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Abstract:  The Global Positioning System (GPS) has a typical outdoor positioning accuracy of 
up to 15m for civilian users. Thus, it has become a viable method for civilian to carry out coarse 
positioning. However, it has its shortcomings; it is available only in indoors with a clear view of 
the sky. Since WiFi has become another proven positioning technology that is capable of 
performing positioning in indoor environments and urban canyons, it is desirable to combine 
both of these technologies for ubiquitous positioning. Therefore, by means of integrating GPS 
positioning with a WiFi positioning system, indoor and outdoor positioning may be performed 
using only one device. The device can be implemented using FPGA embedded systems 
technology that allows easy reconfiguration of the device. Such a combination allows GPS and 
WiFi positioning technology to transition seamlessly.  

 
Keywords: GPS/WiFi integration, GPS/WiFi positioning, localisation, orientation, Namuru. 

 
1. Introduction 
Since the rapid growth of the user community of IEEE 802.11a/b/g wireless networks (WiFi), 
WiFi has become another viable positioning method (P. Bahl and V. N. Padmanabhan, 2000) 
(Li, et al., 2006). Depending on the method of positioning used, the WiFi positioning system 
may not require the MU to have a Line of Sight (LOS) path to the WiFi Access Points (AP) and 
is least affected by multipath. Implicitly, WiFi is capable of performing positioning in indoor 
environments and urban canyons. Therefore, by means of integrating GPS positioning with 
WiFi positioning system, indoor and outdoor real-time positioning may be performed using only 
one device. Such a combination allows GPS and WiFi positioning technology to transition 
seamlessly, such that WiFi pos. may compensate for areas where GPS unavailable, and vice-
versa.  
 
The application of such an independent device may be in the field of navigation for the Blind 
and Vision Impaired (BVI). Such an application allows the BVI to navigate not only in outdoor 
but also indoor environments. Another application of such a device will be in the field of 
location based services (LBS). The rapid growth of technology has allowed many useful 
technologies to be integrated together into mobile personal handheld devices such as handheld 
gaming devices, Personal Digital Assistant (PDA), mobile phones, and laptops. The integration 
of GPS and WiFi into these devices may allow mobile users to easily find the location of shops 
or businesses in both indoor and outdoor environments. 
 
Preliminary investigation found little theory or implementation of GPS-WiFi integration. The 
only technique for such integration can only be found in (Singh, et al., 2004). However, the 
WiFi positioning technique uses trilateration rather than fingerprinting. Hence, this research 
attempts to use the fingerprinting method for WiFi positioning and changed the structure of the 
GPS-WiFi integration mechanism as proposed in (Singh, et al., 2004). 
 
Taking advantage of the reconfigurable nature of the newly developed GPS receiver, the 
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Namuru II (Mumford, et al., 2006) will be adopted for use to provide GPS coordinates, and the 
soft-core NIOS II processor within the Namuru II will be used to process a fully tested WiFi 
positioning algorithm. Effort is also put into redeveloping the WiFi positioning algorithm by 
using MATLAB programming that resembles the C/C++ programming style. The successful 
algorithm is then appended into the Namuru II. The reason to use MATLAB is to ease the 
debugging process and verification of the developed system. The reason to implement the 
integration of the two positioning technologies rather than simply simulate it is to be able to 
demonstrate the practicality of such integration and to ensure real-time positioning is realizable. 
 
2. Developing and Testing the WiFi Positioning Algorithm 
The development and testing done in this section ensures that the implementation of the WiFi 
positioning algorithm in hardware will be smooth and easy to realize in the next section. In 
addition, the testing of the algorithm with various parameters allows the best algorithm 
implementation, with minimum computational requirements and least error to be chosen. 
 
The empirical method of ÒLocation FingerprintingÓ can be described by two stages, namely the 
online stage and the offline stage. In the offline stage (training phase), a fingerprint database 
containing Radio Signal Strength Indicator (RSSI) measurements and location of Reference 
Points (RP) must be created. To generate the database, RPs must be carefully selected so that 
the entire test-bed is covered (Lee, et al., 2005). Furthermore, the number of RPs to be used 
should be a balance between considerations of accuracy (the more RPs the higher the accuracy, 
because the granularity is lower) and the labour effort required to survey the patterns (or 
ÒfingerprintsÓ) of RSSIs at the RPs for the database (Li, et al., 2007). In the online stage 
(positioning phase), the Mobile User (MU) measures the RSSIs whenever it requires its position 
to be determined. An appropriate algorithm is used to compare the measurements with the 
fingerprints in the database (Li, et al., 2007). The outcome is the likeliest location of the MU. 
 
Understanding the significant effects of MUÕs orientation on RSSI (Li, et al., 2007), a 
directional approach is used to collect fingerprints of RPs. The non-directional method takes the 
RSSI of 4 cardinal directions and averages the RSSI into a single entry per Access Point (AP) 
per RP. In comparison, the directional method takes the RSSI of the 4 cardinal directions and 
stores the RSSI collected from each direction as a separate entry, resulting in 4 entries per AP 
per RP. The RSSI vector is defined as a set of RSSI arranged with respect to its AP in vector 
form. Thus, the directional approach will result in 4 RSSI vectors assigned to one RP while the 
non-directional approach results in only one RSSI vector assigned to one RP (Haeberlen., et al., 
2004). The block diagram below illustrates the proposed implementation of the WiFi 
positioning algorithm. It is worth noting that for the scope of this discussion, the Post-
Processing stage is not implemented. 
 

 
Figure 1 Block diagram of the overall WiFi positioning system 

2.1. Missing AP resolution 
Wireless technology has emerged to be an essential tool in communications. Almost every 
building in urban areas is equipped with Wireless Access Points (AP). For example, in many 
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developed countries (and especially in the U.S.), the Central Business District (CBD) area of 
cities, university campuses, public hospitals, shopping malls, and other public spaces,  WiFi 
coverage is widespread. These APs are typically deployed for permanent use and located at 
fixed positions. It would be advantageous for a WiFi positioning system to exploit its 
surrounding APs for better accuracy. Therefore, all APs that can be detected are incorporated 
into the system. 
 
Since we attempt to use APs that we have no control over in both the Reference Database and 
Test data, we thus cannot ensure that all APs will cover the entire test-bed. Hence, the issue of 
Test Points (TP) collecting RSSI from an AP that is not listed in some RPs, or vice-versa, has to 
be addressed. This situation is referred to as the Òmissing APÓ case. 
 
 The Òmissing APÓ cases can be due to one of the following reasons: 

1. Case 1: The TP is far away from the RP and hence cannot acquire any signal from some 
APs in the list of APs for that RP or vice-versa. 

2. Case 2: The TP near a RP detects a newly deployed (turned on) AP near the test-bed 
that the RP did not detect or vice-versa. (Cheng, et al., 2005) 

3. Case 3: The TP near a RP is unable to detect an AP the RP had detected earlier or vice-
versa because the AP was turned off. (Cheng, et al., 2005) 

To accommodate these situations, the APs that cannot be detected either by the Reference Point 
or Test Point is replaced with an RSSI of -100dBm (Binghao Li, 2006). This seems to be an 
intuitive solution for case 1 because the weakest RSSI that we can practically acquire is 
approximately -90dBm while -100dBm appears to be an interpolated value to indicate that the 
AP is far away from the TP or RP. This method may also well accommodate for cases 2 and 3, 
where no other method can be used to predict whether an AP is turned off or newly deployed, 
the respective APs should not be penalised too much. 
 
However, it would be almost impossible for a TP to be near a RP to have many Òmissing APÓ 
cases occurring at once. Hence, the case where there are too many Òmissing APÓ should be 
heavily penalised. There are 2 methods of detecting such cases: 

1. Method 1: If Òmissing APÓ cases are more than a pre-determined threshold. (Cheng, et 
al., 2005) 

2. Method 2: If Òmissing APÓ cases are more than a pre-determined percentage of APs 
being compared. 

Since the number of APs being compared between a TP and a particular RP has a huge variation 
from one RP to another, method 2 should be used. It is experimentally found through testing 
herein that allowing 75% of APs being compared to have Òmissing APÓ cases is optimal (Li, et 
al., 2007).  
 
2.2. Inverse Distance Weightage (IDW) Interpolation  
In the directional Reference Database, each RP has four RSSI vectors with one RSSI vector 
representing each direction of the same RP, as opposed to the non-directional database which 
has only one RSSI vector per RP. Since the four NNs are chosen from a list of Ò4 x 
number_of_RPÓ (4 refers to the four cardinal directions, North, East South, West (NESW)), it is 
very possible that the case where Ò2 or 3 of the 4 NNs are from the same RPÓ may arise. In this 
case, the possible area that the calculated position could lie in is smaller than the normal case. 
(The normal case assumes the 4 NNs are from different RPs.) This case is illustrated in Figure 2. 
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Figure 2 Illustration of area of possible calculated positions using lower number of NNs 

Figure 2 illustrates the usage of 1-NN to 4-NN in the non-directional case. To find 4-NNs from 
the directional Reference Database, all four NNs must come from all four different RPs to span 
the geometry formed by the 4-NN case in Figure 2. Suppose if the directional Reference 
Database returned four NNs with two of the NNs originating from the same RP, the geometry 
will be spanned by only three RPs, resulting in the similar geometry of 3-NN in Figure 2. As 
well as, if only two RPs are returned by the directional Reference Database, in which three of 
the NNs come from the same RP, a geometry equivalent to the 2-NN case in Figure 2 will be 
formed. Therefore, if the four NNs have three of the NNs from the same RP in the directional 
case, it would be equivalent to performing a 2-weighted-NN in the non-directional case, with 
most of the weights applied to the 3NN RP.  
 
Even though we have lost spatial diversity by allowing this situation to occur, it is intuitively 
desirable since the correlation between the TP with a particular RP is so high, it is not necessary 
to have a large area of uncertainty, as we are very confident with this particular RP. The result 
of using this concept is a lesser computational burden. 
 
2.3. Evaluation of the WiFi Positioning System 

 
To test the proposed WiFi positioning 
algorithm, data collection was carried out on 
the test-bed located on levels 2, 3 and 4 of 
UNSWÕs Electrical Engineering Building 
(G17). The large stairwell (marked by GQ10, 
3Q13 and 4Q7) allows most of the AP signals 
to propagate from one level to another more 
easily. There were a total of 7 APs that were 
self-deployed (1 on level 4, 3 on level 3, 3 on 
level 2). All other available APs detected by 
the WiFi receiver were also used. The data 
collection is done at times when human 
movement is minimal (i.e. at night, university 
holidays) due to the well known fact that 
human activity causes undesired fluctuations 
of RSSI (Cheng, et al., 2005). 
 
From the TP and RP RSSI collection, the 

algorithm is tested with various parameters to Figure 3 Map of test-bed, level 2, 3and 4 of Electrical 
Engineering Building, UNSW 



5 
 

investigate the effects of changing those parameters. There are 91 Reference Points and 32 Test 
Points used in the analyses. Each Reference Point has 4 sets of RSSI vectors, each 
corresponding to one of the NESW directions, and similarly in the case of the TPs. Hence there 
are 4x32 tests to calculate instead of 32, since the directional method is used. The Cumulative 
Distribution Function (CDF) plot is used to analyse the magnitude of errors caused by 
inaccurate positioning. The use of both Directional and Non-Directional (conventional) methods 
are compared.  
 

  
Figure 4 CDF plot of the magnitude of error for all test points using (a)directional method (left) and (b)non-
directional method (right) . In the highlighted points for both plots, F(x) of 0.9 corresponds to the 90th 
percentile error, while F(x) of 0.5 corresponds to the median error. 

The detailed horizontal error statistics generated based on the directional method shows 1-sigma 
error to be 3.25m, median error to be 2.07m and 90th percentile error is found to be 
approximately 5m. As for the non-directional case, the 1-sigma error is found to be 3.98m with 
a median error of 2.75m and 90th percentile error of 7m. Hence, the directional method shows 
significant improvement over the non-directional method, as indicated by the CDF graphs.  
Compared to the non-directional method, which has a 90th percentile error of about 7m, the 
directional database gives a significant improvement of 2m.  
 
In the Nearest Neighbour algorithm, the RSSI used for each AP at each reference point in the 
reference database is the mean of the RSSI signals for each AP over the collection time. The 
principle of taking the mean RSSI instead of an instantaneous RSSI is justified because the 
RSSI is corrupted by fast fading, resulting in the RSSI varying quickly as a function of time. 
However, the corrupted RSSI typically varies about the mean RSSI, resembling a Gaussian 
distribution (Haeberlen., et al., 2004) (Cheng, et al., 2005). Therefore taking the mean RSSI can 
mitigate the problem of collecting a biased or corrupt RSSI. Many literatures have discussed the 
long term variation or distribution of the RSSI signal (Wang, et al., 2003) (Cheng, et al., 2005). 
However, the optimal duration of sampling of the RSSI signals such that the actual mean RSSI 
is captured has not yet been discussed. To examine this, a simple experiment consisting of a 
WiFi receiver/logger (Sony VAIO VGN-U70P) and 3 APs (SparkLAN 802.11b Wireless AP) in 
a corridor is conducted with all devices remaining in a static position. It is worth noting that the 
WiFi receiver is set to use passive scanning. AP1 is set to have approximately equal distance 
from the receiver with AP3, while AP2 is set to have the nearest distance to the receiver 
amongst all APs. Figure 5 is a plot of the RSSI mean for each of the 3 APs over time. 
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(a)                                                                      (b) 

 
 (c) 

Figure 5 Plot of variation of ÒRSSI (-dBm) mean over time (seconds)Ó (circle markers) and the Òmean RSSI (-
dBm) of 100 secondsÓ (red line) for (a)AP1, (b)AP2, and (c)AP3 

It can be seen that the mean for AP1 and AP3 converges to the 100-second-mean almost 
immediately to within +/- 1%. The plot of AP2 shows large variations of mean RSSI over time. 
The plots of RSSI over time are shown in Figure 6. 

 
 (a)                                                         (b)                                                    (c) 

Figure 6 Plot of variation of RSSI (-dBm) over time (seconds) for (a)AP1, (b)AP2, and (c)AP3 

The deviation of RSSI over time from the mean is approximately +/- 3 dBm for both AP1 and 
AP3 cases. However, AP2 shows peaks (-90dBm) at irregular intervals, while the typical RSSI 
ranges in -40dBm to -50dBm. It has been found through experiments that cases like those 
indicated for AP2 are not uncommon in practical situations. This case may be explained by the 
presence of strong multipath signals or the behaviour of the passive scanning software/ 
hardware, however the exact cause of this issue has not been exactly identified yet. Statistically, 
this suggests outliers that corrupt the estimation of the mean RSSI.  
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However, the Nearest Neighbour algorithm is trying to match the difference between the user 
collected mean RSSI and the RPÕs mean RSSI. This means that as long as the reference point 
captures the outlier that the user might capture whilst standing at the reference point, the 
difference in mean will be in the range of +/- 3dBm. This difference is relatively small 
compared to the possible range of mean RSSI from -35dBm to -90dBm, thus not affecting the 
final result. The final positioning accuracy will undoubtedly improve if this effect can be 
mitigated. Also from the RSSI plots of AP1 and AP3, it can be suggested that a RSSI collection 
time of less than 5 seconds is sufficient to approximate the RSSI mean from one AP. 
 
3. GPS-WiFi Integration  
The integration of GPS with WiFi for positioning is a useful yet immature domain. Preliminary 
literature studies have shown only one example of such integration (Singh, et al., 2004). 
Although such a system is desirable, it is still at the state of development. As being discussed 
earlier, the unavailability of GPS in indoors and the availability of WiFi positioning in indoors 
are able to complement each other, thus providing a practical approach to realise a true indoor 
and outdoor ubiquitous positioning system.  
 
The integration strategy originates from the method (Singh, et al., 2004) used to overcome 
multipath in GPS by extracting information from WiFi RSSI readings and the local map. 
However, this method uses the trilateration-based WiFi positioning, which has been proven to 
be less accurate and less reliable than the fingerprinting method in heavy multipath 
environments, such as indoors (Cheng, et al., 2005).  
 
To improve the accuracy of indoor positioning, the fingerprinting method is proposed as a 
replacement for the trilateration method. Modifications are also made to the flowchart as 
proposed in (Singh, et al., 2004) because it is highly dependent on the GPS parameters. It is 
possible to acquire GPS multipath signals in indoor environments, which may lead to a wrong 
determination of MUÕs position. Although the GPS signals are acquired indoors, they are most 
probably multipath signals that are reflected by nearby walls and buildings. Therefore, we 
suggest using both WiFi and GPS parameters to allow better detection of the userÕs location. 
 
The implemented algorithm will require the entire Reference Database to be separated into 
sections/buildings/vicinities (referred to as Blocks in this paper). This method is more feasible if 
the system is implemented across a large area (e.g. a metropolitan area). Hence, the system will 
not search the entire database to calculate the userÕs position, but the vicinity of the user is first 
identified, then a Block of Reference Database (or two) is selected for subsequent computations. 
The benefits of using such an implementation are: 

1. Huge reduction in computational burden. 
2. Allows nearby Blocks to be loaded or unloaded from the system when necessary.  
3. Allows different coordinate systems to be used in different situations (e.g. x,y,z for 

indoors, and LLA for outdoors). 
The last benefit listed concerns the coordinate system of GPS which uses LLA. This is not an 
intuitive coordinate system for indoors and most maps of building have their own origin, and 
use the xyz Cartesian coordinate system. It would be more practical and less computationally 
demanding if the output coordinate system can be set to local x,y,level coordinates (NED) when 
the user is indoors, and Latitude, Longitude, Altitude (LLA) in the WGS84 datum when the user 
is outdoors. The reason being that outdoor users typically would acquire maps from sources (i.e. 
Google Earth) that use LLA coordinates, while indoor users typically use a map of a building 
which has its own origin of x,y,z coordinate. Consider if the output coordinate of the system is 
to be matched with a number of indoor building maps and a large road map, the output 
coordinates can easily adapt to these maps without any conversion. If the system only outputs 
LLA coordinate, a conversion process (LLA to xyz) will have to take place in order to match the 
user to the indoor maps when the MU is indoors, hence increasing computational burden. Hence, 
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it is proposed to have a ÔblockÕ of reference database for each indoor building and each area of 
pre-surveyed outdoor vicinities. 
 
3.1 Integration Hardware 
The implementation stage uses two main hardware components. The WiFi signals are acquired 
using the G2 MicrosystemsÕs G2C501-HDK Hardware Development Kit, while the GPS signal 
acquisition, correlation, and receiver processing are executed on the UNSW SNAP labÕs 
Namuru II GPS receiver board. The WiFi positioning algorithm and the WiFi/GPS integration 
algorithm are implemented on the Namuru II processor as well. 
 
Firstly, the G2C501-HDK Hardware Development Kit is a development board produced by G2 
Microsystems to support 2.4GHz WiFi communication and serial UART communication, along 
with many other functions. Thus, we exploit the 2.4GHz WiFi communication capability of the 
device to acquire RSSI readings and send it to the Namuru II through the UART for further 
processing. This device will be simply referred to as the ÒG2 receiverÓ. 
 
The Namuru II is an open-source GPS receiver research platform based on an L1 GPS RF 
frontend and is implemented on an Altera¨ Cyclone IIª Field Programmable Gate Array 
(FPGA) chip. The FPGA is composed of an array of configurable logic cells, and each cell can 
be programmed to perform one of a variety of simple digital logic functions. This is used to 
implement the correlators and a soft-core processor known as NIOS IIª. In addition, the 
Namuru II incorporates a dual UART, 3 axis accelerometer, 2 axis gyro, and ample of memory. 
Table 1 summarises the technologies available and the technologies utilised for this 
implementation. 

 G2 Development Kit Namuru II Development Kit 

Microprocessor 
LEON 2 SPARC V8 32-bit CPU, 

clocked at 44 MHz 
Altera Cyclone II, up to 260Mhz 

Wireless Com. 
External 2.4 GHz and EPC 

antennas 
N/A 

Short Range Comm. 3 axis 125 kHz magnetic interface N/A 

Wired 
Communication Dual RS-232, SPI Dual UART, USB 2.0 

Positioning N/A 
2x Zarlink GP2015 GPS L1/L2 front 

ends 

Sensors 
temperature, security seal, motion, 3 

axis shock 
3 axis accelerometers, 2 axis gyro 

Memory 320kb ROM 80kb RAM (2kb NVM) 
32MB ROM, 64MB SDRAM, 256K 

SRAM 
Table 1 Comparison of capabilities between the G2 Development Kit (used as a WiFi receiver) and Namuru II 
Development Kit (used as a GPS receiver and GPS/WiFi integration module). Shaded boxes show the 
technologies used. 

Altera has provided a PC-based development environment known as Quartus II, for configuring 
the logic elements using Verilog and VHDL. The NIOS II C/C++ IDE is used to develop, 
compile and load the compiled binary onto Namuru II. The NIOS II IDE (on the PC) also has a 
console that maintains connection with the NIOS II CPU (on the Namuru II) after the binary is 
loaded onto it. This is known as the NIOS II console which is used to display debug information 
during runtime.  
 
The Namuru II acquires the RSSI readings through the UART and performs the WiFi 
positioning and GPS/WiFi integration utilising the NIOS II soft-core processor. GPS 
coordinates are acquired from the GPS Architect software. All software processes are developed 
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in NIOS II C/C++ Integrated Development Environment (IDE). 
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Figure 7 illustrates the block diagram of the overall system. The GPS Architect block (Figure 
6.1) is the Mitel¨ firmware which is already ported to the Alterä NIOS II soft-core processor 
for the required processing of the GPS correlators and timing signals. These functions are 
implemented as real-time interrupts that runs as a higher priority task . 
 
The blocks of WiFi positioning algorithms are similar to those described earlier. However, 
additional functions were added to accommodate the separated blocks of reference database. 
(Section 2 implemented only a single reference database for all reference points.)  
 
All of the implemented functions runs in/from the main() task, which is the lowest priority task 
(i.e. last executed when the processor is freed by other Interrupt Service Routines (ISR) ). 
However, the UART receive function is an exception, which uses the Altera ISR to retrieve data 
from the Namuru II UART. 
 
3.2 Separated Reference Database 
As explained earlier, the entire reference database has to be separated into several smaller 
Blocks, which is clearly visible from Figure 7. To determine which Block to be used, a search 
for the best matching Block(s) of Reference Database has to be done. This is called the 
FindBlock function.  This technique uses the Media Access Control (MAC) address of the APs 
that the user acquires and attempts to match it with the list of MAC addresses of the APs in each 
Block of Reference Database. A non-matching AP, where the user acquires a AP that is not in a 
particular Block of Reference Database, is a case of Òmissing APÓ. The number of Òmissing 
APÓ cases in each Reference Database is recorded, and the Block with the least Òmissing APÓ 
cases will be chosen. This is implemented in findBlock() as follows: 

1. For each Block ÒkÓ, attempt to match the userÕs AP MACs with the list of MAC 
addresses of the APÕs in each Block of Reference Database. The counts of Òmissing 
APÓ cases will be stored in missing_APs[k]. 

2. Sort the missing_APs[] array in ascending order. 
3. The k-th Block with the least Òmissing APÓ cases is chosen. 
4. The Òwifi_modeÓ is set to INDOOR or OUTDOOR depending on the environment 

(outdoor/indoor) of the chosen Block of Reference Database. 
 
FindBlock may produce the same number of Òmissing APÓ for two or more Blocks. This 
condition may occur when the user is at the border between one Block of Reference Database 
and another (i.e. between Indoor and Outdoor). Hence, if more than one Block of Reference 
Database suggested by FindBlock to use, then Database Matching is executed for the two best 

Figure 7 Block Diagram of overall integrated system ported into the NIOS II soft-core processor 
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possible Blocks found instead of one. The Database Matching algorithm produces the residual 
of k-Nearest-Neighbours matching by means of its Manhattan distance. Based on this metric, 
the most possible Block is chosen and its set of Nearest-Neighbours are used to perform 
interpolation (a.k.a. Location Calculation) using the IDW method as described and tested in 
section 2. 
 

3.3 GPS/WiFi Integration Mechanism 
 

 
Figure 8 Flowchart of GPS/WiFi Integration Mechanism 

The implemented integration mechanism is shown in the form of a flowchart in Figure 8. The 
flowchart is implemented in the form of if-else statements. Òwifi_modeÓ is a variable 
determined in the online phase by a function that calculates the userÕs vicinity ( ÒINDOORÓ 
/ ÓOUTDOORÓ ). If the userÕs vicinity is undetermined due to APs not matching those 
contained in the Reference Database (i.e. user in an area not mapped by the reference database), 
ÒINVALIDÓ will be assigned to Òwifi_modeÓ. Horizontal Dilution of Precision (HDOP) is a 
function of how good the geometry of the tracked satellite signals is. The lower the HDOP, the 
more precise the MUÕs calculated horizontal position is. More details are explained in (Kaplan, 
et al., 2006). GPS_FIX is a Boolean variable determined by the Geometric Dilution of Precision 
(GDOP) and the number of satellite signals acquired and the Code to Noise Ratio. This variable 
is acquired from GPS Architect. N is the number of satellite signals tracked. PGPS(t) is the GPS 
calculated position in the Latitude, Longitude, Altitude (LLA) system. PWO(t) is the outdoor 
WiFi calculated position in the LLA system. PWI(t) is the indoor WiFi calculated position in the 
x,y,z system, with reference to the origin of the local building map. PF(t) is the final calculated 
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position of the overall system. 
 
The basic concept of mapping the flowchart is to first take the WiFi parameters as a priority to 
determine the indoor/outdoor status of the user, then using the validity of GPS parameters to 
determine which technology (GPS or WiFi) to perform positioning for the user. 
  
3.4 Initial Evaluation  

The location chosen as the test-bed (Figure 9) 
is level G of the EE building, UNSW, where a 
rear entrance allows the test-device to move 
from indoors to outdoors, and vice-versa. This 
location is chosen because there are fewer 
passersby at non-peak hours. There are three 
steps to set up the system and the test-bed. The 
first is to ensure sufficient APs are available in 
the vicinity of the test-bed. Then the 
fingerprints of each Reference Point are 
collected. Finally, the test-device is used to 
collect test data for analysis. In the first step, a 
WiFi pre-survey in the vicinity of the test-bed 
is carried out to identify areas where 
insufficient APs are detected. Then, an 
adequate number of APs are deployed in/near 
the test-bed. APs are also deployed outdoors to 

ensure WiFi positioning also is possible outdoors. 
 
For the second step, Kismet (a device customised for WiFi fingerprint database collection) is 
used to collect RSSIs for the WiFi Fingerprint database. Again, the directional method is used 
for data collection. After the collection, the data is transferred to a PC and pre-processed by a 
MATLAB program into C/C++ initializations before it is loaded into the Namuru II.  
 

 
Figure 10 (a)Equipments set up for testing (left), (b)A laptop connected to the Namuru II, the UART cable 
connecting Namuru II to G2 Dev Board, and inverter connected to a battery to power up the boards(right). 

In the third step, which is the testing stage, the implemented system as described in section 3.2 

Figure 9 Map of test-bed with reference points 
(stars) and Test Points (circles) embedded (each tick 
in x and y axis indicates a meter) 
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is brought up to test. The equipment set-up is shown in Figure 10. The implemented system 
collects WiFi signals through the integrated hardware and all subsequent data processing is 
carried out in the Namuru II, which includes WiFi positioning, GPS/WiFi integration, etc. Then, 
the Namuru II sends the output and debug information to a PC, and displays it on the NIOS II 
console. 
 
Analysis of the results is done only for 2D. All altitude values are assumed to be 0. 6 Test Points 
are strategically chosen in the test-bed (Figure 9), in both indoor and outdoor environments. A 
number of observations (ranging from 10 to 20, over a 2 minute interval) are collected to 
analyse the statistical positioning accuracy of each point.  
 

Combining all the error vectors for each test 
point, the overall accuracy behaviour of the 
system can be summarised by the CDF plot 
in Figure 11. 60% of the points can be 
positioned within 4.5m of accuracy, while a 
large probability of misdetection 
(approximately 40%) due to the inaccurate 
indoor/outdoor detection of the user causes 
an error of more than 10m. 
 
The test-bed has been intentionally chosen 
to be in the vicinity of tall buildings, which 
resemble urban canyons, so that the 
importance of WiFi positioning can be 
demonstrated. To analyse the availability of 
GPS, an investigation of the possible 

satellites visible during the test period was conducted using SkyplotTM. 

 
Figure 12 Possible Satellites that can be seen. Shaded region shows the part of sky blocked by tall buildings 

Figure 12 shows the possible satellites that are visible above the horizon on the night of the 
experiment. The EE building in the test-bed is aligned North in the downward direction in the 
map (Figure 9) Thus, only the Northwest direction of the sky is clear, while the other sky 
sectors are mostly blocked by the building. The shaded region in Figure 12 indicates the 
possibly blocked area of the sky. Thus, only satellites 27, 7, 25, 28 and 20 are likely to be 
detected. Figure 12(right) shows the satellites that can be detected at one time (satellites 25 and 
20), and also suggests most probably only two satellites can be detected at any one time from 

Figure 11 CDF plot for all test points (x in meters) 
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the test-bed. 

Relating this back to the experiment, this situation compromises the availability of GPS during 
testing, and thus the system is forced to use WiFi for positioning even in outdoors since only 2-
3 GPS satellites could be tracked. However, when the system moves further away from the test-
bed, a WIFI INVALID case is observed, and the system is forced to use GPS for positioning 
whenever the conditions mentioned in section 3.3 are satisfied (i.e. there is a good view of the 
sky). A POSITION UNAVAILABLE case is observed when a user is indoors of an unknown 
building. 
 
3.5 Further Work  
The initial evaluation has shown several issues to improve in this implementation. The different 
hardware used for RSSI collection has identified an issue in the transformation of RSSI signals 
from one device to another. (Haeberlen., et al., 2004) and (Cheng, et al., 2005) has suggested the 
mapping of received RSSI from one device to another is a linear transformation and will be 
implemented in the future.  
 
Also, the WiFi/GPS Integration Algorithm is not sufficiently tested yet as GPS was unavailable 
on the test-bed. Another test-bed with clear view of the sky should be tested with the system. 
Also, the positioning accuracy of a moving test device has not been addressed due to the fragile 
prototype, which is susceptible to physical movements and jitter during operation. 
 
4. Conclusion 
In short, the research has undertaken a simulate-develop-test approach to achieve the outlined 
objectives. The simulate stage includes the development and testing of the k-wNN 
fingerprinting algorithm for the WiFi Positioning, in which the parameters chosen attest to the 
expected accuracy of the system. In the development stage, the system is modified to 
accommodate for practical considerations, and successfully ported into Namuru II to be 
integrated with the already available GPS system. In the testing stage, the integrated system is 
put to test in a test-bed resembling challenged indoor environments and urban canyons, such 
that WiFi is capable of assisting GPS during its unavailability. The implementation has also 
suggested a solution to search a large-sized WiFi Reference Database efficiently. The separation 
of the entire Reference Database into several Blocks is an effective method to reduce 
computational burden and positioning delay. 
 
The final result has achieved its main objective, which is to be able to seamlessly transition 
between indoor and outdoor environments by using the newly proposed algorithm. However, 
more testing are still required to prove the transition between the 2 different technologies, 
namely the GPS and WiFi positioning system, is feasible. A few simple static testing has 
suggested improvements to be made to the current real-time positioning system implementation.  
 
For a feasible realisation of the system, the entire Reference Database (e.g. the Reference 
Database of a metropolitan city) may not be ported into the system due to memory limitations. 
Hence, Blocks of Reference Database in the userÕs surrounding can be acquired through an 
internet server and ÕcachedÕ. Opposing to the method of sending MUÕs RSSI vectors to the 
internet server where the server then executes the positioning process and returns the position to 
the MU (e.g. Skyhook Wireless http://www.skyhook.com), this method reduces the 
computational burden of the internet server. Also, this method allows the MU to perform 
positioning without having continuous internet connectivity, since intermittent internet 
connectivity is sufficient for the MU to download the necessary Reference Database. Hence, 
this method is proposed to be implemented in later stage to support positioning while internet 
connectivity is unavailable. The probabilistic algorithm for WiFi positioning as introduced in 
(Roos, et al., 2002) is a more accurate method due to its ability to account for the probability 
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distribution of the RSSI signals. However, in depth analysis on the computational capability of 
the embedded system should be performed before undertaking this task. The system should also 
be extended to accommodate building level or altitude information, such that a fully operational 
3D positioning device is achieved.  
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