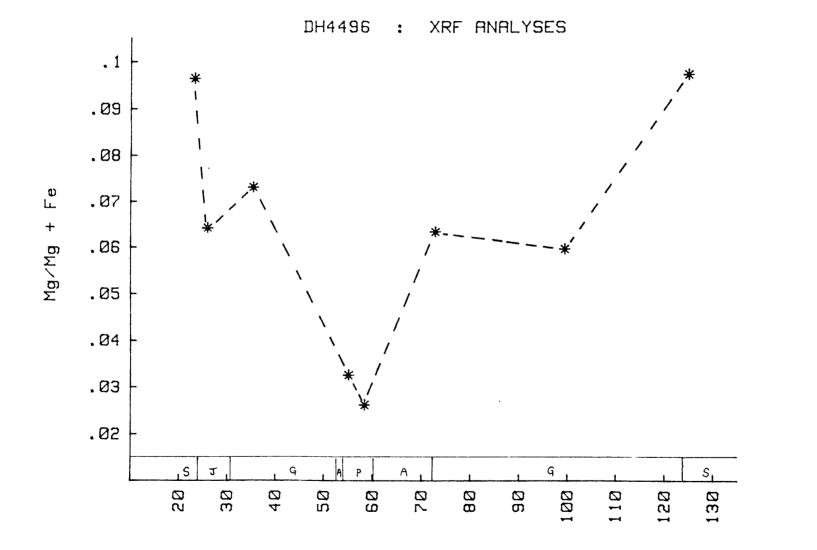






Depth (metres)



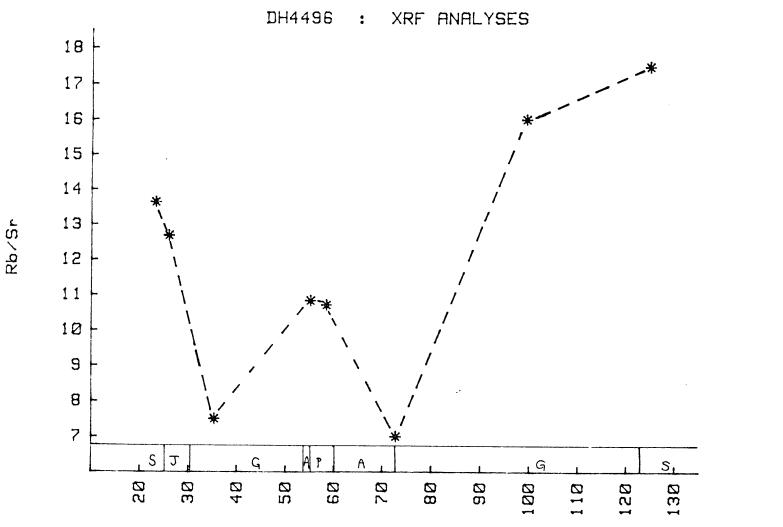
Depth (metres)



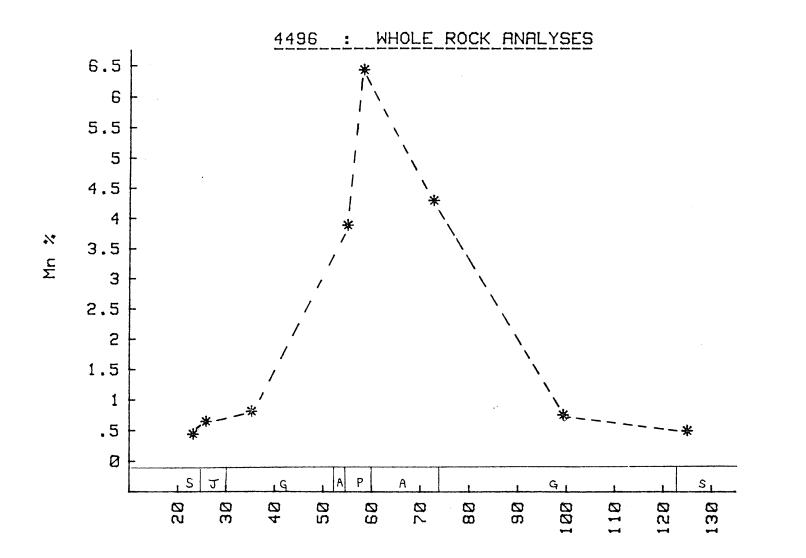

Depth (metres)






Depth (metres)

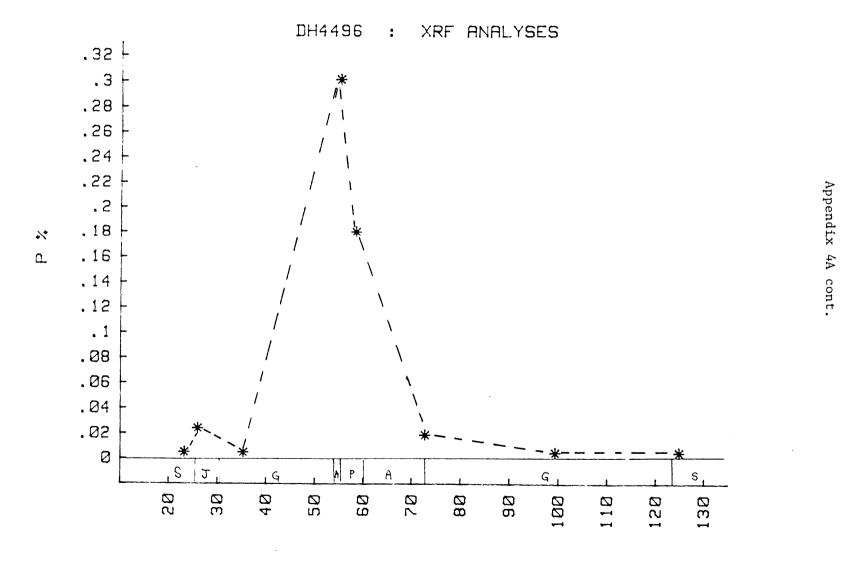



 $\Lambda \mathbf{I}$ 

- 7

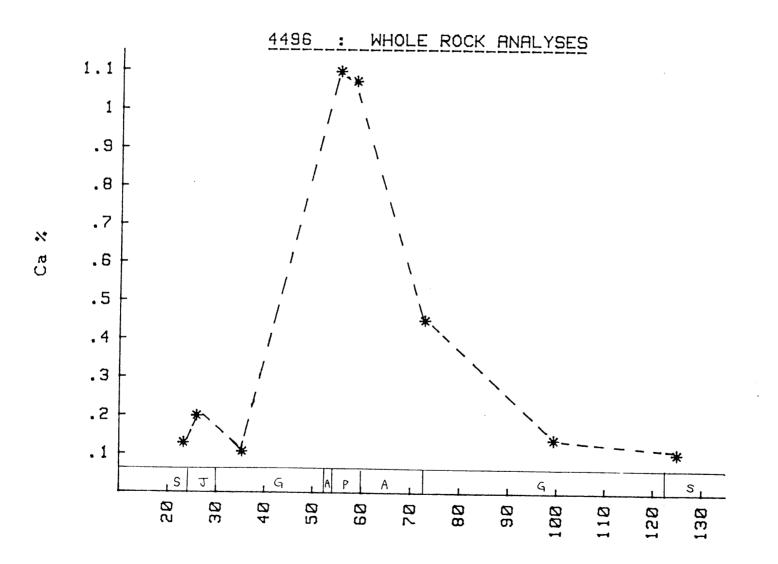
Depth (metres)




Depth (metres)

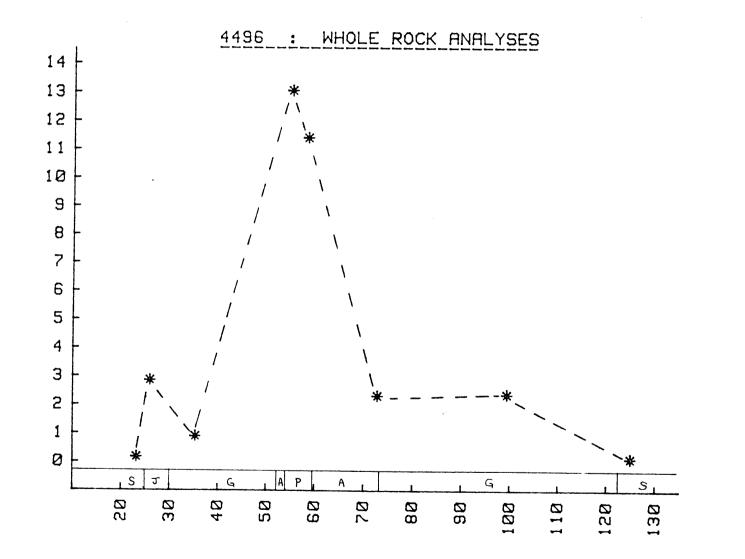


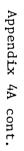
Depth (metres)


9 – VI

Appendix 4A cont.




Depth (metres)


IV - 10

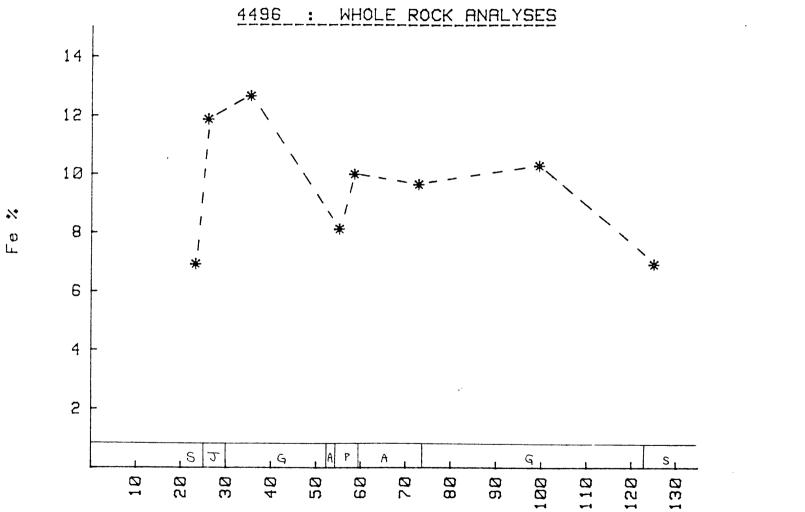


Y

Depth (metres)





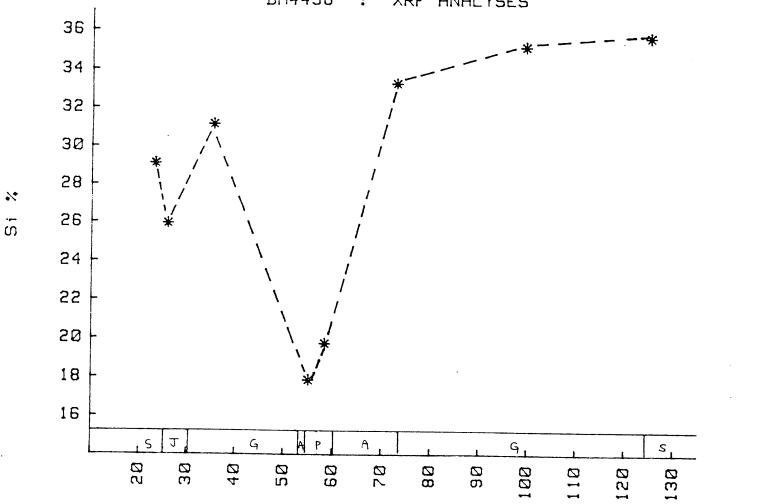

Y

1

12

Depth (metres)

ې بې

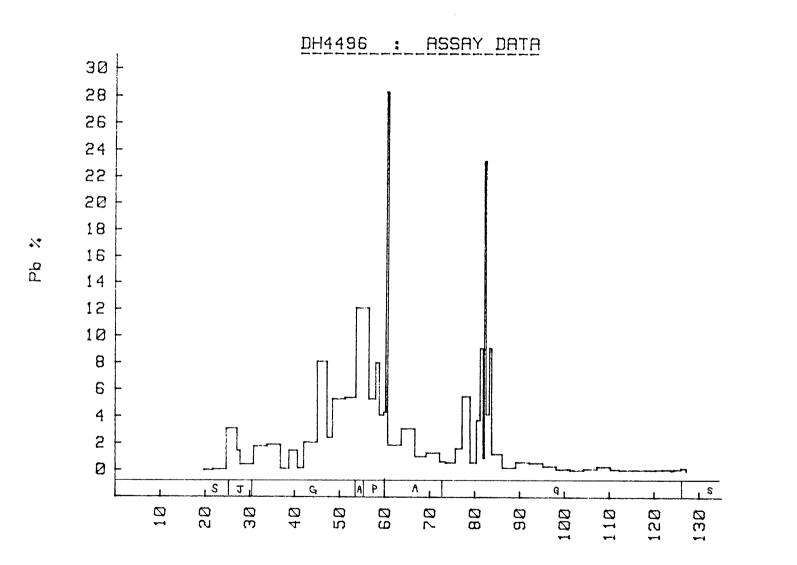



Y

1

13

Depth (metres)



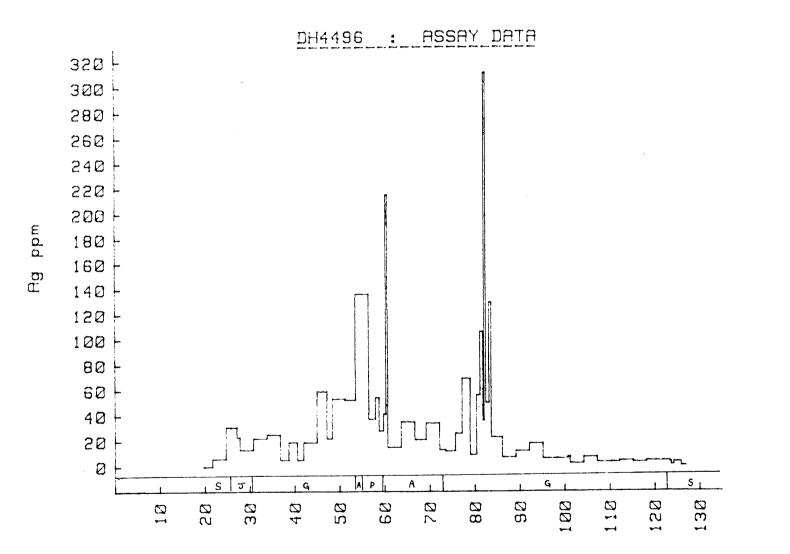

DH4496 : XRF ANALYSES

Depth (metres)

IV - 14

Appendix 4A cont.

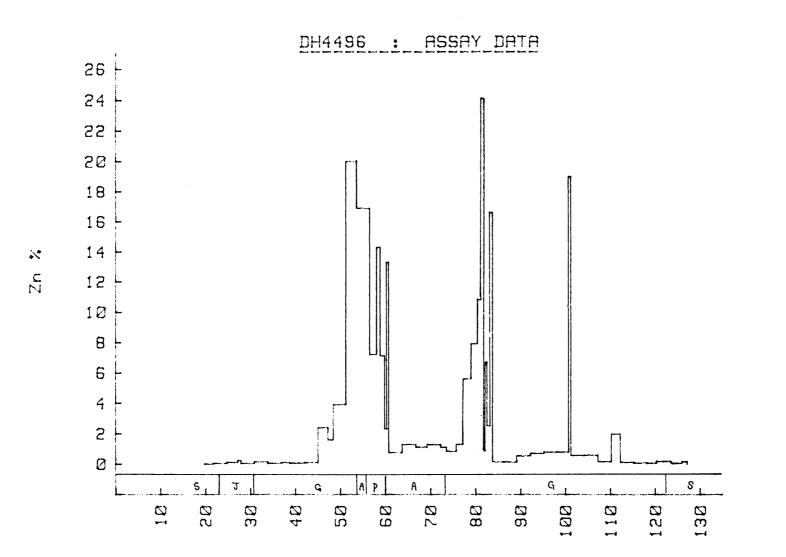



Appendix 4B: Base Metal Trends

Ч

T

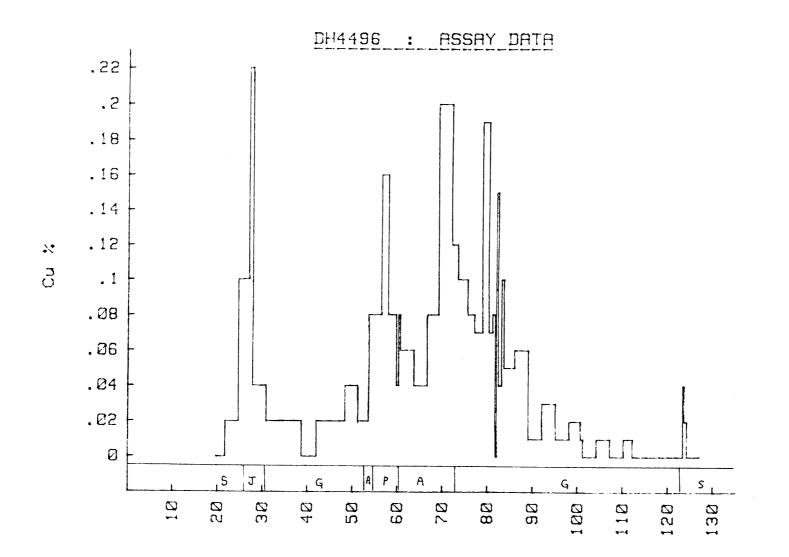
-**1**5


Depth (metres)



**M** 

I.

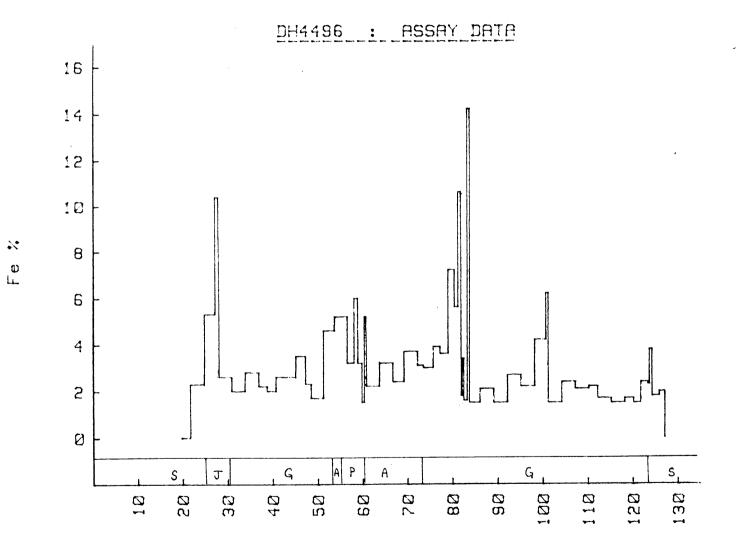

Depth (metres)



M

- 17

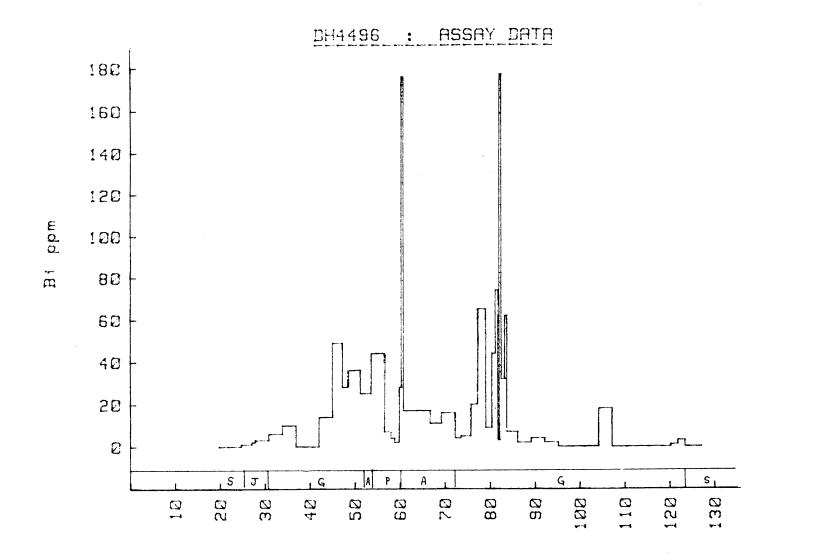
Depth (metres)




 ${\bf V}{\bf I}$ 

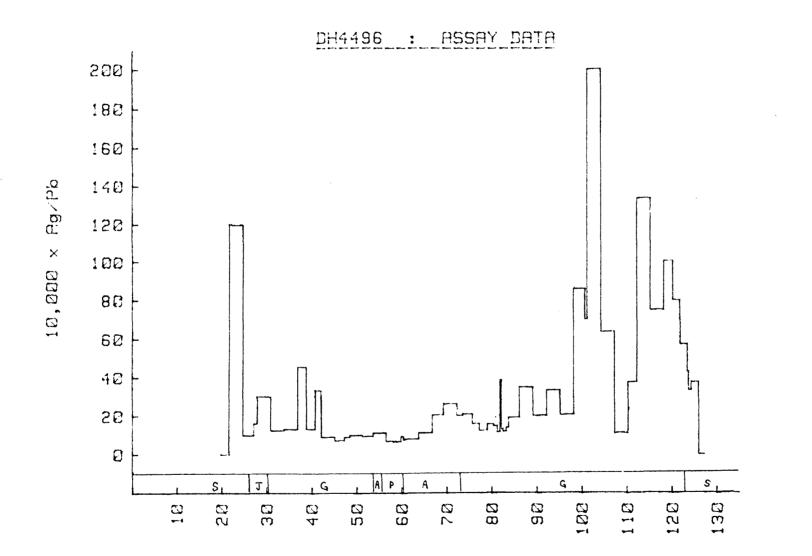
I.

 $\frac{1}{8}$ 


Depth (metres)

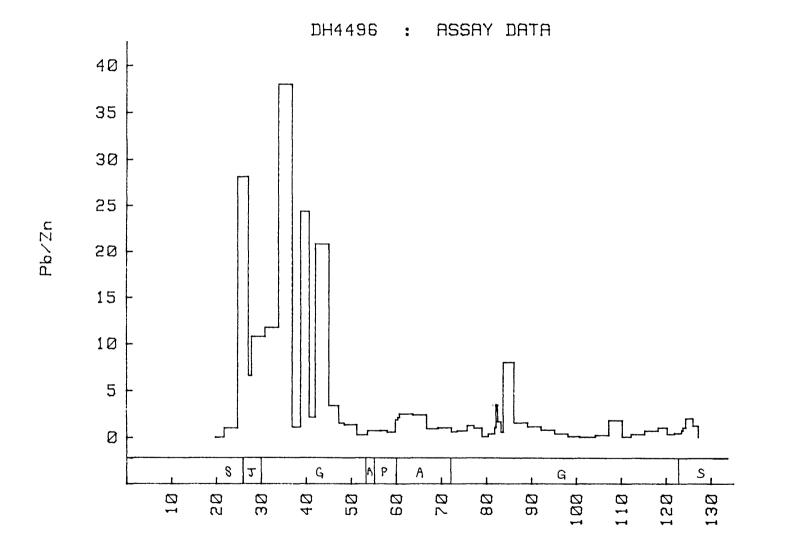


M


- 19

Depth (metres)



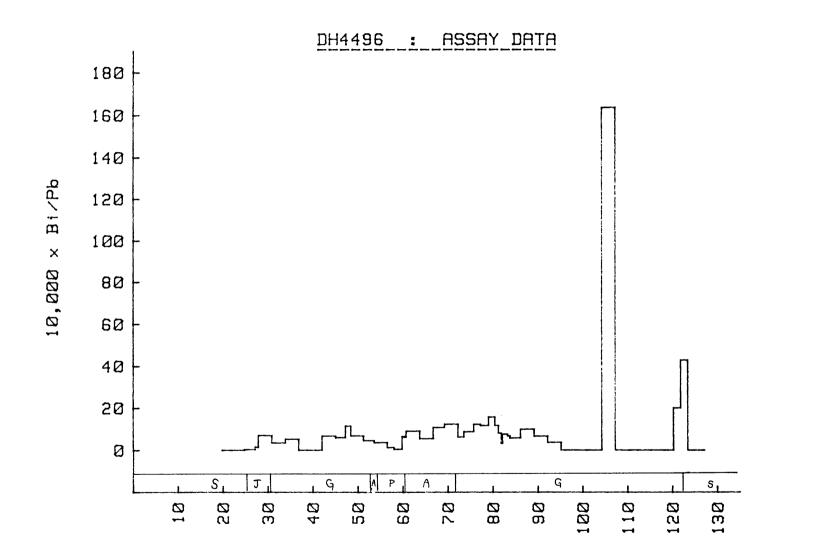

IV - 20

Depth (metres)



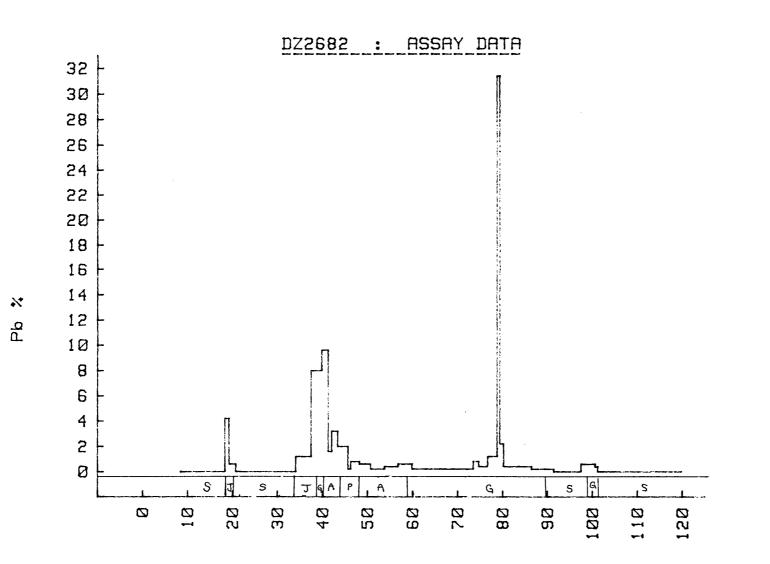
A

Depth (metres)



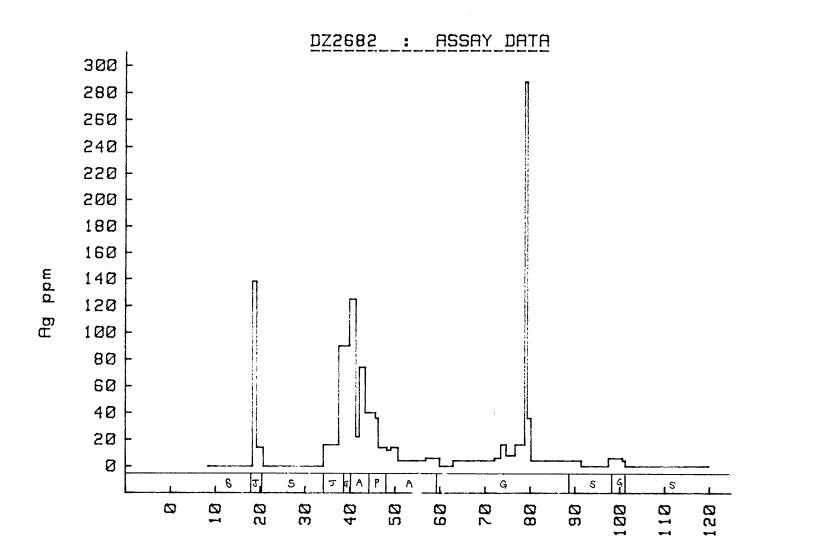

M

- 22


ç

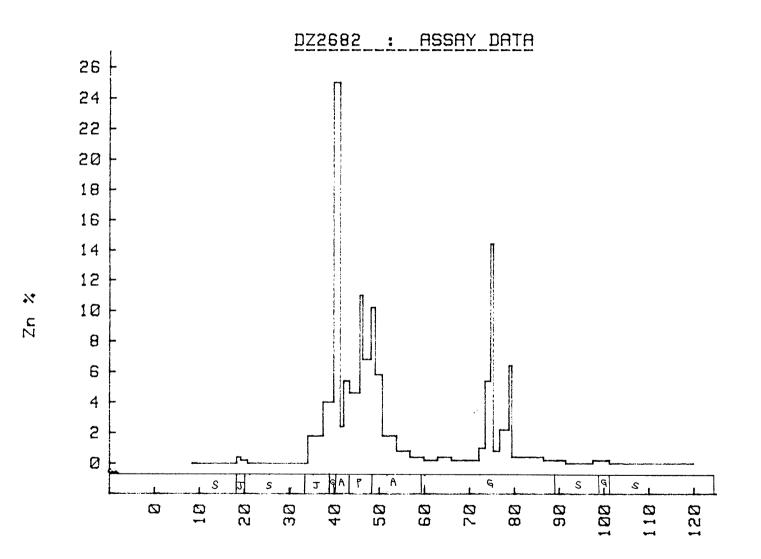
Depth (metres)





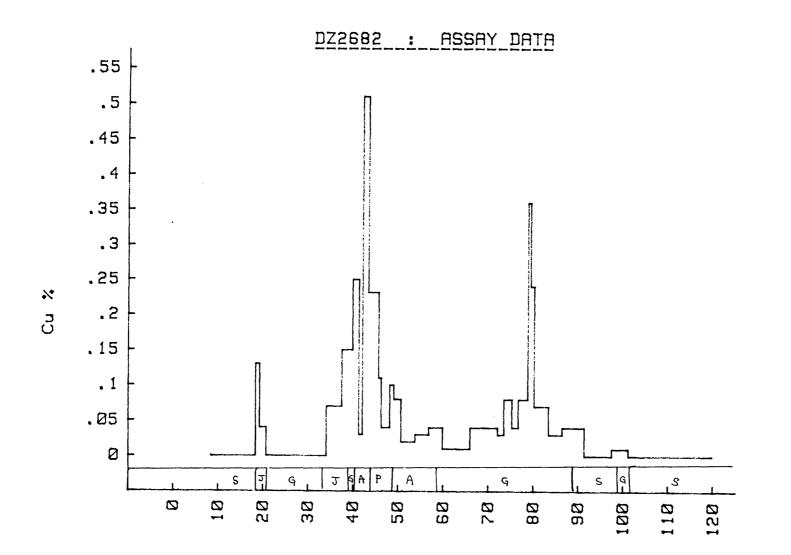

Depth (metres)




۸I

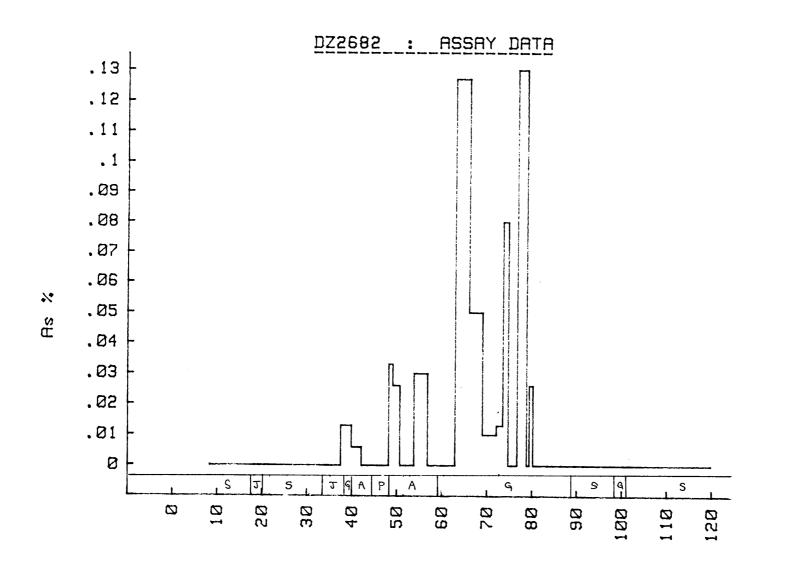
Depth (metres)




¥

Depth (metres)

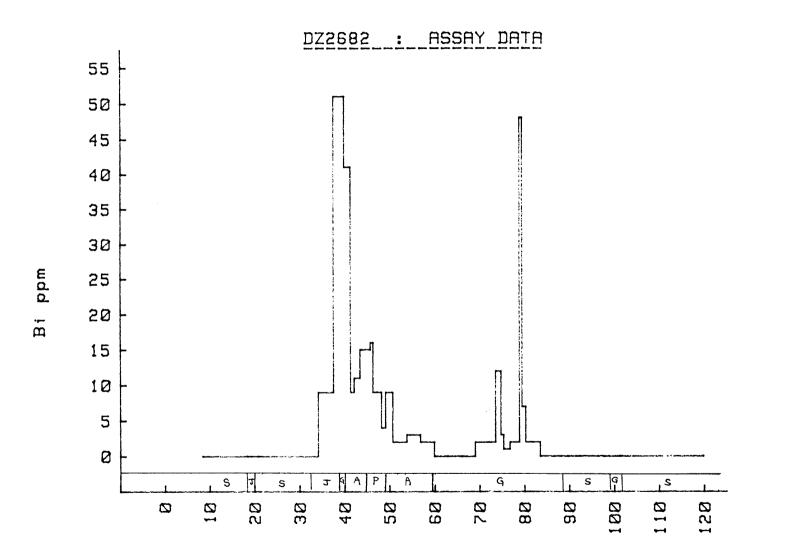



ΛT

Depth (metres)



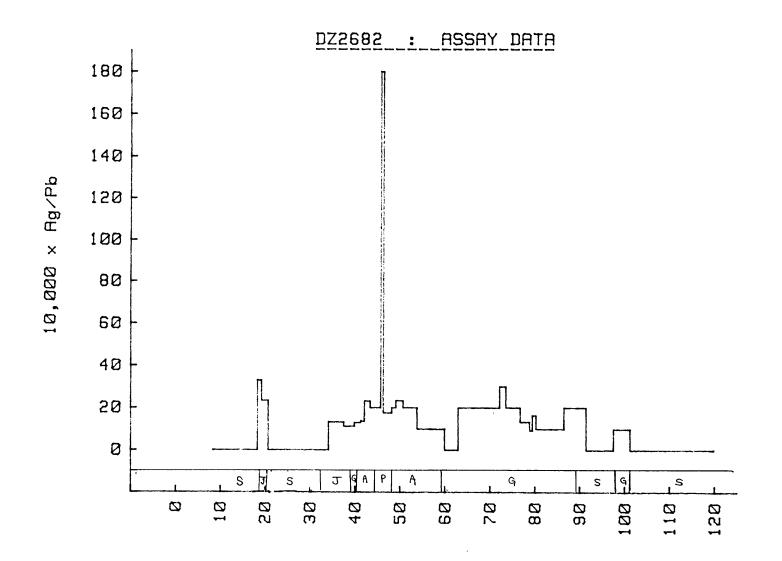



Depth (metres)



Depth (metres)

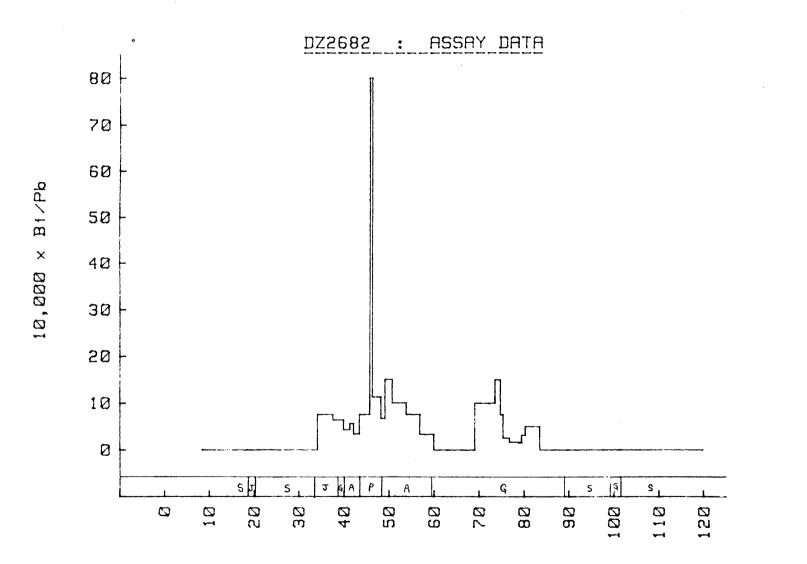
·W - 28


Appendix 4B cont.



 $\mathbf{VI}$ 

I


Depth (metres)

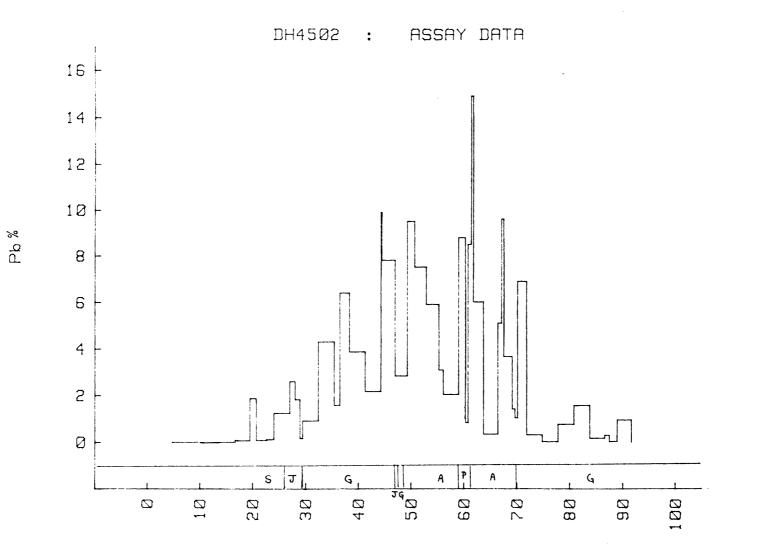


V

ŧ

Depth (metres)

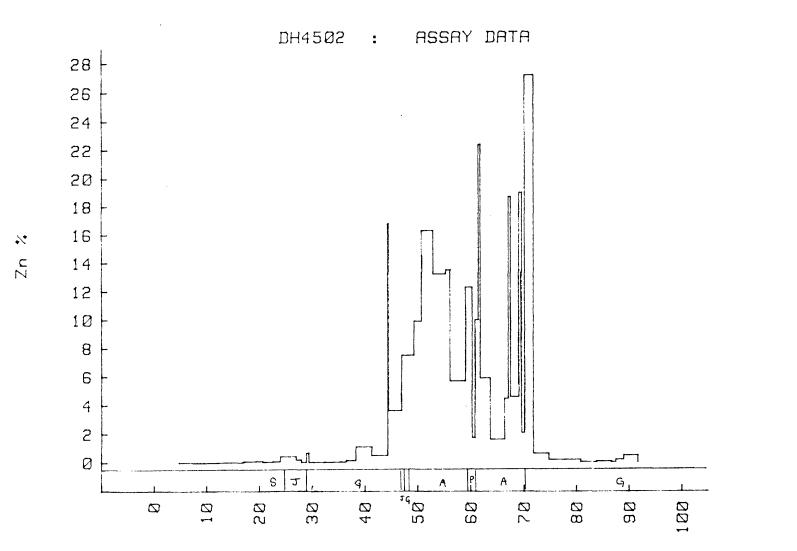



۸ī

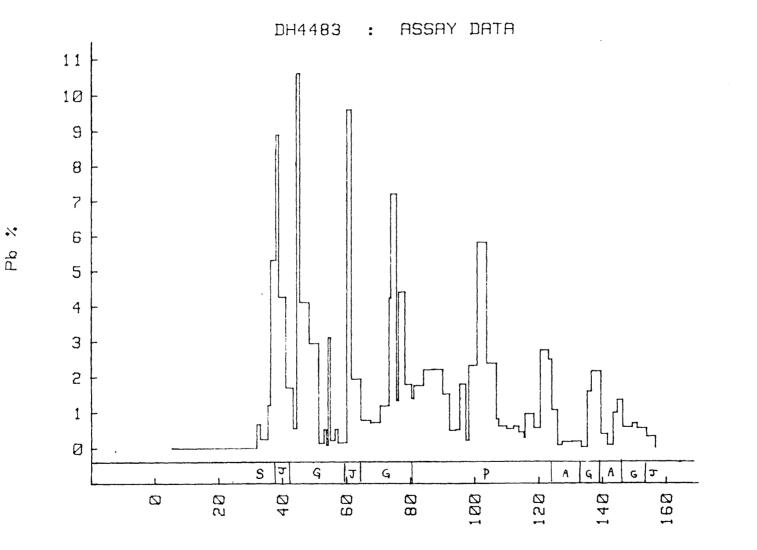
I

31

.


Depth (metres)

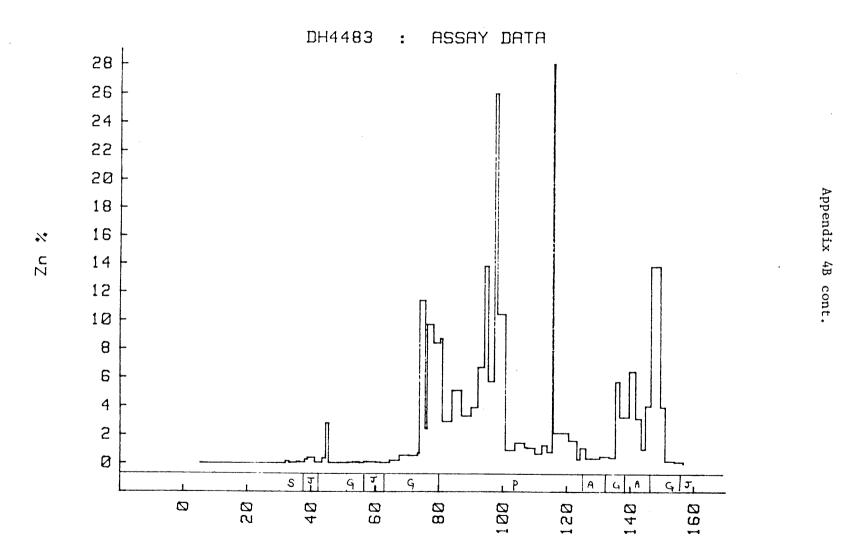



M

**-** 32

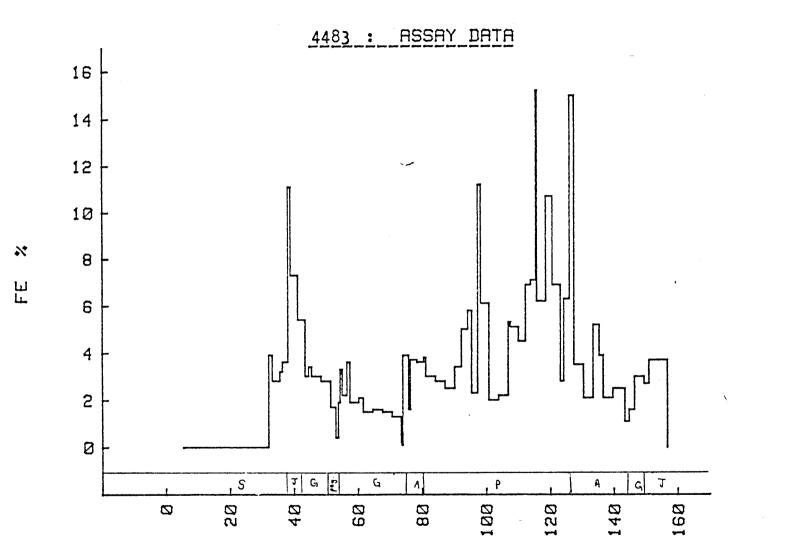
Depth (metres)




Depth (metres)



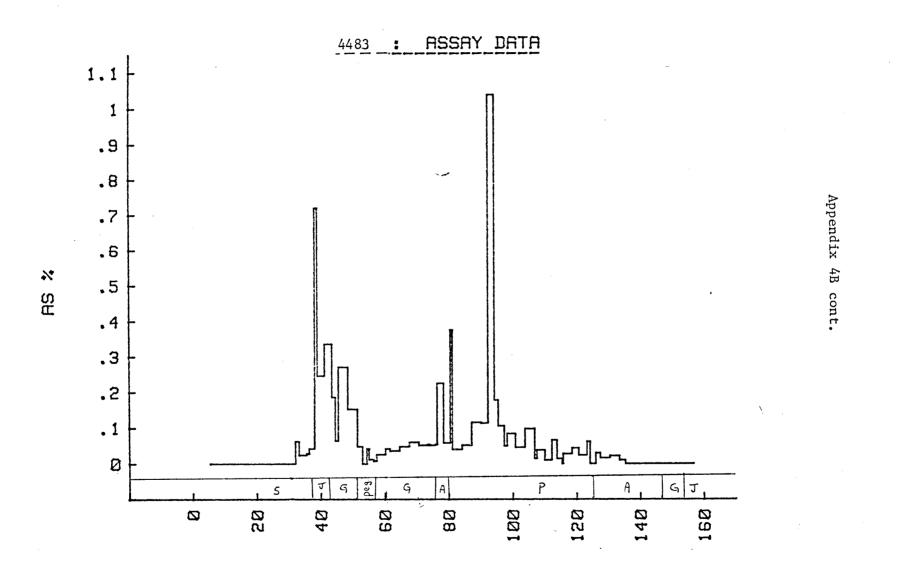
۲


I

Depth (metres)



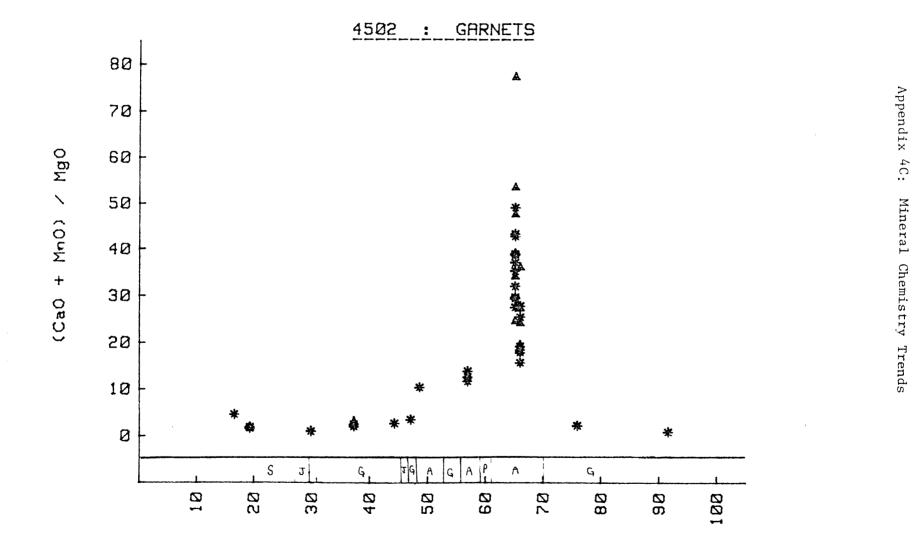
Depth (metres)


IV - 35



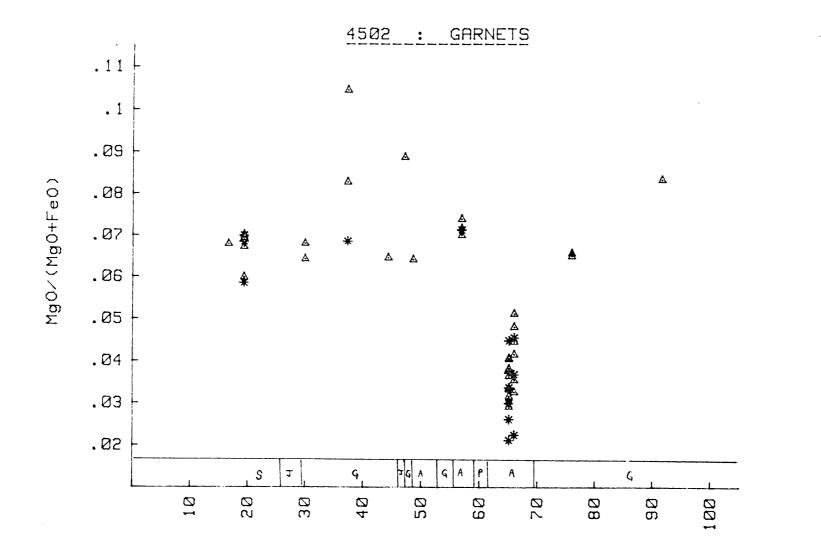
Depth (metres)

1


IV **-** 36

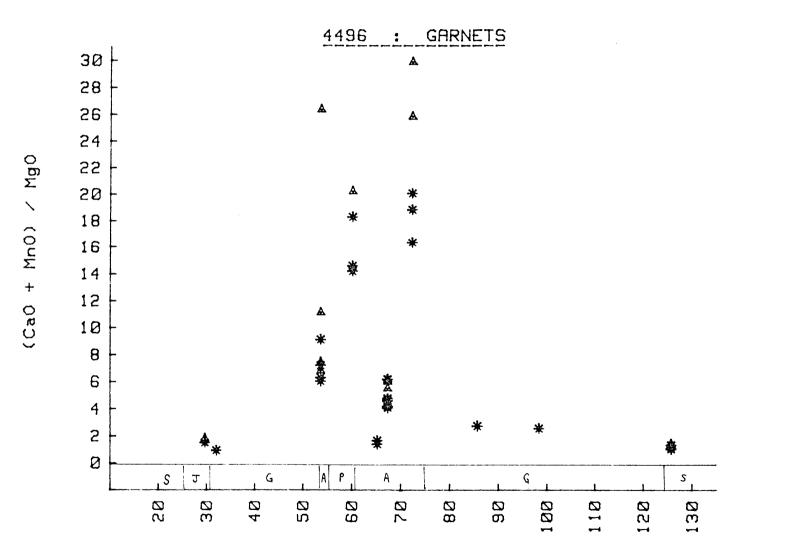


Depth (metres)


37


M

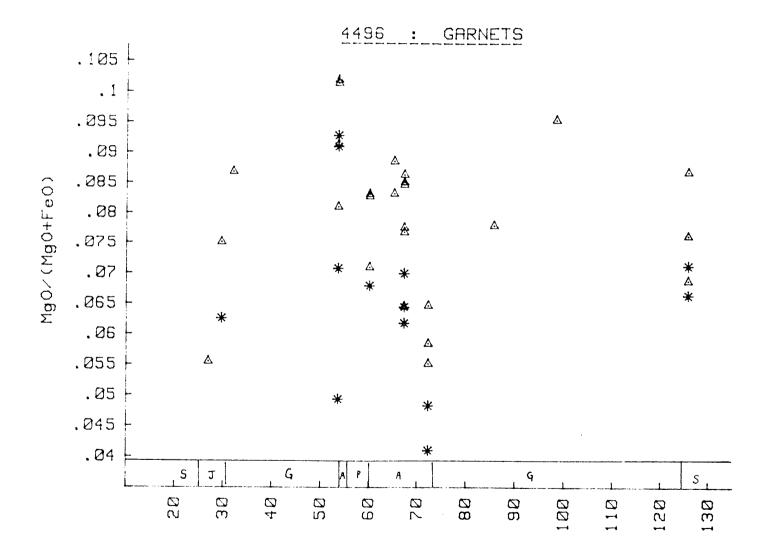



Depth (metres)

IV - 38

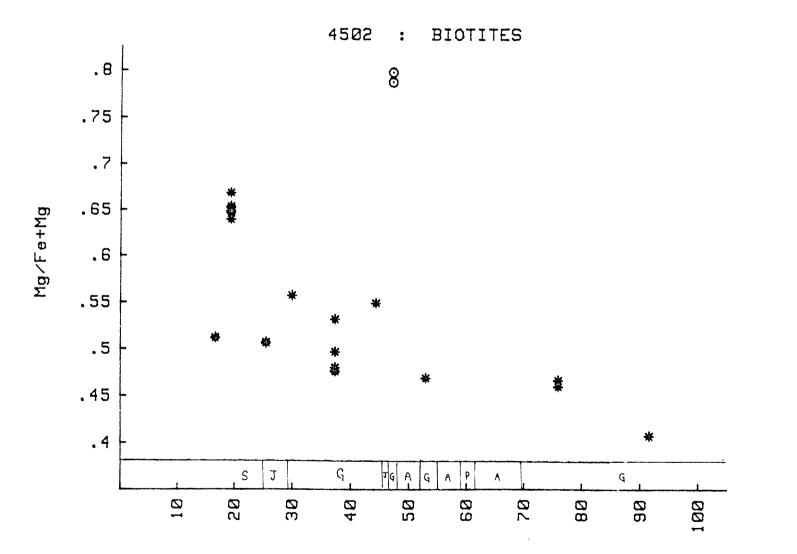





Depth (metres)



M


I

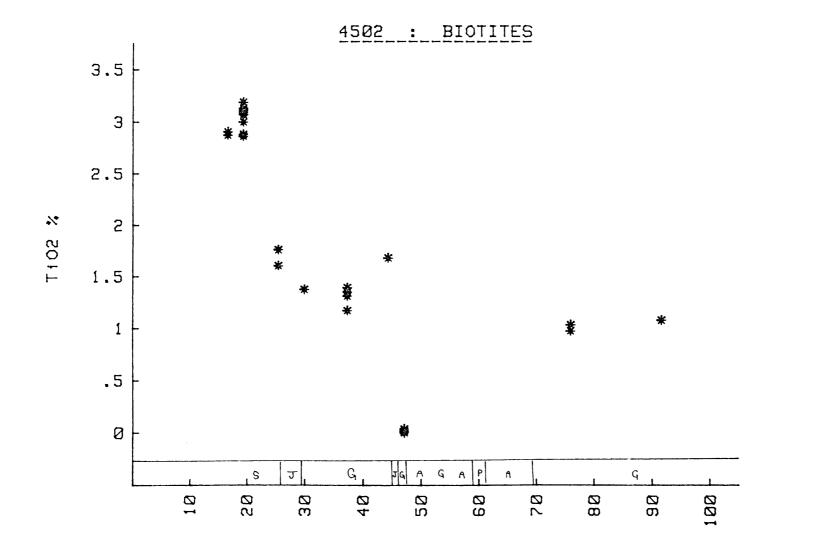
Depth (metres)

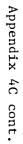



Appendix 4C cont.

Depth (metres)





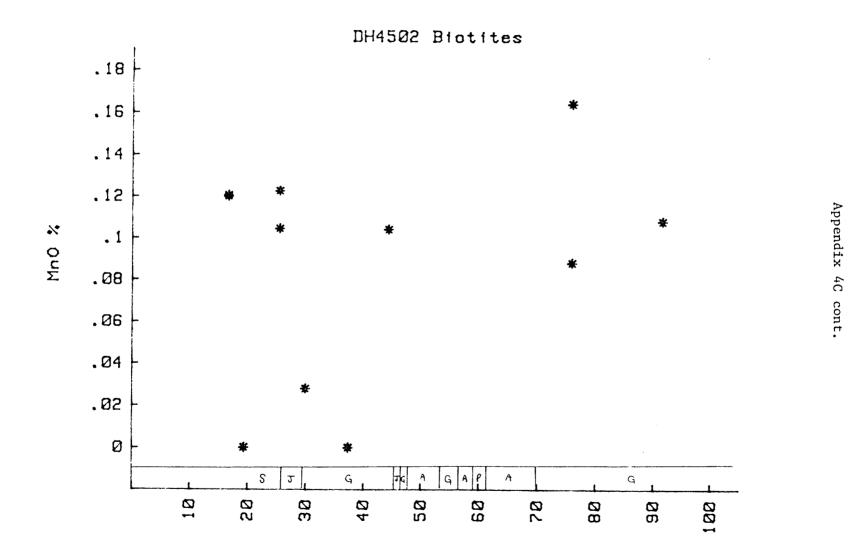


Depth (metres)



Appendix 4C cont.

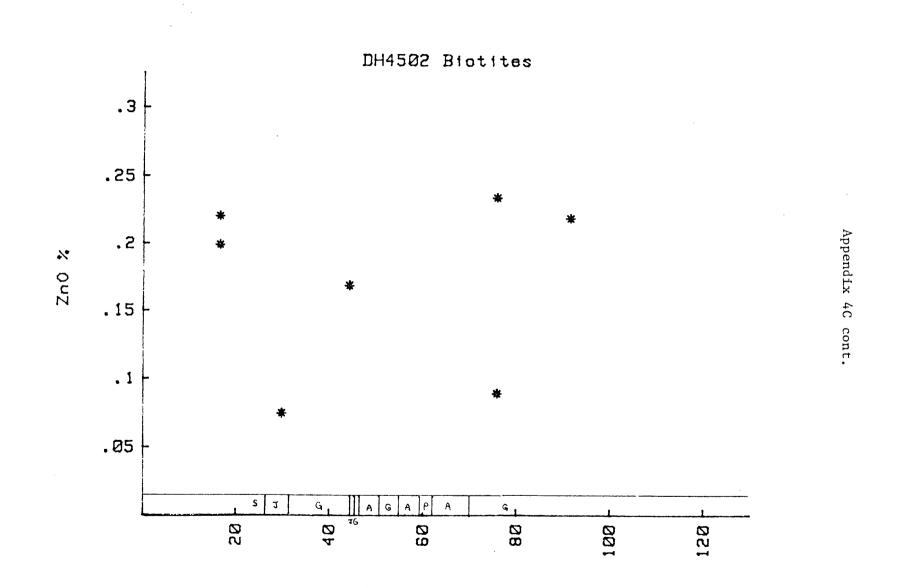
Depth (metres)





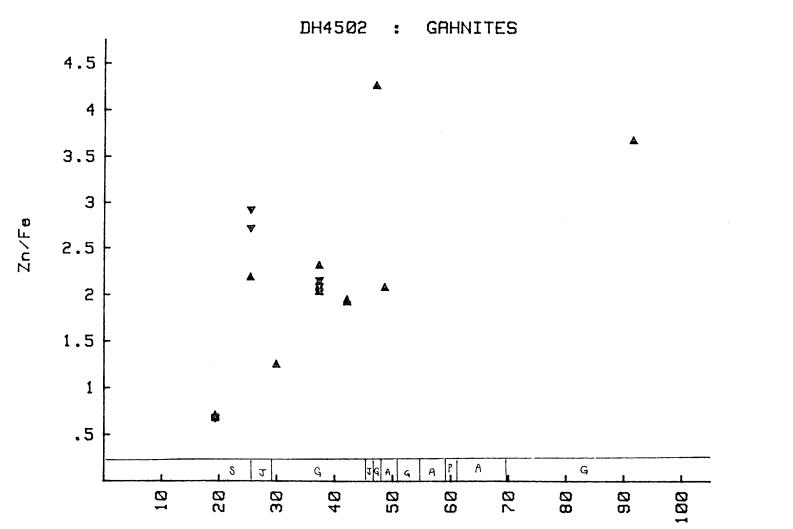

**é**~

11


1

Depth (metres)



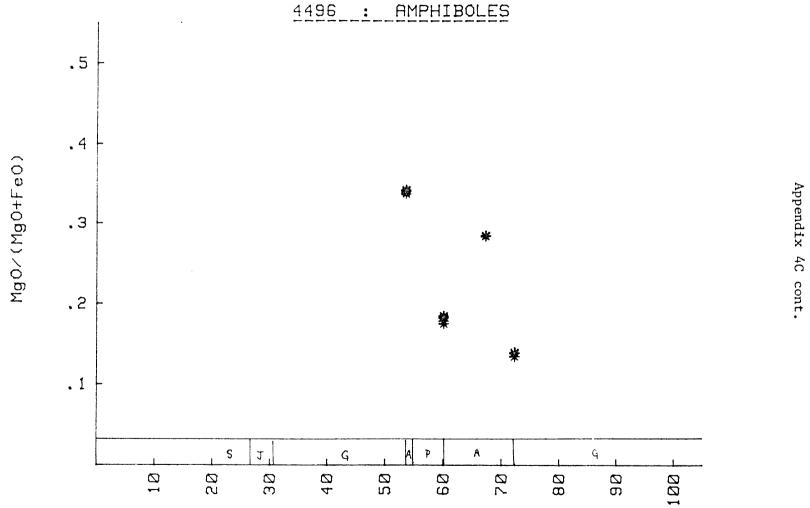

Depth (metres)

IV - 45



Depth (metres)

IV - 46




Appendix 4C cont.

¥

I

Depth (metres)



Depth (metres)

.

# APPENDIX V : RESULTS OF X-RAY DIFFRACTION ANALYSES OF PYROXENOIDS FROM VARIOUS PARTS OF THE WAL.

17 pyroxenoid-bearing samples from various parts of the WAL were analysed by X-ray Diffraction to determine the relative abundance of rhodonite and pyroxmangite in the WAL. The results are shown below. The XRD methods are described in Appendix 1, and the sample locations are discussed in Appendix II.

| Sample No.                      | Pyroxenoid                     |
|---------------------------------|--------------------------------|
| 1/7                             | Pyroxmangite                   |
| 2/1                             | Pyroxmangite                   |
| 2/1A                            | Pyroxmangite + rhodonite       |
| 2/5A                            | Pyroxmangite                   |
| 2/9A                            | Pyroxmangite                   |
| 2/9A (different part of sample) | Pyroxmangite + rhodonite       |
| 2/9В                            | Pyroxmangite + rhodonite       |
| 4478/62.8                       | Rhodonite                      |
| 4478/68.1                       | Rhodonite                      |
| 4483/116.1                      | Rhodonite + minor pyroxmangite |
| 4483/117.2                      | Pyroxmangite & minor rhodonite |
| 4526/89.2                       | Pyroxmangite & minor rhodonite |
| 4526/89.9                       | Rhodonite                      |
| 4526/90.6                       | Pyroxmangite                   |
| 4543/76.0                       | Rhodonite                      |
| 4543/76.0 (different part of)   | Pyroxmangite                   |
| 4610/68.1                       | Rhodonite                      |
|                                 |                                |

### In summary:

- 8 analyses indicate dominant pyroxmangite
- 6 analyses indicate dominant rhodonite
- 3 analyses indicate approximately equal amounts of rhodonite and pyroxmangite

### APPENDIX VI: PUBLICATIONS AND SUPPORTING DOCUMENTS

- A. BOTTRILL, R.S. 1983; Zincian staurolite from Broken Hill, N.S.W., Aust Mineral., 44, p.251-3.
- B. BOTTRILL, R.S. 1983; A manganaxinite-bearing assemblage from Broken Hill, N.S.W., <u>Aust.</u> <u>Mineral</u>, 44. p.254-255.
- C. Contributions to "<u>Minerals of Broken Hill</u>", H.K. WORNER and R.W. MITCHELL (eds.), 1983.



### ZINCIAN STAUROLITE FROM BROKEN HILL, NEW SOUTH WALES

R. S. Bottrill

W. S. & L. B. Robinson College, Broken Hill, N.S.W.

### ABSTRACT

Zinc-rich staurolite has been found in the Fe-Al-rich wallrocks of the Western A lode, Broken Hill, N.S.W. It appears to be restricted to retrograde shear zones of lower to middle amphibolite grade which transect the lower granulite facies ore-bearing metasediments. The staurolite largely drives from retrogressive breakdown of ferroan gahnite, a previously undescribed reaction, but biotite is also involved in the reaction. The zinc content of staurolite does not extend its stability range into the lower granulite facies.

### **INTRODUCTION**

The lead-silver-zinc deposits at Broken Hill, New South Wales lie within a sequence of volcano-sedimentary rocks, metamorphosed to the lower granulite facies (Plimer, 1979; Phillips, 1980). The metamorphism was complex, with at least two major prograde events and a prolonged retrogressive episode of amphibolite to greenschist grades (Harrison & McDougall, 1981; Phillips, 1980).

Staurolite has been noted previously from retrograde shear zones of the district (Vernon & Ransom, 1971; Corbett & Phillips, 1981) and recently also from the lode rocks (Spry, 1978; Birch et al., 1982). Although staurolite is a typical mineral in lower amphibolite grade rocks, zincian varities have been described from lower granulite facies assemblages (Nemec, 1980; Ashworth, 1975). As the P-T dependence of zinc in staurolite is unknown (Griffen, 1981), the Broken Hill occurrence is of considerable interest.

### **OCCURRENCE**

Staurolite is uncommon in the lode rocks, but is moderately abundant within retrograde shear zones intersecting the relatively iron and aluminium-rich wallrocks of the Western A lode, New Broken Hill Consolidated Mine (NBHC) from where specimens were obtained for this study. The wallrocks are gneisses and quartzites containing almandine  $\pm$  biotite  $\pm$  gahnite  $\pm$  sillimanite  $\pm$  orthoclase  $\pm$  sulphides. Local small sericite  $\pm$  chlorite-rich zones occur within both lode and wallrocks.

Staurolite in these rocks occurs as yellow-brown to red-brown, euhedral, slightly poikiloblastic and commonly twinned crystals from 0.01 to 2mm in size. Most coexisting phases have similar grainsize, but gahnite is usually coarser, ranging from about 0.2 to 4mm in diameter.

### **EDITORIAL**

The centenary of the Broken Hill mines in 1983 has been marked by a number of major events, notably the holding of the Gemboree in that city over Easter and the Australasian Institute of Mining & Metallurgy Conference in July. In the publishing area, the highlight has undoubtedly been *Minerals of Broken Hill*, a book which has received widespread praise.

Six years ago, the Australian Mineralogist devoted an issue to minerals from Broken Hill, as a memorial to the late Sir Maurice Mawby, whose devotion to their study was probably unsurpassed. The Editorial Board felt it was appropriate to mark the 100 year celebrations of Broken Hill in a similar way. This issue is again devoted to aspects of the orebodies' mineralogy, in particular to some new discoveries. We hope it will be a stimulus to other mineralogists to continue expanding the knowledge of Broken Hill minerals.

### editorial board

### **Bill Birch**

B.Sc. (Hons). Ph.D. Curator of Minerals, Rocks and Meteorites, National Museum of Victoria

### Don McColl

B.Sc., F.G.A.A. Lecturer at Canberra College of Technical and. Further Education

#### **Ralph Segnit**

M.Sc. (Adel.), Ph.D. (Camb.), M.Min. Soc. (London), F.Min. Soc. Amer Senior Principal Research Scientist Division of Mineral Chemistry C.S.I.R.O.

### Lin Sutherland

B.Sc. (Hons.), M.Sc.(Tas.), Curator of Minerals and Rocks, The Australian Museum — Sydney

### **Howard Worner**

C.B.E., D.Sc. (Meib.), Hon D.Sc. (Newcəstle), F.A.A., F.T.S., F.I.M., F.R.A.C.I. F.I.M.M., A.B.S.M. Member of Council, National Museum of Victoria

### editor & publisher ---

### **Cyril Kovac**

F.G.A.A. telephone 509 1611 (2 lines)

### address

### the Australian Mineralogist

Post Office Box 1071J, Melbourne, Vic., 3001

### editorial content

The contribution of articles and news items is welcomed, but all material is subject to the approval of the editorial board. Only articles of a technical or scientific nature will be published in the Australian Gem & Treasure Hunter. Responsibility cannot be accepted for loss or damage to contributions. Address all correspondence to the Editor, The Australian Mineralogist G.P.O. Box No. 1071J, Melbourne, 3001. The Australian Mineralogist is published in conjunction with Australian Gem & Treasure Hunter.



A euhedral staurolite crystal  $(0.5 \times 0.2 \text{ mm})$  containing relict gahnite (dark grey) in a matrix of garnet (mid grey, high relief), biotite (mid grey, mottled, with fine ilmenite) and quartz (light grey to white). Cross polarised light.

The staurolite appears to be in equilibrium with all phases except gahnite, and a typical assemblage is staurolite — quartz — almandine biotite  $\pm$  sillimanite  $\pm$  muscovite. Pyrrhotite, sphalerite and arsenopyrite may also be present in minor amounts. Gahnite, when present, usually shows some replacement by staurolite (Figs 1 & 2) and gahnite-free staurolite bearing assemblages are, in part, due to complete replacement of gahnite by staurolite.

### CHEMISTRY, X-RAY DIFFRACTION AND OPTICS

The compositions of several staurolites and coexisting minerals from the Western A lode were determined by electron microprobe and are shown in Table 1.

The staurolites contain small, but significant amounts of zinc, with a maximum of 4.27 wt. % ZnO. The average staurolite formula is  $(Fe_{2.7}Zn_{0.7}Mg_{0.6})_{4.0}Al_{1.7.3}Si_{7.9}O_{46}$ , which is closer to that of Griffen (1981) than that of Yardley (1981).

The gahnite is quite iron-rich, and iron may occasionally exceed zinc in some spinels of the Western A lode. The rim of gahnite shows Znenrichment and depletion in Fe and Mg. This is probably due to partial re-equilibration of gahnite and staurolite during retrogression, with preferential partitioning of Zn into gahnite, and Fe and Mg into staurolite.

Although trioctahedral micas may accommodate up to 23 wt% ZnO (in hendricksite, Frondel & Ito, 1966), the biotites in these assemblages contain only .33 wt% ZnO. Similarly, up to 10 wt% ZnO has been found in chlorites (Frondel & Ito, 1975), but < 0.42 wt% ZnO was found in chlorites of the Western A lode. One optically homogenous, low-alkali (1.3 K atoms / 22 oxygens) biotite in an NBHC sample contains 1.3 wt% ZnO (Table 1). This may be a mixed layer chlorite-biotite, as described by Mohr & Newton (1981).

The X-ray powder diffraction pattern for staurolite from sample No. 4496/29.6 was recorded on a Phillips Norelco diffractometer, using Cu/ Ni radiation and calibrated with a silicon external standard. The lattice parameters, refined from 18 lines and indexed on a monoclinic lattice with reference to ASTM file No. 15-397 using the method of Griffen (1981) are: a = 7.870A, b = 16.602A, c = 5.657A, B = 90.0° and V = 739.1A<sup>3</sup>. These unit cell dimensions are similar to other zincian staurolites (Griffen & Ribbe, 1973), but, as noted by Griffen (1981), other elemental substitutions prevent strictly linear correlation with the zinc contents. Electron microprobe analysis of staurolite from this sample indicates a range from 3.41 to 3.67wt% ZnO.

In this section, the staurolite appears biaxial positive, with a very large 2V. The pleochroism is  $\propto = /3 = \text{colourless}, \forall = \text{straw yellow, and}$  refractive indices are  $\propto = 1.740(5), /3 = 1.746(5)$  and  $\forall = 1.735(5)$ .



A gahnite porphyroblast (1.4x1.8mm) containing a garnet inclusion, with a replacement rim of fine to medium grained staurolite, in a matrix of gahnite (dark grey), garnet (mid grey), fine biotite (mottled grey), quartz (light grey to white) and galena (black). Party crossed polars.

| TABLE 1  | : COMPOSITIONS       | AND SIRUCIURAL     |
|----------|----------------------|--------------------|
| FORMULAE | <b>OF COEXISTING</b> | ZINC-RICH MINERALS |

| TORMOLAR          | 1      | 2      | 3      | 4      | 5     |
|-------------------|--------|--------|--------|--------|-------|
| 0:0               | 28.56  | 27.52  | .03    | .01    | 36.77 |
| SiO <sub>2</sub>  |        | .33    | .00    | .05    | 1.10  |
| TiO <sub>2</sub>  | .10    |        | 56.92  | 56.84  | 25.01 |
| $Al_2O_3$         | 51.90  | 51.30  | 13.27  | 14.60  | 17.78 |
| FeO               | 11.99  | 11.35  |        | .04    | .02   |
| MnO               | .10    | .13    | .06    |        | 8.82  |
| MgO               | 1.41   | 1.36   | 1.45   | 1.66   |       |
| Na <sub>2</sub> O | .13    | .10    | .87    | .81    | .21   |
| K <sub>2</sub> O  |        |        |        |        | 7.06  |
| ZnO               | 4.27   | 3.49   | 28.72  | 27.47  | 1.27  |
| Total             | 98.46  | 95.58  | 101.32 | 101.48 | 98.04 |
| Si                | 7.983  | 7.877  | .000   | .000   | 5.283 |
| Ti                | .022   | .072   | .000   | .001   | .119  |
| Al                | 17.106 | 17.316 | 1.972  | 1.965  | 4.237 |
| Fe                | 2.804  | 2.721  | .326   | .358   | 2.137 |
| Mn                | .023   | .032   | .002   | .001   | .003  |
| Mg                | .586   | .580   | .064   | .073   | 1.888 |
| Na                | .070   | .028   | .050   | .047   | .059  |
| K                 | .000   | .000   | .000   | .000   | 1.295 |
| Zn                | .882   | .738   | .624   | .595   | .135  |
| Oxygen            | 46.    | 46.    | 4.     | 4.     | 22.   |
| No. atoms         | 75.48  | 75.36  | 7.04   | 7.04   | 37.16 |
|                   |        |        |        |        |       |

1: Most zinc-rich staurolite analysed, sample 4496/26.9

2 : Average of nine staurolites, samples 4496/26.9,29.6,32.0 and 4502/29.9

3 : Gahnite rim, sample 4496/26.9

4 : Gahnite core, sample 4496/26.9

5 : Low-alkali or partly chloritized biotite, sample 4496/26.9

(Samples from NBHC drill hole No. 4496 at depth in metres indicated after /)

### DISCUSSION

Naturally occurring staurolites are frequently found to contain significant zinc (Griffen & Ribbe, 1973) and a complete series to the zincian end member was synthesized by Griffen (1981). The maximum ZnO content found in naturally occurring staurolite is, however, only 7wt.% (Griffen & Ribbe, 1973), and is rarely > 1 wt.%.

It has been suggested (Guidotti, 1970; Ashworth, 1975;) that zinc may stabilize staurolite to higher temperature and pressure, but there is no experimental evidence to confirm this. The partial to complete replacement of gahnite by staurolite (sometimes with coexisting muscovite) at Broken Hill indicates re-equilibration at T and P well below those of the original granulite conditions, due to locally high a<sub>H2O</sub> and suitable chemical conditions in the retrograde shear zones.

The breakdown of gabnite to staurolite has not been previously described, although illustrated by Spry (1978) in an unpublished thesis. The breakdown of zincian staurolite to gahnite or zincian hercynite during prograde metamorphism has, however, been noted by Stoddard (1979) and Spry (1978).

The actual reaction is uncertain and complex. Biotite is a common associate of staurolite and would balance the equation by the coupled reaction : FeSi  $\rightleftharpoons$  A1<sub>2</sub>. The reaction could thus be represented as:

Fe-gahnite + Fe-Si-biotite = Zn-staurolite + Al-biotite with preferential partitioning of Fe into staurolite and Zn preferentially remaining in gahnite.

#### ACKNOWLEDGEMENTS

The NBHC Mine kindly permitted collection and donated additional samples for this study. Dr. B. Griffen & Ms. S. Phillips provided invaluable assistance with electron microprobe analyses. Valuable discussions were contributed by Mr. D. Milton (NBHC Mines) and Dr. W.D. Birch is particularly thanked for the encouragement and review of this manuscript.

#### REFERENCES

Ashworth, J.R., 1975: Staurolite at anomalously high grade. Contrib. Mineral. Petrol., 53, 281-291.

Birch, W.D., Chapman, A. & Pecover, S.R., 1982: The Minerals in Worner, H.K. & Mitchell, R.W. (Eds.) Minerals of Broken Hill, 68-195, Australian Mining and Smelting Ltd., Melbourne.

Corbett, G.J. & Phillips, G.N., 1981: Regional retrograde metamorphism of a high grade terrain: The Willyama Complex, Broken Hill, Australia. Lithos, 14, 59-73. Frondel, C. & Ito, J., 1966: Hendricksite, a new species of mica. Amer. Mineral, 51, 1107-

1123. Frondel, C. & Ito, J., 1975: Zinc-rich chlorites from Franklin, New Jersey, with a note on chlorite nomenclature. *Neues Jahrb. Mineral Abh.*, 123, 111-115.

Griffen, D.T., 1981: Synthetic Fe/Zn staurolites, and the ionic radius of IV  $Zn^{2+}$ . Amer. Mineral., 66, 932-937.

Griffen, D.T. & Ribbe, P.H., 1973: The crystal chemistry of staurolite. Amer. J. Sci. 273-A, 479-495.

475-495. Guidotti, C.V., 1970: The mineralogy and petrology of the transition from the lower to upper silliminite zone in the Oquossoc area, Maine. J. Petrol., 11, 277-336. Harrison, T.M. & McDougall, I., 1981: Excess <sup>40</sup>Ar in metamorphic rocks from Broken Hill, NSW: implications for <sup>40</sup>Ar/<sup>39</sup>Ar age spectra and the thermal history of the region. Earth Planet. Sci. Lett., 55, 123-149. Mohr, D.W. & Newton, R.C., 1983: Kyanite — staurolite metamorphism in sulphide schists of 282 57.

the Anakeesta formation, Great Smokey Mountains, North Carolina. Amer. J. Sci., 283, 57-134.

Nemec, Von D., 1980: Zinkhaltinger staurolith aus den Leptyniten der Blanicer Furche und aus ubrigen Moldanubikum der Bohmisch – Mahrischen Hohe (CSSR). Chem. Erde., 39. 311-320

Phillips, G.N., 1980: Water activity changes across an amphibolite -- granulite facies transition,

Broken Hill, Australia. Contrib. Mineral. Petrol., 75, 377-386. Plimer, I.R., 1979: Sulphide rock zonation and hydrothermal alteration at Broken Hill, Australia. Trans. Inst. Mining Met., Sect. B., 88, 161-176.

Spry, P.G. 1978: The geochemistry of garnet-rich lithologies associated with the Broken Hill orebody, NSW, Australia. MSc thesis, Univ. Adelaide (unpub.).

orebody, NSW, Australia. MSc thesis, Univ. Adelaide (unpub.). Stoddard, E.F., 1979: Zinc-rich hercynite in high-grade metamorphic rocks: a product of dehydration of staurolite. *Amer. Mineral.*, 64, 736-741. Vernon, R.H. & Ransom, D.M., 1971: Retrograde schists of the amphibolite facies at Broken Hill, New South Wales. *J. geol. Soc. Aust.*, 18, 267-277.

### A NOTE ON VESUVIANITE FROM THE ZINC CORPORATION MINE, **BROKEN HILL, NEW SOUTH WALES**

### W. D. Birch

Department of Mineralogy & Petrology National Museum of Victoria 285 Russell Street, Melbourne, Victoria, 3000

### ABSTRACT

Rounded greenish brown grains of vesuvianite up to 6mm across have recently been found in calcite-rich ore from the Zinc Corporation Mine. The occurrence of this vesuvianite as a prograde gangue mineral contrasts with previously recorded vesuvianite from Broken Hill, which was regarded as having crystallized under late-state retrograde conditions. Microprobe analyses of both types are presented.

Vesuvianite was first reported from No. 2 lens ore at Broken Hill by Stillwell (1959), but without description. Since then, specimens have been collected occasionally, usually as brownish bladed masses (Plimer. 1982; Birch et at, 1982) associated with coarse-grained sulphides.

Amongst a large collection of Broken Hill minerals recently donated to the National Museum of Victoria by Dr. Ian Plimer was a small specimen of calcite-rich ore from No. 2 lens, on 20 level of the Zinc Corporation Mine. The piece consisted of an aggregate of polygonal white calcite grains containing scattered rounded grains up to 6mm across of a greenish-brown vitreous mineral, which was identified by Xray diffraction as vesuvianite. Small grains of sphalerite were also present.

A second specimen in the same Broken Hill collection consisted of a bladed mass of dark reddish brown vesuvianite crystals up to 7 cm long. associated with a compact hedenbergite-quartz-vesuvianite rock. This was collected from the 19 level of the Zinc Corporation Mine. A small area of euhedral green hedenbergite crystals with a thin 'sturtite' crust occurred on this specimen.

Both vesuvianite specimens were analysed by electron microprobe (Table 1). The greenish-brown vesuvianite in the calcitic ore has a lower Fe/Mg ratio, and negligible Ti, in contrast to the reddish brown variety. which has 1.0% TiO<sub>2</sub>. Both these factors may be responsible for the colour difference. Fluorine contents are similar in both (1.8% F), but C1 is absent from the greenish brown vesuvianite. The hedenbergite crystals coexisting with the reddish brown vesuvianite contain only 2.0% MnO (less Mn than Mg on a cation percent basis). The 'sturtite' is Fe-rich. Previous analyses of vesuvianite (Plimer 1982) show similar Fe, Mg, Mn and F contents to those of the reddish brown crystals described

Vesuvianite may be more widespread in the calcite-rich No. 2 lens ore in the Zinc Corporation than previously thought and may have some importance as a primary, i.e. prograde fluorine-rich mineral. All previously described vesuvianite has been regarded as having crystallized during late-stage retrograde metamorphism (e.g. Plimer, 1982) in the presence of fluorine-enriched fluids.

Localized higher fluorine activities may have determined whether vesuvianite formed in preference to grossular as a prograde mineral in the calcitic ore in No. 2 lens.

### ACKNOWLEDGEMENTS

The microprobe analyses were carried out in the Geology Department, University of Melbourne.

To whom it may concern,

I acknowledge that Ralph Bottrill has contributed significantly to the chapters of the book 'Minerals of Broken Hill', edited by H.K. Worner & R.W. Mitchell, that I was a principal author to; in particular to the following sections:

> Albite p. 72 Algodonite p. 72 Ankerite p. 78 Aurichalcite p. 81 Axinite p. 82 Birnessite p. 88 Cryptomelane p. 112 Hollandite p. 130 Hydrozincite p. 130 Jacobsite p. 133 Monazite p. 146 Prehnite p. 148 Psilomelane p. 148 Romanechite p. 171 Seligmannite p. 171 Sphalerite p. 184 Wurtzite p. 194

and was also joint author of the addendum (following page).

### Signed:

Dr. W.D. Birch, Curator of Minerals, rocks and meteorites, National Museum of Victoria.

# ADDENDUM

,

Bill Birch, Ralph Bottrill, Ian Plimer

### ADDITIONAL MINERAL DESCRIPTIONS

Since publication of the first edition of 'Minerals of Broken Hill', new mineralogical data have been accumulated, including evidence to support the finding of at least five species previously unrecorded at Broken Hill. Much of the new information reported here has been gathered by Ralph Bottrill during studies on the western A lode ore, NBHC. The following notes should be read in conjunction with Chapter 8.

#### ACTINOLITE, manganoan

Dark green actinolite crystals from the western part of A lode, NBHC, contain up to 5.7% MnO. The mineral is a product of the breakdown of pyroxmangile.

#### BINDHEIMITE

Bindheimite is a lead-antimony hydroxy oxide not a hydrous lead sulphate as stated in Chapter 8.

#### BISMUTH

Rounded inclusions of bismuth, up to 0.1 mm across, occur rarely in galena grains from 21 level of the NBHC Mine. The mineral was identified recently in drill core from within 100 metres of the southern extremity of the lead lode (Milton, pers. comm., 1983).

### BOLEITE

The reference by Winchell & Rouse (1974) to an old Broken Hill specimen labelled percylite and subsequently identified as boleite, is in error, as is the reference to the American Museum of Natural History in Washington. The actual mine, according to the original label with the specimen, is the Beltana Broken Hill Mine, South Australia and the specimen in question is in the collection of the National Museum of Natural History -Smithsonian Institution (Mason, pers. comm., 1983).

## DIOPSIDE, manganoan (see also schefferite)

Recent microprobe analyses of dark green to near black pyroxenes from western A lode ore, NBHC, reveal unusually high magnesium contents for Broken Hill pyroxenes. The compositions range from magnesian manganoan hedenbergliet to manganoan diopside close to Ca<sub>0.6</sub>Mg<sub>-...</sub>Mg<sub>-...</sub>Mg<sub>-...</sub>Sr<sub>..</sub>O<sub>6</sub>

GRUNERITE

A recent microprobe analysis of an cummingtonite-group amphibole from western A lode ore in NBHC plots in the grunerite field (see Fig. 8.4). The mineral was associated with sulphides and chlorite.

#### HERCYNITE

Dark green to black spinel crystals from wall rocks within western A lode, NBHC Mine, contain up to 63 mol % of the hercynite end member.

#### ORTHOCLASE-MICROCLINE

Additional X-ray diffraction analysis on green lode feldspar from NBHC indicates that some is orthoclase. This suggests there may be a continuous series of structural states between orthoclase and minimum microcline in these feldspars at Broken Hil.

#### PARAGONITE

Some of the fine-grained alteration products around gahnite crystals from western A lode rocks in NBHC have been shown by microprobe analysis to be paragonite, not sericite.

#### PERCYLITE (see BOLEITE)

#### Roepperite

Microprobe analysis of the 'type' specimen of Broken Hill roepperite (Birch, in press) gave a maximum ZnO content of 0.34 wt%. Seven other specimens of so-called roepperite from the ZC & NBHC Mines have also been analysed, with only small amounts of zinc (<0.5% ZnO) detected. Roepperite can therefore be regarded as unsubstantiated at Broken Hill RHODOCHROSITE, zincian

Microprobe and X-ray diffraction analysis have recently been carried out on NMV specimens consisting of lawn to yellowish and honey-brown botryoidal carbonate minerals on concretionary goethite. The compositions lie in the range zincian rhodocrosite (Mn/Zn – 7) to manganoan smithsonite (Mn/Zn – 0.6). Smail amounts of Pb and Cu are present and only traces of Ca and Mg; Fe is absent (Birch, unpub. data).

### SAFFLORITE

X-ray diffraction and microprobe analysis of a number of specimens labelled satflorite reveal them to loellingite (Birch, unpub, data). The status of satflorite is now in doubt at Broken Hill.

#### SCHEELITE

Recent observations have shown that the spessartine-grossular garnet 'sandstone' on the edge of the lead lode, 20 level, NBHC Mine, contains up to 2% of Mo-poor scheelite as tension gash fillings up to 3mm wide and 15 cm long (Plimer, unpub. data).

#### Schefferite

A dark red-brown cleavage block labelled schefferite (i.e. manganoan diopside) from the Australian Museum collection has been determined as bustamite by electron microprobe analysis and X-ray diffraction (Plimer, unpub. data).

#### SMITHSONITE, manganoan (see RHODOCHROSITE, zincian)

#### STAUROLITE, zincian

Staurolite crystals up to 2 mm across and yellowish to reddish brown in colour are associated with garnet, biotite and occasional sulphides in marginal western A lode rocks in the NBHC. The staurolites contain up to 4.5% ZnO (Bottrill, in press).

#### TIRODITE

Additional microprobe analyses of cummingtonite series amphiboles in western A tode ore from NBHC has extended the known composition range (see Fig. 8.4) to the tirodite field.

UNKNOWN Cu, Zn, Ca SULPHATES

Rare small, pale blue, hexagonal (?) platy crystals and deeper bluish green transparent prisms, have recently been found encrusting leached galena from outcrops in the old Block 10 leases. They contain major Cu, Zn, Ca, and S and may be related to devilline and ktenasite

#### ERRATA

Page 29, line 33 second column: Ecandrewsite is a zinc analogue of ilmenite, not a zinc spinel.

Page 33, fifth last line, first column: 'purchased by' should read 'donated to'

Page 34, line 18, first column: Albert Campbell should read Arthur Campbell.

Page 35, line 13, second column: Gordon Campbell and Geoff Lithglow of Broken Hill should be added to the list of important collectors

# APPENDIX VII : ABBREVIATIONS

د

| <sup>a</sup> H20 | : | Water activity                    |
|------------------|---|-----------------------------------|
| BIF              | : | Banded iron-formation             |
| NBHC             | : | New Broken Hill Consolidated Mine |
| <sup>Р</sup> ң20 | : | Partial pressure of water         |
| PPL              | : | Plane – polarised light           |
| P T              | : | Total pressure                    |
| PXPL             | : | Partly-crossed polarised light    |
| RSZ              | : | Retrograde shear zone             |
| WAL              | : | Western A-Lode                    |
| XPL              | : | Cross-polarised light             |
| ZC               | : | Zinc Corporation                  |
|                  |   |                                   |

Mineral Symbols (largely from Kretz (]983)

| Alm  | : | Almandine   |
|------|---|-------------|
| Amph | : | Amphibole   |
| Bt   | : | Biotite     |
| Gah  | : | Gahnite     |
| Gn   | : | Galena      |
| Po   | : | Pyrrhotite  |
| Pxn  | : | Pyroxenoid  |
| Q    | : | Quartz      |
| Sil  | : | Sillimanite |
| S1   | : | Sphalerite  |
| Sps  | : | Spessartine |

### APPENDIX VIII

10 I "SELXP:H9" R.BOTTRILL 20 ! 30 I REVISED FROM "SELECT" :16/11/83 40 ١ 50 ţ PROGRAM TO SELECT PROBE DATA & PRINT MINERAL COMPOSITION AND FORMULA 60 1 (up to 10 Files, 200 analyses and 15 elements) 70 1 80 1 90 OPTION BASE 1 100 DIM Item\$(15)[6],Heading\$[80],Elv(30,200),Value(15),Tot(13),Mwgt(15),Oxrat (15), Mole(15), Oxprop(15), Ncations(15), Nanions(15), Element\$(15)[9] DIM Cations (15), Anions (15), Elvt (34), Sample \$ (200) [12], Mineral \$ (200) [12], Fa \$ 110 (10,200) [8],Fyl(10),Ja(10),V(12) 120 SHORT Atomsum 130 INTEGER I, N, Ne, Nel, Ne2, Ne3, Ne4, An, Nj, N5, Neav, Ij, Aj, F, A, Fi, Aji PRINT "SELXP : SELECTS PROBE ANALYSES AND CALCULATES FORMULAE & AVERAGES 140 ... PRINT "(up to 10 Files, 200 analyses and 15 elements)" 150 PRINT "ASSUMES 1st 7 elements are: Si, Ti, Al, Fe2+, Mn2+, Mg, Ca" 160 PRINT "Any others may follow." 170 180 1 190 Rerun:LINPUT "HEADING ?", Heading\$ 200 An=0 210 Anal\$="" 220 Set=0 230 FOR Fi=1 TO F FOR Aji=1 TO Ja(F) 240 Fa\$(Fi,Aji)="" 250 260 NEXT Aji 270 NEXT Fi 280 F=0 290 MAT Elv=ZER(30,200)PRINTER IS 16 300 310 GOTO Linpf 320 1 330 LOAD FILE 1 340 1 350 Linpf: LINPUT "FILE NAME ?, CONT for same, OR 0 TO STOP ?", File\$ IF File\$="" THEN File\$=Oldfile\$ 360 IF File\$="0" THEN File 370 IF Anal\$="N" THEN Ja(F)=Aj 380 390 F=F+1400 Fyl\$(F)=File\$ 410 Aj=0 420 ON ERROR GOSUB Error 430 ASSIGN #1 TO File\$&"A:H9" ! MAIN DATA FILE 440 ASSIGN #2 TO File\$&"B:H9" ! INFO FILE 450 READ #2;Ni,Nemax,Unf REDIM Item\$(Nemax),Value(Nemax) 460 470 READ #2; Item\$(\*) 480 OFF ERROR IF Anal\$<>"N" THEN Singl 490 500 FOR Nx=1 TO Nemax 510 IF Lastitems\$(Nx) <> Item\$(Nx) THEN Incomp 520 NEXT Nx GOTO Forsets 530 540 1 550 Incomp: PRINT "THIS FILE IS INCOMPATIBLE WITH ";Oldfile\$ INPUT "YOU MAY EITHER: try to continue anyway (1); select another file (2) 560 ; or stop and print (3)", Inc

570 ON Inc GOTO Forsets, Linpf, File 580 1 590 SINGLE ANALYSES ! 600 1 INPUT "Press CONT for a single analysis, or lCONT for a series 610 Singl: of analyses",Set 620 IF NOT Set THEN Notset 630 Av=0INPUT "CALCULATE AVERAGE OF SERIES ? ( CONT /N)", Cas\$ 640 650 IF Cas\$<>"N" THEN Av=1 660 IF File\$=Oldfile\$ THEN Oxno !!!!! IF Oldfile\$<>"" THEN De=8 670 IF Oldfile\$<>"" THEN Ifde 680 690 GOTO Dataline 700 1 710 1 SINGLE ANALYSES 720 1 730 Notset: An=An+1 740 Ian: INPUT "ANALYSIS No. ?",I 750 GOSUB Reads 760 IF File\$=Oldfile\$ THEN Oxno!!!!! STILL PROBLEMS 770 IF NewfS<>"" THEN De=8 IF Newf\$<>"" THEN Ifde 780 790 1 \*\*\*\*\* 800 1 DATA ON ATOMIC WEIGHTS, etc \*\*\*\* 810 1 820 Dataline: DATA 60.09,1,2,79.9,1,2,101.94,2,3,71.85,1,1,70.94,1,1,40.32,1, ,56.08,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 830 De=1 IF (Item\$(1)="DEPTH") OR (Item\$(1)="Depth") THEN De=De+1 840 Ifde: 850 FOR Nj=De TO Nemax 1 DETERMINE MOLECULAR WEIGHTS ETC. 860 IF Newf\$<>"" THEN Ifmw 870 READ Mwgt(Nj) 880 READ Cations (Nj), Anions (Nj) 890 Ifmw: IF Mwgt(Nj)<>0 THEN Ornj IF Item\$(Nj)="NA20" THEN Na 900 IF (Item\$(Nj)="K2O") OR (Item\$(Nj)="K2O") THEN K 910 IF Item\$(Nj)="ZNO" THEN Zn 920 IF Item\$(Nj)="CL" THEN C1 930 IF Item\$(Nj)="F" THEN F 940 950 GOTO Inputmwgt 960 Na: Mwqt(Nj)=60.98 970 Anions(Nj)=1 980 Cations(Nj)=2 990 GOTO Ornj 1000 K: Mwgt(Nj)=94.2 1010 Anions(Nj)=1 1020 Cations(Nj)=21030 GOTO Ornj 1040 Zn: Mwgt(Nj)=81.31 1050 Anions(Nj)=1 1060 Cations(Nj)=1 1070 GOTO Ornj 1080 Cl: Mwgt(Nj)=35.5 1090 Anions (Nj) = -.51100 Cations(Nj)=1E-20 1110 GOTO Ornj 1120 F: Mwgt(Nj)=19.00 1130 Anions (Nj) = .51140 Cations(Nj) = 1E-20

```
GOTO Ornj
1150
1160
         I.
1170 Inputmwgt: PRINT "MOL. WGT., No. CATIONS and No. ANIONS IN "&Item$(Nj)&" ?'
         INPUT "?",Mwgt(Nj),Cations(Nj),Anions(Nj)
1180
             Oxrat(Nj)=Anions(Nj)/Cations(Nj)
1190 Ornj:
1200 NEXT Nj
1210
1220 ! LABEL ELEMENTS
1230
     1
1240 De=1
1250 IF (Item$(1)="DEPTH") OR (Item$(1)="Depth") THEN De=2
1260 FOR Ne3=De TO Nemax
        Pos2=POS(Item$(Ne3),"2")
1270
1280
        Element (Ne3) = Item $ (Ne3) [1,2]
1290
        IF Pos2=2 THEN Element$(Ne3)=Item$(Ne3)[1;1]
1300 NEXT Ne3
1310
     1
1320
     1
1330 IF Item$(5) <> "FE2O3" THEN Oxno !!!!!!
1340 Mwqt(5)=159.70
1350 Cations(5)=2
1360 Anions(5)=3
1370 Oxrat(5)=1.5
1380
     1
1390 Oxno: INPUT "NO. OF OXYGENS IN MINERAL FORMULA ?", NOX
1400 Forsets: IF Set THEN GOSUB Sets
1410 IF Set THEN GOTO File
1420 GOSUB Ratios
1430 GOTO Display
1440 !
1450 !
             CALCULATE ELEMENT RATIOS
1460
     1
1470 Ratios: Oxsum=0
1480 FOR Nel=De TO Nemax
        Mole(Nel)=Value(Nel)/Mwgt(Nel) ! MOLECULAR PROPORTIONS OF CATIONS
1490
        Oxprop(Nel)=Mole(Nel)*Anions(Nel) ! MOLECULAR PROPORTIONS OF ANIONS
1500
1510
        Oxsum=Oxsum+Oxprop(Nel)
1520 NEXT Nel
1530 Factor=Nox/Oxsum
1540 Atomsum=0
1550 FOR N=De TO Nemax
                                         ! CALCULATE FORMULA
1560
        Nanions(N) = Factor*Oxprop(N)
1570
        Ncations (N) = Nanions (N) / Oxrat(N)
1580
        N2=Nemax+N
1590
        Elv(N2,An)=Ncations(N)
1600
        Atomsum=Atomsum+Nanions(N)+Ncations(N)
1610 NEXT N
1620 Nfinal=N2+1
1630 Elv(Nfinal,An)=Nox
1640 Elv(Nfinal+1,An)=Atomsum
                                  11
1650 Element$(Nemax+1)="Oxygen
1660 Element$(Nemax+2)="No. atoms"
1670
     Hcl=Hf=0
1680
     FOR H=1 TO Nemax
        IF Item$(H) ="CL" THEN Hcl=H
1690
        IF Item$(H)="F" THEN Hf=H
1700
1710
     NEXT H
1720
     IF (An<>1) AND NOT Set THEN Display
1730
      RETURN
1740
      !
```

```
1750 ! DISPLAY FOR CHECKING
1760
1770 Display:PRINT LIN(1);SPA(12);Sample$(An);LIN(1);SPA(12);Mineral$(An);LIN(1)
1780 FOR Ne4=De TO Nemax
        PRINT USING "9A,4D.4D"; Item$ (Ne4); Elv(Ne4, An)
1790
1800 NEXT Ne4
1810 PRINT LIN(1); "TOTAL "; SPA(3); Total; LIN(1); RPT$(" ",18); LIN(1)
1820 FOR Ne2=De TO Nemax
1830
        PRINT USING "9A,4D.4D"; Element$ (Ne2); Elv (Ne2+Nemax, An)
1840 NEXT Ne2
1850 PRINT LIN(1);"Oxygens
                             ";Nox;LIN(2);"No. atoms ";Atomsum;LIN(1)
1860 Oxch$=""
1870 INPUT "CHANGE OX. NO. ? (Y/)", Oxch$
1880 IF Oxch$="Y" THEN GOTO Oxno
1890 !
1900 !
             NEW RUN
1910 !
1920 Oldfil: Oldfile$=File$
                                     1930 Newf$=""
1940 INPUT "Continue with this File or Stop ? ( /0) ", Newf$
1950 ! INPUT "New File / Same or Stop ? (N/ /0) ",Newf$
1960 IF Newf S="" THEN GOTO Ian
1970 IF Newf$="N" THEN GOTO Linpf
1980 !
             ** FILE **
1990 !
2000 !
2010 File: Oldfile$=File$
2020 IF NOT Set THEN Gsp
2030 Ja(F)=Aj
2040 Ff=F
2050 IF Av THEN GOSUB Average
2060 Gsp: GOSUB Printing
2070 Rerun$=""
2080 INPUT "Another run ? (Y/N)", Rerun$
2090 IF Rerun$="Y" THEN GOTO Rerun
2100 GOTO Optout
2110 !
2120 !
            ****
                    PRINTING SUBROUTINES
                                          ****
2130 !
2140 Printing: Noc=6
2150 Hcopy=16
2160 PRINT LIN(4)
2170 GOSUB Printout
2180 Тр$=""
2190 INPUT "PAPER PRINT ? : Thermal or 2601A or CONT (T/2/)", Tp$
2200 INPUT "Number of columns / page ? (up to 7 on Thermal Printer, or 12 on Da
isywheel).",Nocp
2210 Noc=Nocp
2220 IF Nocp=0 THEN Noc=6
2230 IF Tp$="" THEN RETURN
2240 IF Tp$="T" THEN Hcopy=0
2250 IF Tp$="2" THEN HCopy=11
2260 IF HCOPY THEN Prll
2270 PRINTER IS HCOPY, WIDTH (80)
2280 GOTO Printout
2290 Prll: PRINTER IS HCOPY, WIDTH (156)
2300 !
2310
     1
                     PRINTOUT
2320
     1
2330 Printout: J=An
```

```
2340 IF AV THEN J=J+1
2350 ! IF HCOPY=11 THEN PRINT PAGE
2360 ! IF HCOPY=0 THEN PRINT LIN(6)
2370 PRINT "SELECTED ANALYSES FROM :"; !! ;SPA(32);RPT$("*",17),LIN(1)
2380 FOR F=1 TO Ff
2390
        PRINT Fyl$(F);" : ";
2400
        FOR A=1 TO Ja(F)-1
2410
         PRINT Fa$(F,A);", ";
2420
        NEXT A
2430
        PRINT Fa_{F,Ja}(F)
2440
        PRINT SPA(24);
2450 NEXT F
2460 PRINT LIN(1)
     PRINT Heading$;LIN(1);RPT$("*",LEN(Heading$))
2470
2480 FOR Ij=1 TO J STEP NOC
2490
       PRINT LIN(1); SPA(10);
2500
       FOR Jno=Ij TO Ij+Noc-1
                                                  ! Print headings to columns
2510
         IF Jno>J THEN Nxtjno
2520
         PRINT SPA(10-LEN(Sample$(Jno)));Sample$(Jno);".";
2530 Nxtjno: NEXT Jno
       PRINT LIN(1);SPA(10);
2540
       FOR Jno=Ij TO Ij+Noc-1
2550
2560
         IF Jno>J THEN Nextino
2570
         Mineral$(Jno)=TRIM$(Mineral$(Jno))
2580
         PRINT SPA(10-LEN(Mineral$(Jno)));Mineral$(Jno);".";
2590 Nextjno: NEXT Jno
       PRINT LIN(1)
2600
       MAT Tot=ZER
2610
2620
       FOR Ne=De TO Nemax
2630
          PRINT USING "#,9A"; Item$(Ne)
2640
          FOR Ino=Ij TO Ij+Noc-1
2650
               IF Ino>J THEN Nextino
2660
              Colum=Ino-Ij+1
              PRINT USING "#,6D.4D";Elv(Ne,Ino)
2670
2680
              Tot (Colum) = Tot (Colum) + Elv (Ne, Ino)
2690
        IF NOT HCl THEN FV
        Vcl=.4211*Elv(Hcl,Ino)
2700
        Tot (Colum) = Tot (Colum) - Vcl
2710
2720 Fv: IF NOT Hf THEN Plt
2730
        Vf=.2256*Elv(Hf,Ino)
        Tot (Colum) = Tot (Colum) - Vcl
2740
2750 Plt: V(Colum)=Vf+Vcl
2760
              IF Ne=1 THEN Tot (Colum)=0
2770 Nextino: NEXT Ino
2780
       PRINT
2790
        NEXT Ne
2800
        IF Hf OR Hcl THEN Fcl
                                ";
2810
        PRINT LIN(1);"TOTAL
2820
        FOR Colm=1 TO Colum
2830
          PRINT USING "#,6D.4D"; Tot (Colm)
2840
        NEXT Colm
2850
        PRINT LIN(2)
2860
        GOTO Forne4
2870 Fcl:
             PRINT LIN(1), SPA(9);
        FOR Colm=1 TO Colum
2880
2890
          PRINT USING "#,6D.4D"; Tot (Colm)
2900
        NEXT Colm
2910
        PRINT LIN(1);"O=F,CL
                                ":
2920
        FOR Colm=1 TO Colum
        IF Hf OR Hcl THEN PRINT USING "#,6D.4D";V(Colm)
2930
```

```
2940
       NEXT Colm
       PRINT
2950
       PRINT SPA(12); RPT$("
                                     ",Colum)
2960
                            .....
       PRINT LIN(1);"TOTAL
2970
       FOR Colm=1 TO Colum
2980
         PRINT USING "#,6D.4D"; Tot (Colm)
2990
3000
       NEXT Colm
3010
       PRINT LIN(2)
       3020
3030 Forne4:
               FOR Ne4=De TO Nemax+2
       IF Hcl OR Hf THEN Element$(Nemax+1)="0,OH,CL,F"
3040
         PRINT USING "#,9A";Element$(Ne4)
3050
3060
         FOR Ano=Ij TO Ij+Noc-1
3070
           IF Ano>J THEN Nextano
           PRINT USING "#,6D.4D";Elv(Ne4+Nemax,Ano)
3080
3090 Nextano:NEXT Ano
3100
           IF (Ne4=Nemax) OR (Ne4=Nemax+1) THEN PRINT LIN(1)
3110
         PRINT
3120
       NEXT Ne4
3130
        IF HCOPY=11 THEN PRINT PAGE
3140 NEXT Ij
3150 Jf=J
3160 PRINTER IS 16
3170 RETURN
3180 !
3190 !
            3200 !
3210 Error: ! Check for errors 56,59,80,& 89
3220
           BEEP
3230
           IF ERRN=56 THEN E56
           IF ERRN=59 THEN E59
3240
3250
           IF ERRI-30 THEN E80
           IF ERRN=89 THEN E89
3260
3270 Ex:
           PRINT ERRMS
3280
           BEEP
           PRINT "PROGRAM TERMINATED"
3290
3300
           BEEP
3310
           STOP
3320 E56: DISP "File not yet created. Try again."
           WAIT 3000
3330
3340
           GOTO Linpf
3350 E59:
           PRINTER IS 16
3360
           GOTO Ex
3370 E80:
           DISP "Disc NOT in. Put it in then ";
           GOTO Ex1
3380
           DISP "CHECK READ error. ";
3390 E89:
3400
           Try=Try+1
3410
           IF Try>3 THEN E89a
           DISP "Try again ";
3420
3430
           GOTO Ex1
3440 E89a:
           DISP "Try another tape ";
3450 Ex1:
           BEEP
3460
           DISP "press CONT"
           PAUSE
3470
3480
           RETURN
3490 !
3500 !
                 SUBROUTINE SETS
                 *****
3510 !
3520 !
3530 !
```

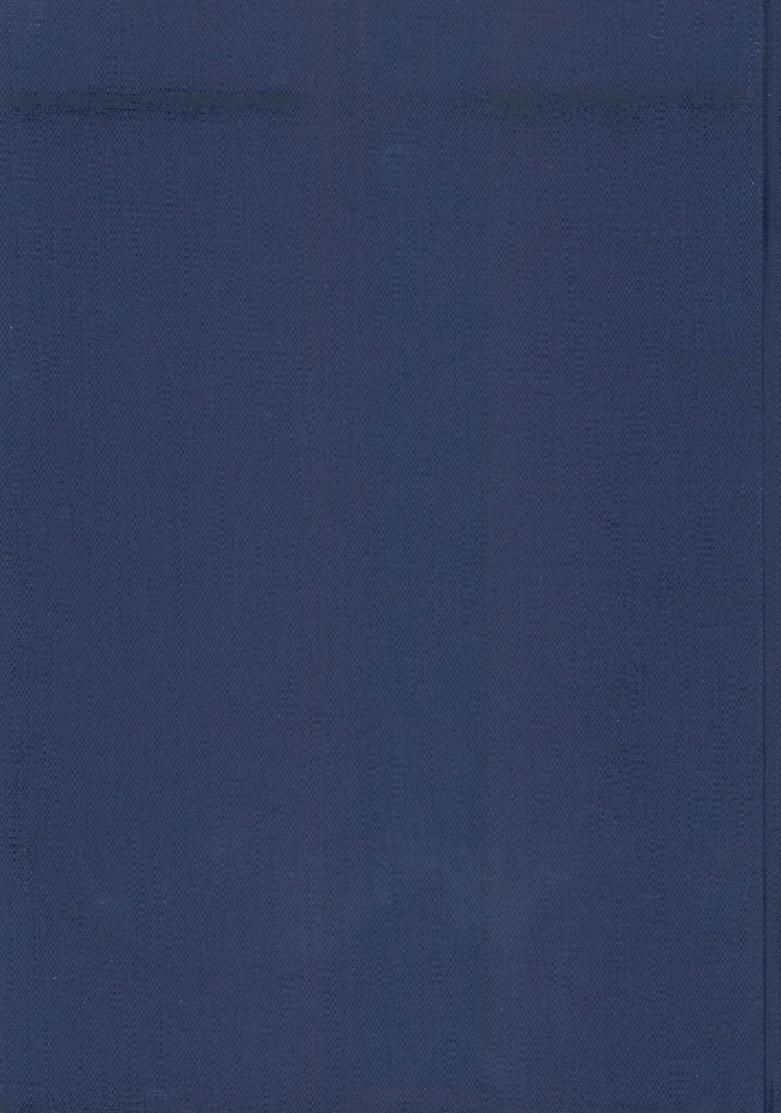
```
3540 !
             READS ANALYSES (a series of numbers may be read)
3550 !
3560 Sets: IF NOT Aj THEN PRINT LIN(2);"
                                              NEXT ANALYSIS No.?";LIN(2);"OR first
and last of SERIES (separated by -)"
3570 IF NOT Aj THEN PRINT "OR CONT to STOP"; LIN(1); "OR N to change file ?"
3580 Anals=""
3590 BEEP
3600 INPUT "
                 ? ",Anal$
3610 IF AnalS="N" THEN Chf
3620 IF Anal ="" THEN RETURN
3630 Pos=POS(Anal$,"-")
3640 Aj=Aj+1
3650 Fa$(F,Aj)=Anal$
3660 IF Pos THEN Block
3670 I=VAL(Anal$)
3680 An=An+1
3690 GOSUB Reads
3700 GOSUB Ratios
3710 GOTO Sets
3720 Block: Start=VAL(Anal$[1,Pos-1])
3730 End=VAL(Anal$[Pos+1])
3740 IF Start>End THEN Backwards
3750 FOR I=Start TO End
3760 An=An+1
3770 GOSUB Reads
3780 GOSUB Ratios
3790 NEXT I

        3800
        OFF
        END
        #1

        3810
        OFF
        END
        #4

        3820
        Anal$="""

3830 GOTO Sets
3840 Backwards:DISP "FIRST NO. > SECOND NO.! - RE-ENTER!"
3850 BEEP
3860 WAIT 3000
3870 GOTO Sets
3880 Chf: ASSIGN #1 TO *
3890 ASSIGN #2 TO *
3900 FOR Nz=1 TO Nemax
3910
           Lastitems$(Nz)=Item$(Nz)
3920 NEXT Nz
3930 Oldfile$=File$
                                3940 GOTO Linpf
3950 !!
3960 !
           READING ANALYSIS
3970 !
3980 Reads: READ #1,I;Sample$(An),Mineral$(An),Value(*) ! READ ANALYSIS
3990 Total=0
4000 De=1
4010 IF (Item$(1)="DEPTH") OR (Item$(1)="Depth") THEN De=2
4020 FOR Ne=De TO Nemax
                                 4030
        Elv(Ne,An)=Value(Ne)
4040
        Total=Total+Value(Ne)
4050 NEXT Ne
4060 Elv(Ne,An)=Total !!??
4070 RETURN
4080 !
              ***** AVERAGE OF SET OF ANALYSES
                                                      *****
4090 !
4100 !
4110 Average: N5=2+2*Nemax
4120 MAT Elvt=RSUM(Elv)
```


4130 FOR Neav=1 TO N5 4140 Elv(Neav,An+1)=Elvt(Neav)/An 4150 NEXT Neav Sample\$(An+1) =" AVERAGE " 4160 4170 Mineral\$(An+1)=" of "&VAL\$(An) 4180 RETURN 4190 1 4200 1 FINISH 4210 1 4220 Optout: PRINT LIN(12), SPA(36)," 'n IN(1),SPA(36)," 4230 STOP 4240 END

",LIN(1),SPA(36)," THE END ",L

N.B. This computer program is written in the 'enhanced' form of Basic used by Hewlett-Packard computers.



# >006881459

