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Abstract

This thesis is primarily concerned with a notion
of an algebra which is of sufficient generality to have as
examples algebras for a (pointed) endofunctor, algebras for
a monad, lax-algebras for a 2-monad, and monoids in a mon-
oidal category. To this end we introduce the notion of a
polyad X on a 2-category A and define the 2-category X-Algs
of algebras for the polyad X together with a forgetful

2-functor V: X-Algsx »> A.

The problem to which this thesis addresses itself
is that of giving sufficient conditions for V to be 2-monadic.
We show that in the case that A is complete the 2-monadicity
of V is equivalent to the existence, in the 2-category
Mon-2-CAT of monoidal 2-categories, of the (lax) 1left Kan
extension of a certain monoidal 2-functor X: M > [A,A] along
the monoidal 2-functor !: M - 1. We then give sufficient
conditions for the (lax) "left Kan extension of X: M » E
along !: M - 1 to exist in Mon-2-CAT for an arbitrary
monoidal 2-category E and a small monoidal 2-category M.
Using fhese sufficient conditions we show that for a co-
complete A the required 1left Kan extension exists provided

X: M > [A,A] factors through [A,A] 4 the monoidal 2-category

of ranked endo-2-functors of A.

We therefore conclude that for a complete and
- cocomplete 2-category A theHZ—funétor V: X-Algs +~ A is
2-monadic provided %he polyad!X-hasfa rank, by which we mean

that the appropriate"X:vM -~ [A,A] factors through [A,A] -



We are, moreover, able to show that the 2-monad in question

has a rank and that the 2-category X-Afg, is cocomplete. This
result includes many well-knoﬁn results, it shows that the
free monad on an endofunctor R exists if R has a rank, it
shows that the category of algebras for a ranked monad is
cocomplete, and it shows that if A is a monoidal category the
free monoid exists on each A € A provided the functor

®: A x A > A has a rank in each variable.
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INTRODUCTION

The work in this thesis originated in the follow-
ing two questions, raised by G.M. Kelly in [ |2 ]. Firstly,
if D is a doctrine (=2-monad) on a 2-category A, give
sufficient conditions for the 2-category Lax-D-Afg, (the
2-category of lax-D-algebras and strict D-morphisms) to be
2-monadic over A. Secondly, give conditions on A and on the
doctrines D and D' so that the 2-category of algebras and
strict morphisms for the pseudo distributive law (D,D',p,T)

is 2-monadic over A.

Rather than solve these problems directly we pose
and solve a much more general question. The first step
towards posing this more general problem is the observation
that both of the original examples are instances of the
following general situation. Consider a 2-category A which
is equipped with a set of endo-2-functors, a set of 2-natural
transformations between composites of the given endo-2-
functors, and a set of modifications between composites of the
given 2-natural transformations; all of the data being subject
to a set of relations in the form of equations between
composites of the data. An algebra for such a situation is an
object A of A together with an action ag: EA » E for each
given E: A - A (and which we extend to all derived endo-2-

functors by the equation ap g = ar.Tag) and an action ap



for each given 2-natural transformation p (which we

extend to derived 2-natural transformations in the obvious
way) where these actions satisfy various axioms of their own
as well as respecting the given relations. Finally we are
given two sets X; and X, of (derived) 2-natural transformat-
ions and we require that a be an identity if ¢ € X; and an

isomorphism if ¢ € XZ'

The next step is the recognition that the data
described above arenothing but a strict monoidal 2-functor
X: M > [A,A] from a small strict monoidal 2-category M to the
monoidal 2-category [A,A] of endo-2-functors of A; the
deécription above merely provides generators for M in the
form of the data and relations in the form of the axioms.
The classes X; and X, are then thought of as subcategories
of the underlying category of M. An algebra is then an
object A of A together with actions ag: X(t)A - A for each
object t of M and actionsa,: a; = ai1.X(p)A for each
p: t > t' in M which are to satisfy a certain "unit" and
"associativity'" axiom, and such that ap is an identity if
p is in X, and is an isomorphism if p is in X,. If we
write X = (X,X;,X,) and denote by X-Afgs the 2-category of
algebras then the problem we wish to solve is that of the

2-monadicity of X-AlLgs.

Finally if we define a polyad X to be a triple
X = (x,xl,xz) where X is a monoidal 2-functor from a small
strict monoidal 2-category M to [A,A] and where X; and X,

are sub-categories of M; and if we define X-Afgx to be the



2-category of X-algebras as defined above, then our general
problem is to find sufficient conditions on a polyad X and

a 2-category A so that X-AfLg, is 2-monadic over A.

We now briefly outline our method of solving this
general problem. For simplicity however we treat (in this
outline) the case where both M and A are categories not
2-categories and where X; and X2 are empty. In this case

algebras only have the actions a, but not the actions a,.

The first step towards giving sufficient conditions
for the 2-monadicity of X-AfLg, is to change the nature of
the problem. The technique we use to do this dates back, at
least in principle, to the work of Dubuc [ 6 ] and Barr [ 2 ]
on the existence of the free monad on an endofunctor. If
S is any doctrine on A we show that there is a bijection ¥

S

between 2-functors ¥: S-ALg, + X-Alg, satisfying U" = V¥

and monoidal natural transformation o as in

X
— [A,A]

We recall that a doctrine on A is just a monoid in [A,A],
which is precisely a monoidal functor 1 - [A,A], and that
k: S = S' is a morphism of doctrines precisely when

k: S = 8S'":1 ~»[A,A] is a monoidal natural transformat-

ion.



| If the 2-category X-Afg, is 2-monadic so that

A: T-AngIQEe»X-Aig* and if 1 is x(A), then (T,t) has the
following universal property: for any other pair (S,0) as
above there exists a unique morphism k: T = S of doctrines
such that ¢ = k!.t. The crucial point now is that if A is
complete, then this universal property of T is a sufficient
as well as a necessary condition for X-Afg, to be T-Algs.
The proof of this involves the functor {A,B}: A » A which is
the right Kan extension of B 1 > A alongf&? 1 -~ A and the
resulting bijection 6 between morphism a: RA » B and
natural transformation d: R - {A,B}; for we show that
(A,ag) is an X-algebra if and only if 6(ag): S + {A,A}

constitutes a monoidal natural transformation

M > [A,A]

Jl,e(a)

' /{A,A}

1

Since the universal property of (T,t) is that of
the left Kan extension (in the 2-category Mon-CAT of strict
monoidal categories) of X along !: X » 1 (the unique
morphism into the terminal object in Mon-CAT), we may by
analogy with the classical definition of colimit call T the

colimit of X in Mon-CAT, and call 1t the colimit-cone of X

in Mon-CAT. Thus our problem becomes that of giving
conditions on X and A so that the colimit of X in

Mon-CAT exists.



Rather than attack the problem as stated we first
generalise it. Instead of working in the 2-category Mon-CAT
we work in D-CAT, where D is a doctrine on CAT under which
Cat is stable; and instead of looking for the existence of
individual colimitswe look for sufficient conditions for a
D-category B = (B,b) to be cocomplete in D-CAT (that is,

to admit all small colimits in D-CAT).

The sufficient conditions we give are stated in
terms of the category D[B] = D-CAT(1,B) of D-oids in B and
the forgetful functor U: D[B] » B; they are (i) that the
category D[B] be cocomplete, and (ii) that the functor
U:.D[B] + B have a left adjoint F. We also show that a
strict D-morphism H = (h,id):(B,b) » (C,c) preserves
colimits in D-CAT if (iii) the functor
D[H] : D[B] + D[C] preserves colimits, and (iv) if the functor
B E i1 2LHL prcy is the partial left adjoint of U: D[C]-+ C
relative to h: B » C. We use these conditions to show that
if A is cocomplete, then the monoidal category [A,A], of
ranked endofunctors of A is cocomplete in Mon-CAT and that
the strict monoidal inclusion I4: [A,A]l4, > [A,A] preserves
colimits in Mon-CAT. From this we conclude that, if A is
complete and cocomplete, then X-Alg, is 2-monadic over A
provided X has a rank, by which we mean that X: M > [A,A]
factors through I : [A,A]lx > [A,A]l. (The 2-monadicity
result is exactly the same when A and M are 2-categories and
when the term polyad is used in the corresponding wider

‘sense.)



In the case that the doctrine D on CAT has a rank
as well as preserving smallness it turns out that the
conditions (i) and (ii) are also necessary. The proof of
the necessity of these conditions is considerably harder
than the proof of their sufficiency in that it requires a
detailed study of the inclusion J: D-Afg, -+ D-ALg. This
analysis, which occupies all of Chapter 1, involves constr-
ucting a left adjoint ¢ to the 2-functor J and investigating
some deeper properties of this adjunction. As an example of
these deeper properties it turns out that if n and ¢ are the
unit and counit of the adjunction & —| J, then there exists
a 2-cell o: nA.eA = 1 in D-ALg which, together with the
equality eA.nA = 1, exhibits €A as left adjoint to nA in
the 2-category D-AfLg. (As a final remark we observe that the
results of Chapter 1 remain valid if we replace the 2-category
D-CAT by the 2-category D-CAT, of D-categories and pseudo

D-functors . In this case the 2-cell o is an isomorphism).

The body of this thesis consists of four chapters.
The first, called Chapter 0, is merely a chapter of prelimin-
aries where we collect together various facts and definitions
from the works of other authors that will be referred to in
the text; it is recommended that the reader pass directly
to Chapter 1 and only refer to Chapter 0 when necessary. As
already mentioned Chapter 1, the first chapter of the thesis
proper, is concerned with the inclusion J: D-Afg, -+ D-Alg.
In Chapter 2 we are concerned with the concept of colimit in
‘D-CAT and it is in this chapter that we prove the sufficiency

of condition (i), (ii),(iii) and (iv). Also in this chapter



we consider a concept. of colimit in Mon-2-CAT (the
3-category of monoidal 2-categories) that is appropriate to
the question of the 2-monadicity of V: X-Afg + A when A is a
2-category. Finally in Chapter 3 we define polyads X on a
2-category A and the 2-category X-Afg,, and we use the
results of Chapter 2 to give sufficient conditions for the
2-monadicity of X-ALg,. We also investigate the question of
describing polyads in terms of generators on relations, and

give some examples of polyads defined in this manner.
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- CHAPTER 0.

1. We work in ZF set theory with the extra axioms that
arbitarily large inaccessibles exist , or equivalently that
every set belongs to some universe. A set is small if it

lies in some chosen wuniverse which will not be referred to

explicitly and which is usually regarded as fixed, but which

may of course be changed if desired.

By a category we mean any model of the theory of
categories; thus the set of objects and the set of morph-
isms can be any size - but are always sets. A category A
is said to be small if its set of objects and its set of
morphisms are small, and is said to be locally small if each
set A(a,b) is small. For any category A at all there is
some bigger universe with respect to which A is small; we
write SET for the category of sets in such a bigger universe
which is not usually thought of as fixed but which is large
enough for the problem at hand, and in particular large

enough to render Set small relative to it.

For a symmetric monoidal closed category V a V-
category can have any set of objects but its hom-objects
are in V; we write V-Cat for the 2-category of V-categories
whose set of objects is in Set and V-CAT for the 2-category

of those V-categories whose set of objects is in SET.

We write Cat for Set-Cat - which is the 2-category
-of small categories, and we write CAT for SET-CAT; we give

no particular symbol to Set-CAT the 2-category of locally
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small categories. We write 2-Cat for Cat-Cat and 2-CAT for
CAT-CAT, each of which is a cartesian closed 3-category.
Except for the above we use the prefix "2-" as equivalent

to the prefix "CAT-" by recalling that a Cat-category is of
necessity a CAT-category. This fixes the notions of
2-functor, 2-natural transformation, 2-adjunction, 2-colimit,

etc.

We adopt the convention that the prefixes "2-",
"3-" (which is equivalent to "2-CAT-"), or generally "V-"
will usually be omitted since the context will always
indicate what situation we are in, and since we will not
mix enrichments without being very explicit. Thus if we
say that the V-functor U: A + B has a left adjoint, we
always mean that it has a V-left adjoint, similarly if we
say that a certain colimit exists in a V-category we always
mean that it is a V-colimit. Finally if we say a 2-category
A.is cocomplete we always mean that it is CAT-cocomplete in

the sense of Day-Kelly [ § 1 and Borceux-Kelly [ 4+ ].
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2. If U: B+ A is a functor (or a 2-functor or even a
V-functor) and if J: A' -+ A is also a functor, then we say
that F: A' > B is the partial left adjoint of U relative to
J, written U 434 F, if for all A € A' and B € B there

exists an isomorphism

~

B(FA,B) £ A(JA,UB)

which is natural (or 2-natural or V-natural) in A € A' and
B € B. In the category, or 2-category, case we can express
this in terms of the universal property of the unit. We
say that F —3—{ U if for each A € A' there exists a morph-
ism ny: JA » UFA in A such that for any other t: JA » UB in
A there exists a unique morphism s: FA »+ B in B such that
Us.nA = t. For partial 2-adjoints nA must also have the
corresponding universal property for 2-cells

a; t =t': JA > UB in A.

When A' = 1 so that J is actually the name of an

object A of A, we say that FA is the free object on A

relative to U, or that FA is the left adjoint, at A, to U.

The morphism np: A + UFA is still called the unit.
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3. If F,G: A » B are 2-functors, a lax-natural transfor-
mation a: F "V»G assigns to each A € A a morphism
aA: FA » GA in B, and to each morphism u: A > A' in A a

2-cell o 1in B as in

u
Fu
FA > FA'
A : . A?
a @ o a
GA > GA!
Gu

This data is to satisfy the axioms

and, for all y: u=u': A+ A" in A, thé equation

l Fu ‘ Fu
FA FA' =  FA /@_FY\‘ FA'
Fv
oA oA’ oA oA'
Gu
4?

A 2-natural transformation a: F = G can be thought of as a
lax-natural transformation in which e is an identity
2-cell for each 1-cell u in A. An op-lax-natural

transformation is defined by reversing the direction of
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the 2-cells o in the above definition and by making the
obvious corresponding changes in the axioms. We call o

pseudo-natural if each o is an isomorphism.

u

If ¢ and B are lax-natural transformations from

F to G, a modification 6: o -+ B assigns to each A € A a

2-cell in B of the form

oA

TN

FA u 0A GA

\_/

BA

such that for every morphism u: A > A' in A

It should be clear how to define modifications between op-

lax-natural transformations.

We denote by Fun(A,B) the 2-category of 2-functors
from A to B, lax-natural transformations, and modifications;
and we denote by [A,B] the 2-category with the same objects,
but with op-lax-natural transformations as 1l-cells and
modifications of them as 2-cells. If A; and A, are sub-
categories of the underlying category of A, then we denote
by Fun(A13;A,;A,B) the sub-2-category of Fun(A,B) retaining
only those lax-natural transformationsthat are 2Z-natural
when restricted to A; and pseudo-natural when restricted
to Aj. A 1-cell in Fun(A;3;A;;A,B) is called an {Aq;A,}-

lax-natural transformation.
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For further details we refer the reader to
Kelly [ |0] and Gray [ 7 1 and [ € 1 (in the former Gray
uses the name 2-natural for what we call lax-natural,

while in the latter he uses the term quasi-natural).

4. If F: A+ B and G: C » B are 2-functors, the lax-
comma 2-category F/G (cf. Kelly [ 0] and Gray [ 7 ] and

[ & 1 where it is called [F,G]) has as objects triples
(A,f,C) where A € A, C € C, and where f: FA » GCIis a
morphism in B. A morphism in F/G from (A,f,C) to

(A',f',C") is a triple (h,y,k) where h: A + A' is a morphism
in A, where k: C » C' is a morphism in C, and where y is

a 2-cell in B as in

£
FA > GA
Fh @ Y Gk
FA' — > GA'
f'

A 2-cell in F/G from (h,Y,k) to (h',y',k') is a pair (ao,al)
where ag: h = h' is a 2-cell in A, and where a;: k = k' is

a 2-cell in C such that
Y.Fay = Gal.y'
There are obvious projection 2-functors

9, F/G > A and 9;° F/G » C sending (A,f,C) to A and C

respectively. There is also a lax-natural transformation
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8: Fay M\ G3y with components

[}
H

§(A,£f,B)

and

6 =
(h,v,k) Y

Putting this information in diagramatic form, we have:

9
F/G > A
0
C > B
G

The 2-category F/G has a universal property with respect to

lax-natural transformations. If

1

Dy

D1 g € F

is a lax-natural tranformation then there exists a unique
2-functor V: E -+ F/G such that BOV = DO’ 31V = Dy, and

8V = ¢. Furthermore if V and V' are 2-functors from E to
F/G corresponding to ¢ and ¢' respectively then lax-
natural transformations g: V “w V' are in bijection with

triples (ao,al,o) where a and o4 are lax-natural
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transformations as in

D0 Dl
E /////’ﬂé;;\\\\\* A and E‘/////%_:;\\\\\AC
Dy D‘1

and where o is a modification from the lax-natural
transformation alG.e to the lax-natural transformation

e.agF. The bijection is given by a9 = Dpo, a7 = Djo and

Of €LE"
If we denote the category containing two objects
0 and 1, and one non-identity arrow, called x, by 2 then there
are evident functors 90»971* 1 > 2 and !: 2 -1, where 1 is
the terminal category, given by 80(1) = 0. and 81(1) = 1. It

is easy to check that

[39,1]
- [2,A] - A
[3,,1] g A 1
¥
A > A
1

is a lax-comma object where A has components AF = F(x) and
Ay = ay. We use this fact later in this chapter and

again in Chapter 1 to identify the objects of [2,A].

For further details we again refer the reader to

Gray [ 71 and [ € ] and Kelly [ 1O].
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5. If Al and A2 are subcategories of the 2-category A,
then the{Al;AZ}-lax-colimit of the 2-functor F: A > B is
the object of B that is the left adjoint, at F, to the

inclusion

A
(5.1) B ———e-Fun(Al;AZ;A,B)

That is, if we write X = Fun(A{;A,;A,B), there is a 2-nat-

ural isomorphism of 2-categories

X(F,AB) = B(lax-colimF,B).

' rpl
. B
We observe that AB is the 2-functor A > 1 > B, so

that the unit of the above isomorphism is of the form

A F > B

! a lax-colim F

and is called the'{Al;AZ}-lax-colimit-cone of F. 1If
A1 = A2 = A then'{Al;AZ}-colimits are just ordinary 2-
colimits, while if A1 = A2 = ¢ they are what Gray [ 8 ] calls

cartesian-quasi-colimits.

We say that a 2-category B is lax-cocomplete if
for all small A and all subcategories A1 and Az of A the
A of (5.1) has a left adjoint.
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Proposition 5.1: (Gray [81, Street [ 16]). A 2-category

B is lax-cocomplete if and only if it is cocomplete as a

CAT-category in the sense of Day-Kelly [ S ]. O

For examples of lax-colimits we refer the reader
to Gray [ 8 ] and Street [ 16]. We will, however, give one
example of particular interest in this present work. Let

A be the 2-category represented by the diagram

1

7N\

and let A, = ¢ and A4 be the subcategory 1 > 0. We leave
it to the reader to check that a 2-functor F: A » B is

precisely a diagram

Bll

in B and that the'{Al;Az}-lax-colimit of F is an object

fxg together with morphisms do, dq and a 2-cell )X as in

v - £
B > B!

B : s fag .




20

The universal property exhibited by f*g is the following.

If py is any 2-cell of the form

(5.2) B > B!

then there is a unique 1-cell k: fxg - C in B such that

kd; = p, kd0 = q, and kA = p. Furthermore, if p', q' and p
is another triple as in (5.2) and if k': fxg > C is the
corresponding 1-cell, then 2-cells a: k = k' are in
bijection with pairs of morphisms Bop: P > D' and B1: q = q'
such that gBy-u = u'.fsl. The bijection being given by the
equations B, = adgy and B = adl. We call fxg the op-comma

object of f and g.

6. If F: A > B and U: B + A are 2-functors an op-quasi-
adjunction between F and U, with F left-quasi-adjoint to U,
consists of op-lax-natural transformations

n: 1 YWw UF , e: FU vwWww 1

and modifications

nU Fn
| § SEEAVAVAVAVAVAVAVAVAVAVAVAVES § =4 § F ~vwwvywwywwywwwwhs FUF
t S
1 v 2 Ue 1 ~ >S ¢F
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satifying the following two axioms:

n
1 UF = id
UFn
n " / )
UF YWWVWWWWWYWWWW+ JFUF Us
nUF /
UeF
e f
UF
1
and
1
FU_~ = id
Ft
FnU ///////7
U FUFU FU
S FUe
1
FU
€ ee / €
FU 1 .
€

When the context makes clear what the data n,e,t, and s are
to be, we will often write F YW\ U to mean that there is
an op-quasi-adjunction between F and U. Also, all op-
quasi-adjunctions considered in this thesis have identity
modifications for t and s, have a 2-natural transformation

for n, and have an € satisfying €g = id.
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Proposition 6.1. (Gray [ € 1, Butler [3]). If F: A > B

and U: B - A are 2-functors and if (U,F,n,e,t,s) is an

op-quasi-adjunction, then for each A in A and B in B the

functor

A(nA,1).U
B (FA,B) > A(A,UB)

is the left adjoint of

B(1,eB).F
A (A,UB) —> B(FA,B)

Moreover the unit v and counit o of this adjunction are

given by the equations

Vf = Sf.S

for £ € B(FA,B) and g € A(A,UB). O

7. If V is a symmetric monoidal category the concepts of

V-categories, V-functors, and V-natural transformations
have been discussed by many authors, we therefore give no
details of these concepts in this thesis but take for
granted that the reader is familiar with V-category theory.

.We do however wish to review some facts about V-graphs.
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A V—graph G consists of a set of objects
|G| € SET together with, for all A,B € |G|, an object
G(A,B) of V.

If G and L are V-graphs a morphism M: G » L

consists of a set function
M: |G| »~ |L|
together with, for each A,B in |G|, a morphism
M, g G(A,B) + L(MA,MB)

A,

in V. We denote by V-GRAPH the category of V-graphs and
their morphisms, and by V-Graph the category of small
V-graphs. There is an evident forgetful functor

Wy: V-CAT > V-Graph .

Proposition 7.1. (Wolff [18]). If v is a cocomplete

monoidal category, then the forgetful functor Wy is

monadic. 0O

Since CAT has colimits of diagramsas big as
objects of SET it is easily seen that Wolff's proof shows
us that

Uy =W CAT + GRAPH

SET*

is monadic with a left adjoint denoted by Fj.
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It is well known that any monoidal functor

V: V > V' induces a 2-functor
V-CAT: V-CAT > V'-CAT

and similarly for monoidal natural transformations and
2-natural transformations. It is just as easy to see

that any functor V: V » V' induces a functor
V-GRAPH: V-GRAPH > V'-GRAPH ,

that a natural transformation a: V = V' induces a natural

transformation
0 -GRAPH: V-GRAPH =V'-GRAPH ,

and that (-)-GRAPH is functorial. Thus if the functor
U: V > V' has a left adjoint F: V' » V then F-GRAPH is
the left adjoint of U-GRAPH.

It is well known that GRAPH is a cartesian
closed category, and that 2-GRAPH = GRAPH-GRAPH is also
cartesian closed, so that we have the category

3-GRAPH = (2-GRAPH)-GRAPH.

Since Uy: CAT > GRAPH has a left adjoint Fq it
then follows immediately by Proposition 7.1 that the

functor

Wear U, -GRAPH
U, = 2-CAT — > CAT-GRAPH > 2-GRAPH
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has a left adjoint which we call F,. A similar argument

shows that the functor

Uz = 3-CAT ————— (2-CAT) -GRAPH —> 3-GRAPH

has a left adjoint called F,.

8. Let A be a 2-graph and B a 2-category and let

F,G:A > U,B be morphisms of 2-graphs.

A lax-natural transformation of 2-graphs

a: F W G assigns to each object A of A a morphism

aA: FA > GA in B and to each morphism U: A+A' in A a

2-cell 0y in B as in
Fu
FA > FA'
aA %a aA'
=
GA S GA'
Gu

This data is subject to the following axioms. For each

Y: u=v in A we have the equality
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If o« and B are lax-natural transformations of 2-graphs,
a modification 6: o + B assigns to each A € A a 2-cell in

B of the form

BA

such that for every morphism u: A » A' in A

If we compare these definitions with those of lax-natural
transformations and modifications of 2-categories as given
in section 3, we will observe that the data involved in
each case are the same, the only difference is that in
section 3 we required certain axioms to hold which
specified how the data was to interact with the composit-

ion in A.

If A and C are 2-graphs and B is a 2-category and if
F: A » UZB and G: C » UZB are morphisms of 2-graphs, then
we define the 2-graph F/G as follows. The objects of F/G
are triples (A,f,C) where A € A, C € ¢ and where f: FA » GC
is a 1-cell in B; the morphisms in F/G from (A,f,C) to
(A',f',C') are triples (h,y, k) where h: A » A' is a 1l-cell
in A, where k: C - C' is a 1-cell in C, and where y is a

2-ce11 in B as in
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FA ' ' > GA

Fh @ Y Gk

FA! > GA' ,
£

A 2-cell in F/G from (h,y,k) to (h',y',k') is a pair
(ao,al) of 2-cells ag: k = k' in A and K h =nh' in C

such that

Y.FG.O = GaloY'

We point out that F/G is defined here exactly as
it was defined in section 3, except that now F and G are
not 2-functors, so that it is clear how to define 3, 31

and § as in

F/G >

T

C > UzB .

This time however 39 and 9, are only morphisms of 2-graphs
and § is only a lax-natural transformation of 2-graphs. It
is not surprising to find that F/G has a universal property
with respect to lax-natural transformations and modifications
of 2-graphs; this universal property is given by the

following easy result.
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Lemma 8.1. If E is a 2-graph then triples (Do,e,Dl) as in

... D. .
E 0 > A
D1 l ge l F
c. L U
G 2

are in bijection with morphisms V: E +» F/G of 2-graphs. The

bijection is given by 3,3V = D;,3;V = D; and &V = e.

Moreover if V and V' are morphism from E to F/G

corresponding to (Do,e,Dl) and (Db,s',Di), then lax-natural

transformation a: V YWw V' are in bijection with triples

(ao,d,al) where g and ap are lax-natural transformations

of Z-grths 0g* D0 VAV VS Db'and ap: D1 AN\ Di, and where

o is a modification from o;G.e to e.apF. The bijection is

given by ay = Djo, oy = Dla,‘and O = eaB . g

As an immediate consequence of this result we have:

categories

/F_\
\fi/

F,A B
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such that UZB.nZA = a. Moreover if o and a' are a pair of

lax-natural transformations of 2-graphs from F to G and

if 0: o > o' is a modification, then there exists a unique

modification of 2-categories m: B » B': F' = G' such that

Uz'ﬂ'-T]2A = 0.

Proof. Let

B/ B >UZB

be the lax comma object as in the previous lemma, with
F=1and G= 1. The lax-natural transformations o and o'
induce unique morphisms L and L' from A to B/B with

L = o and 8L' = o'. From L and L' we get unique 2-functors
P,P': F,A > B/B, since B/B is automatically a 2-category,
and from these we get unique 2-cells B and B' as required,
since B/B is also the lax-comma object described in section

3.

From the triple (lg,0,1g) we get a unique lax-
natural transformation A: L~ L', so that by the first part of
the lemma we have a unique lax-natural transformation
p: PvsP' which in turn induces a unique modification 7 as

required. 0
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It is obvious that a straightforward imitation
of the above gives the analogous result for the functors
Uz: 3-CAT -+ 3-GRAPH
and
Fgz: 3-GRAPH + 3-CAT
once the notions of lax-natural transformation and modific-

ations of 3-graphs and 3-categories have been defined in

the obvious way.

9. A doctrine on a 2-category K consists of a 2-functor

D: K - K, and 2-natural transformations i: 1 - D and

m: D2 + D such that
(9.1) m.Di = m.iD = 1 and m.Dm = m.mD.

It is clear that a doctrine is just a 2-monad on the 2-
category A.

A D-algebra is a pair (A,a) where A € K and where
a: DA » A is a morphism in K such that
(9.2) a.iA = 1
and

(9.3) - a.Da = a.mA
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A D-morphism F: (A,a) + (B,b) is a pair (f,f)
where f: A + B is a morphism in A 'and where f is a 2-cell

in K as in

Df

DA > DB
a |, £ b
A > B
f
such that
f.iA = id
and
f.mA = f£.Df

We call a D-morphism strict when f is an identity 2-cell,

A D-2-cell a: F = G: (A,a) - (B,b) is a 2-cell

a: £ = g in K such that

Df Df
/\ T
DA M,Da DB = DA DB
\_/
Dg f
a b a n' b
f
/_\
A e B A ]l,a B
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We denote by D-Alg the 2-category of D-algebras,
D-morphisms, and D-2-cells; while D-ALgs is the sub-2-
category which retains only the strict D-morphisms. We
denote the inclusion of D-Afgs into D-AfLg by
J: D-ALgsx -+ D-ALg. There is an evident forgetful 2-functor
u?: D-Afg +K which takes (A,a) to A and (£,f) to f. Since
D-ALgy is nothingmore than the 2-category of Eilenberg-
Moore algebras for the 2-monad D it is well known that the
forgetful 2-functor uPs: D-ALgsx » K has a left adjoiﬁt

FD: Kk » D-Algy-

Let K' be the 2-category [2,K] defined in section
3, and let D' be the doctrine on K' given by D' = [2,D],
i' = [2,i], and m' = [2,m] so that if we use the elementary
description of [2,K] given in section 4, then the action of
D',i', and m' are as follows:

Df

£ (DA,DA —=> DB,DB),

D' (A,A -5 B,B)

it (A,A -5 B,B)

(iA,id,iB)

and
f
m' (A,A —> B,B)

(mA,id,mB).

It is then clear that a D'-algebra consists of an object

. f . .
(A,A —> B,B) of K' together with an action of D' on f as in
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v

(9.4) DA A
f
Df . l £
B

DB

2

which is to satisfy the unit and associativity axioms. It

is easy to see that the axioms required for (9.4) to be a
D'-algebra are precisely the axioms required to make -

(A,a) and (B,b) D-algebras and F = (f,f) a D-morphism. It is
infact possible to describe D'-morphisms and D'-2-cells in
terms of D; the following result (the proof of which can be

found in Kelly [ [2]) does this for us.

Proposition 9.1. A D'-algebra is precisely a pair of

D-algebras and a D-morphism between them.

A D'-morphism from F: A > B to G: C » E is

precisely a pair of D-morphisms V: A > C and W: B > E and a

D-2-cell o as in

A4
A — C
o
F — G
B > E »
w

the D'-morphism is strict if and only if V and W are strict

D;morphisms.
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A D'-2-cell from (V,a,W) to (V',a',W') is a pair
of D-2-cells By and B, where B,: V + V' and B;: W » W'

such that
\'A \'
: V'
F G F G
w' o
/‘\ N
B B E B E O
\1]\__]/7 ! \_/
W w!

As well as the 2-categories D-AfLg and D-Alg, we
can also define the 2-categories Lax-D-Afg and Lax-D-Afg,
of lax-D-algebras, D-morphisms (resp. strict D-morphisms),
and D-2-cells. A lax-D-algebra is an object A of K together

with a morphism a: DA + A in K and 2-cells

2 mA
DA —> DA
Da a a
e
DA >A
a

which are to satisfy various axioms that may be found in
Kelly [ 12 ], where may also be found the definitions of
lax-D-morphisms of such things. A strict D-morphism of

lax-D-algebras is just a morphims f: A - B such that

b.Df = f.a, f.ay = B,.f, and B.D’f = f.q.
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If D and D' are any doctrines on the same 2-
category K we mean by a lax-morphism of doctrines H: D » D'
a triple H = (h,ho,ﬁ) where h: D = D' is a 2-natural

transformation and where hO and h are modifications as in

and D2 —> D

h
h.h == h

D'z . . >D"
m'

This data is to satisfy the two unit and one associativity

axiom

(R.Di). (m'.hD'.Dhy) id

id

(ﬁ.iD).(m':hOD'.h)

and

(h.Dm). (m'.hD'.Dh) (h.mD). (m'.hD'.D2h)
which may be found drawn more explicitly in Kelly [ ({2 ]
The lax-morphism of doctrines H = (h,ho,ﬁ) is called a

strict morphism of doctrines, or just a morphism of doctrines

when h; and h are identity modifications.

Since morphisms of doctrines are just morphisms

of 2-monads in the V-category sense, we have the expected
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correspondence between doctrine morphisms and algebraic
2-functors. That is, from a doctrine morphism h: D = D' we

get a 2-functor h-Afg,: D'-AlLg, - D-AlLg,, such that

uP.h-Alg, = UD',
given by

h-Alg,(A,a) = (A, DA A, pra 254,

Moreover any 2-functor ¥: D'-Afgx -+ D-AfLg such that

Uy = UD' is of necessity h-AfLgy for some unique doctrine

morphism h: D = D'.

A 2-functor U: B - A is said to be 2-monadic or
doctrinal if there exists a doctrine D on A and an isomorph-

ism £: D-AfLgy > B of 2-categories such that

As in the case of monads on categories we can give necessary
and sufficient conditions for a 2-functor to be 2-monadic,
and also as in the case of monads on categories these
conditions involve the notion of a U-split pair. A pair of
morphisms f,g: A - B in B are a U-split pair if there exists

an object C in A and morphisms

UA UB >

such that

pUf = pUg, pdy = 1, dyp = Ug.d;, and uf.d; = 1.
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Proposition 9.2. A 2-functor U: B » A is 2-monadic if and

only if (i) U has a left adjoint, and (ii) U creates

coequalisers of U split pairs.

Proof. A direct imitation of the corresponding well known

result for monads on categories. a

Let A be a complete 2-category and let A and B be
objects of A; then we denote by {A,B}: A » A the right Kan
extension of B': 1 » A along™A: 1 » A. It is well known
that {A,B} is characterised by the existence, for every
2-functor R: A » A, of a 2-natural bijection 8 between
morphisms a: RA + B and 2-natural transformations
a: R > {A,B}. We denote by e: {A,B}(A) - B the "evaluation"

morphism which is actually 6(1{A B})'
b
It is easy to see (cf. Kelly [ 12]) that the
2-natural transformations
-1 :
077 (14): 1 > {A,A}
and

m: {A,A}o{A,A} » {A,A},

where m is 6 1 of the composite

_ ‘ loe e
{A,A}o{A,A}(A) ——> {A,A}JoA — A ,
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give{ A,A} the structure of a doctrine. For any f: A » A'

and g: B »- B' in A we let

_ dl .
[£f,gl] > {B,A}
d0 {1, £}
Y | Y
{B',A'} > {B,A'}
{g,1}
be a pull back, let
{f,g) > {B,A}
A -
d, —_ {1,f}
¢ 4
{B',A'} > {B,A'}
{g,1}

be a comma object, and denote by ¢: [f,g] » (£f,g) the
obvious canonical map. Finally if y: £ = f' and v': g = g'

are 2-cells in A we let

! 1
[y,v 1 >(g,f)
d0 (1,y?
(g',f") - (g,f")

¢y, 1)
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be a pull back. Once again easy formal arguments show that

[f£,f], (£,f), and [y,y] are doctrines on A and that d, and

0
d; are morphisms of doctrines. Further details of the above
constructions, ‘together with the proof of the following

proposition may be found in Kelly [12].

Proposition 9.3. (i) The morphism a: DA - A is a D-algebra

if and only if 6(a): D + {A,A} is a morphism of doctrines.

(ii) The morphism f: A » B is a strict D-morphism

from (A,a) to (B,b) if and only if there exists a unique

morpﬁism of doctrines k: D » [f,f] such that dok = g(a) and

dlk = 6(b) in which case we denote k by 6(f).

(iii) The 2-cell p: f = g is a D-2-cell of strict

D-morphisms if and only if there exists a unique morphism

of doctrines k: D » [o,0] such that dok = ¢.06(f) and

d1k= E:oe(g)- O

10. If o is a cardinal number (a small cardinal in the sense

that it is a cardinal in Set) and A is a category we say

that A is o-filtered if (cf. . Schubert - [ [7])

a) for every family (Av)vEI of objects in A with
card(I) < o there is an object A € A and a family of

morphisms (Av > A)vEI

b) for every family (EA: Ay A of morphisms

AEL
in A with card(L) < o there is a morphism z: Ay > A such

that TEy = ;gu for all A,y € L.
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If vy is an ordinal number we say that y is an
a-filtered ordinal if the well ordered set y is a-filtered
when considered as a category. If we write y for both the
ordinal y and foi the ordered set considered as a category,
then by a y-sequence in a category A we mean a functor

K: vy >~ A.

We identify the cardinal numbers with the initial
ordinals, so that if o is a cardinal we may mean either the
cardinal number of the corresponding initial ordinal. We
observe that regular ordinals are also cardinals so that in
the definition that follows it does not matter whether a is

an ordinal or cardinal.

If T is an endofunctor of a category A and o is a
regular ordinal, then we say that T has rank € o if T
preserves the colimits of y-sequences for all o-filtered
ordinals y. We say that T has rank if there exists a reg-
gular o such that T has rank € o . If T has rank < a then
T at least preserves colimits of oa-sequences since o is an
a-filtered ordinal, also if o and B are regular with a < B

then T has rank < B whenever T has rank < a.
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CHAPTER 1

fI=

In this chapter we consider a doctrine D = (D,i,m) on

2-category K;bwe contemplate the inclusion 2-functor

I\

J: Dx - D, where D = D-ALg and Dx = D-ALgy. Our aim is to
prove the following two theorems; which besides being
applied in the rest of this thesis, are of independent

interest in the theory of algebras for a doctrine.

Theorem 1.1. If the 2-category K is cocomplete and the

2-functor D has a rank, then the 2-functor J: Dy -+ D has a

left adjoint &: D > D,.

We write the adjunction isomorphism as
(1.1) m: D(A,JB) = D«(%A,B)

with unit n and co-unit € as in

(1.2) n: 1=Je, e: &J > 1.

Theorem 1.2. Let K be cocomplete and admit comma objects,

and let D have a rank. Let U: P - C be a 2-functor such that

the 2-functor UJ: D4 > C has a left adjoint F: C + D4 with

unit j, counit n and adjunction isomorphism y. Then the full

inclusion

(1.3) J: D4 (FX,B) » D(JFX,JB)

is the left adjoint of the functor W, where W is the composite
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U
(1.4) 0 (JFX,JB) ———> C(UJFX,UJB)
C(3X,1)
Y
C(X,UJB)
Y
D4 (FX,B)

We prove Theorem 1.1 in two stages. The first
stage consists in embedding D4 (as a full sub-2-category) in
the éomma 2-category D/K, and showing that D(A,B) is
isomorphic, naturally in B € D4, to D/K(X,B), for a certain
X € D/K constructed from the D-algebra (A,a) by the
formation of certain colimits. (These are indexed colimits
in the sense of Street [lb ] and V-colimits in the sense of
Borceux-Kelly [ 4 1). This is the content of section 2

and 3 of this chapter.

The second stage consists in proving that, for
cocomplete K and ranked D, the full sub-2-category Dy is
reflective in D/K; this occupies section 4, which sets up
the machinery for a transfinite induction argument, and
section 5 which uses the rank of D to complete the

construction of the reflection R.

The two stages are now combined to complete the
proof of Theorem 1.1 by setting ®A = RX and noting the

isomorphism

D(A,B) ¥ D/K(X,B) = Dx(RX,B).
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To obtain Theorem 1.2 we extend the adjunction of
Theorem 1.1 to something richer. Consider the unit n and
co-unit ¢ as in (1.2) of the adjunction (1.1). The natural
transformation n’haS‘arbitrarz D-morphisms for components and
moreover is natural for arbitrary D-morphisms. The natural
transformation € on the other hand has strict D-morphisms
for components and is natural only for strict D-morphisms.
We may ask how e behaves in relation to arbitrary D-morphis-
ms. It turns out that ¢ '"behaves like an op—lax-natufal
transformation" with respect to such D-morphisms. More -
precisely there is an op-lax-natural transformation
p: J& vWw 1 with the property that pJ = Je; so that the
objéct-components pB of p are just the e¢B and the morphism-
components pF of p are identities when F is strict. It
further turns out that n: 1 = J% and p: J& v 1 satisfy

the equation p.n = id.

In order to obtain p we extend, in sections 6 and
7, the results of Theorem 1.1 from the doctrine D on K to
the doctrine D' = [2,D] on K' = [2,K]. We identify K with
a sub-2-category of K' by sending A € K to the object
(A,lA: A > A,A) in K'; then the inclusion I;: K + K'
induces (in an obvious notation) inclusions I: P - p' and
I4: D > Dx'. It does not seem to be known (the author
has discussed the matter with Professors J.W. Gray and
R.H. Street) whether K' is cocomplete when K is; still less
how far D' would preserve sequential colimits in K'; but we

can get away without this knowledge. If we assume that K
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has comma objects a few formal arguments allow us to deduce

that J': D4' -+ D' has a left adjoint &', and hence the

existence of an isomorphism
(1.5) w': D'(F,J'G) 2 D4'(9'F,G).

We use this isomorphism to define, in section 8, the op-lax-

natural transformation p.

Also in section 8 we use p to show that, for any

F and U as in Theorem 1.2, there exists an op-lax-natural

transformation
(1.6) k: JFU VWV 10
satisfying

kJ = Jn
(1.7) Uc.ju = id.

We then show that j and k exhibit JF: C - D as an op-quasi-
left adjoint to U: D » C; Theorem 1.2 follows directly from

this result.

2. Recall from Chapter 0 the definition of comma object;
we denote by D/K the comma object of D: K + K and

1¢: K> K in the 2-category 2-CAT. We observe that an object
of D/K is a triple (Xo,x,Xl) where X, and X4 are objects of

K and x: DX, + X; is a morphism of K. Morphisms in D/K from
X =_(X0,x,X1) to Y = (Yo,y,Yl) are pairs (fo,fl) where

fo: Xg > Y, and flz Xy » Y1 are morphisms in K satisfying
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(2.1) DX, > DY

The 2-cells of D/K from (fo,fl) to (go,gl) are pairs
(ao,al) of 2-cells in K with ag: fo = g and

aq: fl = g satisfying
(2.2) y.Dag = aq.X

Consider the 2-functor L: D4 =+ D/K which takes
the D-algebra A = (A,a) to the object (A,a,A) of D/K, the
strict D-morphism f to the morphism (f,f) in D/K, and the
D-2-cell o to the 2-cell (a,a) in D/K. We now show that L
is full and faithful.

Lemma. 2.1. If (ao,al):(fo,fl) > (go,gl):X + LB is a
2-cell in D/K for B = (B,b) € D, then

(2.3) f0 = £, . x. iXo R
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Proof. The diagram

(2.4) £

€0
iX
0
Df0

commutes; the top cylinder by the 2-naturality of i, the
bottom cylinder by the definition of 2-cells in D/K, and

the triangle by the unit axiom for the D-algebra (B,b). [

Corollary 2.2. The 2-functor L is fully faithful.

Proof. If in Lemma 2.1 we let X = LA, for a D-algebra
A = (A,a), then using the fact that a.iA = 1 we get fO = fl’
gy = 8 and Oy = 0q. The conditions (2.1) and (2.2) reduce,
in this case, to the definitions of 1l-cells aﬁd 2-cells

of D,. O
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Henceforth we use L to identify D, with a full

sub-2-category of D/K.

3. If A = (A,a) is a D-algebra and X an object of D/K we
shall have occasion below to consider triples (u,S,v) where
u: A > X, and v: A =+ X;are morphisms in K and § is a

2-cell in K as in

Du
(3.1) DA >DX0
a » § X
A > X
v 1

We refer, somewhat loosely, to '"the diagram (3.1)" when what
we really mean is the corresponding triple. Among these

diagrams are those giving the data for a D-morphism

Df
(3.2) DA > DB

!

of course these data have to satisfy two axioms to be a

b

&
[ r

v
[v~)
-

f

D-morphism.

From a diagram of the form (3.1) and a morphism
g: X - B, where B = (B,b) is a D-algebra, we get, by

pasting, a new diagram, namely,
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(3.3) . Du Dgg
DA ———————>DX0 — > DB

Jove o]

A ————————e»Xl —> B
v gl

which we call the composite of (3.1) and g. If gou coin-
cides with g1v the diagram (3.3) has the form (3.2) for
f = g1v and f = gq8; it will therefore be a D-morphism if

it satisfies the appropriate axioms.
This section is given to the proof of:

Progosition 3.1. Let K be a cocomplete 2-category and let
A

(A,a) be a D-algebra. Then there exists an object

X

(Xo,x,Xl) of D/K, morphisms u: A -+ XO and v: A > X in

K, and a 2-cell § in K, of the formA(S.l), such that for

every B € D composition with (3.1) induces an isomorphism of

categories
(3.4) 6: D/K(X,B) = D(A,B)
Proof. The proof divides into three sections. First,

starting with A and a, we construct the diagram (3.1) by
forming certain (indexed) colimits in K. Next we show that
the result of pasting (3.1) onto a morphism g: X - B is a
D-morphism (f,f): A » B. Finally we show that every
D-morphism (f,f) is of this form for a unique g: X =+ B;
this establishes the isomorphism (3.4) at the level of

l-cells. Since K is cocomplete as a 2-category, the

colimits we form have a universal property at the level of
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2-cells as well as at the level of 1l-cells; it is an easy
matter, using this, to show that pasting with (3.1) induces
the isomorphism (3.4) at the level of 2-cells as well as at
the level of 1-cells. The extension to 2-cells, while being
an easy imitation of the case for 1l-cells, is tedious to
write out; hence we leave it to the reader and give the

details for the 1l-cell level only.

We construct XO as the terminus of the universal

(that is, initial) diagram in K of the form
(3.5) DA\
a l

subject to the requirements that

(3.6) u.a.iA = n.iA
and
(3.7) y.iA = id.

By this we mean that any diagram of the form

(3.8) DA .
e
A w

satisfying z.iA = id is of the form yy for a unique 1l-cell

y: XO +> Y.
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To get (3.5) from more familiar colimit-notions

we have only to form the op-comma-object

1
(3.9) ' DA > DA
a l @ A J h
A —> H
k

of a and 1DA’ and then compose with the co-identifier

r: H-> X of the 2-cell A.iA. Note that since A = (A,a)

0
is a D-algebra (3.6) gives

(3.10) u = n.iA.

Consider the diagrams

2
(3.11) D"A
mA
¥
DA
n
a
I
A > X DX
0 : > D&,
u 1X0
and
(3.12) D2A
1
s;DXO 5
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these have the forms

/__p\
(3.11)" DA }o DX,
q
and
p'
///////—’];;\\\\\\\\&
g m
(3.12)" D”A DXO
\\\\\\_fl_”///4
NS
q

respectively. We take for x: DX, X1 the universal arrow

out of DX, satisfying

(3.13) x£ = xt
(3.14) xp = xp'

and

(3.15) Xp = XT.XO )

the composite xt.xo making sense by (3.13). To give x in
terms of more familiar colimit-operations we first take
s: DXy + K to be the coequaliser of £ and £', then take
t: K+ X, to be the coequaliser of the two morphisms

2

20D“A + K representing the 2-cells sp and st.so, finally

setting x = t.s.
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Define (3.1) to be

Du
(3.16) DA >DX0
a u,y n X
A -——>X0 —QDX0  —— X1 ’
u iXO X :

observing that the right hand region commutes since

x£ = x&'.
Observe that from (3.7) we have

iA Du
(3.17) A — DA > DX, = id ,

e |-

A — Xy
v

and that by the definition of x and by (3.16) we have

D2A D2A

(3.18) nA Dal Jl/ DYD‘n

4'
Du
DA —— DX0 DA —MmMm— DX0

a| e lx aJ le,ua lx

A—m— Xl A— Xl
v v

Now let B = (B,b) be a D-algebra and g: X + B be

a morphism in D/K which we write as
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Dg
(3.19) DX

v
=
o

x<
v

g1

Write the composite (3.3) as

Df:!
(3.20) DA DB
a J ﬁ £ lb
- -

We wish to show that £ = f' and that (f,f) satisfies the

unit and associativity laws for a D-morphism.

From (3.17) and the definition of (3.20), we have
f.a.iA = b.Df'.iA; the latter is b.iB.f' by the naturality
of i; but a.iA =1 and b.iB = 1 since (A,a) and (B,b) are

D-algebras; hence f = f' as required.

Again using (3.17) and the definition of (3.20)

we have f.iA = id, which is the unit law for a D-morphism.

To get the associativity law consider the composite

Du Dg

(3.21) DA —> DX

0
DB

o
\Z

=
v
v
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of (3.19) with the commuting region in (3.16). We have

gou = f' by the definition of (3.20), so that gju = f.

By the commutativity of (3.19) we have g;.x.iXy = b.Dgj.iXy;
by the naturality of i the latter is b.iB.g,; which is g0

since (B,b) is a D-algebra. We record this as
(3.22) gy = b.Dgo.iX0
Thus the commutative diagram (3.21) may be written as

Df
DA > DB

(3.23)

Xq > B
1)

Pasting (3.19) onto (3.18) and using D of (3.23)

gives the desired associativity axiom in the form

(3.24) 2
2 5 D°f 2
DA DA >D”B
mA Da & Dy \.Dn Db
Y Df Y Y
DA ——> DB = DA 4>DXO > DB
Du Dg0
a & f b a & £ b
\L Y \L
A— s B A > B
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It remains to show that any D-morphism
(£f,f): A > B is of the form (3.3), with 8§ defined by (3.16),

for a unique g: X + B. Using (2.3), observe that such a

g must satisfy

(3.25) DA —— >DB = DA

but, because f.iA = id, there is a unique g0 satisfying

(3.25). Using (3.25) and (3.22) we can rewrite the

associativity law as

DA
mA !
DA
n
a |y
A > X > DX > B
u 0 iX0 0 b.Dg0
equals
pZA
Dn
Da
“ Dy
DA Du > DX,
n 1
al{y
A > X —> DX >B
u 0 iXO 0 b.Dg0
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so that by the definition of x: DX; » X; there is a unique
morphism gy: X1 -~ B satisfying (3.19). Moreover by (2.3)
we have gg = gl.x.ixb; so that the composite of (3.19) with
(3.16) is, by (3.25), indeed equal to (f,f). 0

4. In preparation for the proof in section 4 that D, is
reflective in D/K when K is cocomplete and D has a rank, we
set up, in this section, the transfinite-induction machinery

that will allow us to use the rank of D.

Let 8 be a 1limit ordinal; fixed for the remainder
of this section. Write Ord for the ordered set of ordinal
numbers strictly less than 6 considered as a category (and
hence as a 2-category). Write S: Ord » Ord for the
successor functor sending o toa + 1, and oc: 1 = S for the
natural transformation whose component o_: o =+ a+l is the

o

unique map in Ord. Observe that So = oS.

By a D-sequence we mean a pair (G,g) where
G: Ord » K is a functor and where g: DG - GS is a natural

transformation satisfying

iG

(4.1) G

v
g
(ep]

Go
GS

and
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) ... mG .. ..
(4.2) e " > DG
Dg g
DGS GS
GoS
gs Y
Gs?

Note that (4.1) allows us to rewrite (4.2) as

mG

(4.3) D2G > DG
Dg g
DGS «— GS
iGS
gS
Gs? i

If we write the value of G at the object o as G,
and its value at the morphism B + o in Ord as GBa, and if
we write gy" DGa > Ga+1 for the o-th component of g, we see
that a D-sequence is a kind of "approximate D-algebra'",
with g as an "approximate action'" and with (4.1) and (4.2)
as "approximate unit and associativity axioms'". A morphism

(G,g) - (H,h) of D-sequences is accordingly defined to be a

natural transformation f: G = H such that
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Df
(4.4) DG > DH

GS — HS
£S

while a D-sequence-2-cell is a modification p: f + k such

that

(4.5) DG Jl, Dp DH

Thus we have defined a 2-category D-Seq (depending on the

chosen 1limit ordinal 6).

There is a forgetful 2-functor Z: D-Seq »+ D/K
sending (G,g) to (Go,gO,Gl), sending f to (fo,fl) and send-

ing p to (pO,pl). The purpose of this section is to prove:

Proposition 4.1. If K is cocomplete, the 2-functor

Z: D-Seq -+ D/K has a left adjoint V which satisfies ZV = 1.

Moreover the unit 1 = ZV of the adjunction is the identity.

B

o and

Since the proof constructs the data Ga’ G
g, for a D-sequence (G,g) by transfinite induction starting

with GO,G1 and 8p> We record some facts about the
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component-versions of the axioms for a D-sequence. The

functoriality of G is expressed by

(4.6) G = 1; quG

Y = GY for alla < B < ¥.
o (o}

B

The naturality of g is expressed by

DGg"
(4.7) DGB > DG,
gg g,
GB+1 — G for B < a
Ga+1
B+1

In terms of components (4.1) and (4.3) become

v iGa
(4.8) Ga > DGa
g
Ga+1 o
o
Ga+1
and
Dg g
(4.9) 02 — > DG art > G
o o+l “ Ta+2
mG 16441
Y
DGa > Ga+1,
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respectively. In the inductive construction, (4.8) forces

1

a+
the value G, once we have G, Ga+1 and g,, and then

(4.6) forces the value of GOL+1

B
our inductive construction the only GBa we have to construct

for all B € ¢ + 1, Thus in

explicitly are those for a a 1limit ordinal. 1In all other

cases the value of GBa is forced, by (4.8) and (4.6), from

the knowledge of the 8y The forced value Gg+1 Gg+1 for

Gasq in (4.7) with the forced value of Gy '

from (4.8) shows
that the only instances of (4.7) that do not follow

automatically are

DGB ga
(4.11) DGB > DGa >'Ga+1
gB 1Ga
G8+1 _— Ga for a limit
o
GB+1 ordinal a and all B<a,
and
a+l
DG g
o o+l
(4.12) DG,, >DG,,, ——> 6.,
g .
¢ lGa+1
G for all a.

o+l

Proof of Proposition 4.1.

Given X = (Xo,x,Xl) in D/K we define by transfinite
induction a D-sequence (G,g) that shall be VX. We begin by
setting G, = X, and G; = X; and by taking gp: DGy G, to

be x.
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Suppose that § is an ordinal with 2 ¢ § < 6, and

that we have defined Ga for o < 6§, G % for B £ a < § and

B

g,' DGa > Ga+1 for o + 1 < 6§, satisfying (4.8) - (4.12) as

far as they make sense. We now show how to define the

object Gso and the attendant data.

If § is a 1limit ordinal o, we define Ga as the
colimit

(4.13) G = colim G ,
o B<q B

with the connecting morphisms GYB: GY > GB understood. This

ensures (4.6).

If § is a + 1 for a 1limit ordinal o, we define

: DGa > Ga to be the simultaneous coequaliser of the

ga +1
o+l

left-hand squares of (4.11) for all B < a, and take for Ga
the value forced by (4.8).

If § = oo + 2 for any ordinal o, we define

8o+1' DGa+1 > Ga+2 to be the simultaneous coequaliser of the
left-hand squares of (4.9) and (4.12), and take for G::f

the value forced by (4.8). This completes the construction

of (G,g). We set VX = (G,g) and observe that Z(G,g) = X.

To complete the proof we have only to show that,
given a D-sequence (H,h), each morphism (fo,fl): X - ZH in
D/K extends uniquely to a morphism f: (G,g) » (H,h) of
D-sequences; that is, that there is a unique f with

Zf = (fO,fl). We shall define inductively the components
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f&: Ga > Ha of £ for 2 < o« < 8. (We leave to the reader
the essentially identical verification at the level of
2-cells; once again the point is that the colimits in K

are CAT-colimits).

For simplicity we write the axioms on f in terms

of components. Thus (4.4) becomes

g

a
(4.14) DG, >G4
Df £41
DH > H
o o+l
hOL

and the naturality of f is expressed by

(4.15) G G

However composing (4.14) with iGa: Ga > DGQ, using the
naturality of i, and using (4.8), we get (4.15) automati-
cally in the case that o = B + 1. Thus the only case when
(4.15) does not follow automatically is when o is a limit

ordinal and B < o.
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Suppose that fB is defined for B < 6, where
2 < 6 <6, satisfying (4.14) and (4.15) as far as they make
sense, and with £ and f1 being the given morphisms. We have
only to define fd satisfying (4.14) and (4.15), and show it

is unique.

If § is a 1limit ordinal o, it is clear that

fe H
G, ——>H, ————— H
B B o
is a cone .over (GB)B<G’ so that by (4.13) there is a unique

fa satisfying (4.15).

If § is oo + 1 for some limit ordinal o, the

morphism

DG, ———— > DH  — > H
o o o+l
Df h
a a
coequalises the left-hand squares of (4.11) for all B < a,
because of the axioms satisfied by fY for vy € o and
because the analogue of (4.11)is satisfied by (H,h). Hence

by the definition of g4 there is a unique fa+1: G > Ha

o+l +1

satisfying (4.14).

A precisely similar argument works in the case
where § = a + 2 for some ordinal a. This completes the

proof. g

Since the unit of the adjunction is the identity,

we have:
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Corollary 4.2. ' The 2-functor V: D/K -+ D-Seq is fully

faithful. O

We now define a 2-functor P: D, +» D-Seq. If (A,a)
is a D-algebra then the D-sequence P(A,a) = (G,g) where G
is the functor constant at A, and where gy * DGa > Gh+1 is
a: DA » A for every o in Ord. If f: (A,a) - (B,b) is a

strict D-morphism, Pf is the morphism of D-sequences whose

every component is f; and P is similarly defined on 2-cells.

Propositidn 4.3. The following diagram of 2-functors
commutes.

L
(4.16) D, > D/K

\
P
Y
D-Seq

Proof. We refer to the proof of Proposition 3.1 and

examine the construction of (G,g) = VX in the case when
X = L(A,a) for a D-algebra A = (A,a). It is a matter of
showing that each Ga is A, each GaB is 1 and each g4 is a.

We have this for G,,G, and g0 by the way the construction

0’71

starts; (4.8) gives Go1 = 1 by the unit axiom for a
D-algebra. Suppose inductively that we have the result for
all indices less that §. When § is a limit ordinal o,

(4.13) gives Ga = A and GBa = 1. For the other two cases
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we observe that, by the inductive hypothesis, the left-

hand square of (4.9) becomes

Da

v
=
>

(4.17) D°A

DA

v

and the left-hand squares of (4.11) and (4.12) both become

(4.18) DA > DA

But a is the coequaliser of (4.18) as a.iA = 1; and is well
known to be the coequaliser of mA and Da, hence of (4.17);
thus a: DA » A is the simultaneous coequaliser of (4.17) and

(4.18). g

5. In this section we use the results of §4 to help us

prove:

Proposition 5.1. Let K be cocomplete and let D have a

rank. Then the full inclusion 2-functor L: D, - D/K has a

left adjoint R.
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This then gives us:

Proof of Theorem 1.1.

Let A = (A,a) be a D-algebra. From Proposition
(3.1) we have an object X € D/K and an isomorphism (writing

in the inclusion functors)

~

(5.1) 6: D/K(X,LB)

D(A,JB);

by the description of 6 in Proposition 3.1, it is clear
that it is 2-natural in B € D,. But by Proposition 5.1 we

also have a 2-natural isomorphism

(5.2) 7,(RX,B) = D/K(X,LB).

Putting together (5.1) and (5.2) and writing ®A for RX we

get an isomorphism

~

(5.3) m: D(A,JB) = D, (2A,B)

which is 2-natural inB € D,. Hence ¢ extends to a 2-functor
making (5.3) 2-natural in both variables, and provides the

desired adjoint to J. 0
Proposition 5.1 also gives:

Proposition 5.2. Dy is a cocomplete 2-category.

Proof. In view of Proposition 5.1 it is enough to show
that D/K is a cocomplete 2-category; by Street [lp] it

suffices to show that D/K admits small colimits and
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tensoring with 2. For colimits let M be a small category
and H: M - D/K a functor; that is, a pair of functors
HO,Hl: M - K and a natural transformation h: DHO > Hl' Let
the colimit of HO be ¢0: H0 > XO and let the colimit of

H1 be ¢1: H1 + X;. Let the colimit of DH0 be woz DH, >~ Z

1
and let the comparison map colim DH0 + D colim H0 be

0 0’

k: Zy > DX;. The natural transformation h: DH0 * Hy
induces a morphism h: Zo > X4 of the colimits. Form the

pushout

=4

(5.4) Z

DX,

It is easy to verify that (Xo,y,Yl), with the evident cone,
is the colimit of F (as a CAT-colimit). We leave to the

reader the very similar construction of 28X for X € D/K. 0O

As the first stage in the proof of Proposition

5.1 we prove:

Proposition 5.3. Let K be cocomplete and let D have a

rank 6. If D-Seq is_the 2-category of section 4 correspond-

ing to this limit-ordinal 6, then the 2-functor

P: Dy » D-Seq has a left adjoint Q.

Proof. For (G,g) € D-Seq we define (A,a) = Q(G,g) as
follows. First set

(5.5) A = colim G_,
a<0 o
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(5.6) : u, * Ga —> A
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the connecting morphisms GYB are understood in (5.5), so

that we have
(5.7) uaG = u for all B < o < ©

as the expression of the fact that u, is a cone. The

hypothesis that D has rank ¢ 6 tells us that

(5.8) Duu: DGa ——> DA
and

2. . 82 2
(5.9) Dua. DGG———>DA

are both colimit-cones. We now observe that

(5.10) DGa —->Gu+1 —> A
ga ua+1

is a cone over DGa and hence induces a unique morphism

a: DA » A such that

Du
(5.11) DG > DA

G > A for all o < 6.

a+l
Us+1

From (5.11), the naturality of i, and (4.8), we get

a.iA.u =u

a+l
o a+1'Ga

; which 1is u, since u is a cone.
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Because u is a colimit cone we can conclude that a.iA =1,

which is the unit axiom for a D-algebra. To get the

associativity axiom we notice that

2

a.mA.D"u, = a.Du, .mG, by naturality of m
= ua+1'ga'mGu by (5.11)
= ua+2.Ga2;2.ga.mGa since u 1is a ;one
= ua+2.ga+1.Dga by (4.9) and (4.8)
= a.Duu+1.Dga by (5.11)
= a.Da.Dzua by (5.11);

whence the desired result, since Dzua is a colimit cone.

So (A,a) = Q(G,g) is indeed a D-algebra.

Clearly by (5.11) the u, are the components of a
morphism of D-sequences u: G - PA. To show that Q is the
left adjoint of P it remains to verify that for every
D-algebra B = (B,b) every morphism of D-sequences

f: G > PB is given by

(5.12) f = ku

for a unique strict D-morphism k: A > B. It is clear that
fa: Ga + B is a cone over (Ga)a<e’ so that there is a
unique morphism k: A > B such that £ = ku,; it remains

only to show k is a strict D-morphism. Notice that
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b.Dk.Du, = b.Df by (5.12)
= £,,1°8 as f is in D-Segq
= k.ua+1.ga by (5.12)
= k.a.Du by (5.11)

hence b.Dk = k.a as Dua is a colimit cone; that is, k is a

strict D-morphism. 0

We now have:

Proof of Proposition 5.1.

By Proposition 4.3 we have P = VL; by Proposition
4,1 we have ZV = 1; hence L = ZP. As P has a left adjoint
Q by Proposition 5.3, and Z has a left adjoint V by
Proposition 4.1, it follows that QV is the left adjoint of

L. g

6. The isomorphism m of (1.1) asserts that, for any
D-morphisms U,V: A »~ B and any D-2-cell a: V > U there is a

unique D-2-cell B: w(V) » w(U) such that B.nA = a as in the

diagram
Vv mVv
//_\ /-’_—\
(6.1) A i o B = A —> A & B8 B ,
R nA ~_ 7

U U
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namely B =m(@). From this it easily follows that, if
f: B> C is a strict D-morphism, and U: A+ B and V: A+ C
are arbitary D-morphisms, there is a bijection between

D-2-cells o:V »f.Uand D-2-cells B: nV > f.mU such that

U nA U
(6.2) A —— 5B = A > A —> B
a B
vV \=> f LN f
C c

again B = n(0) as f.mU = w(£.0).

The main purpose of this section is to show that
composition with nA still induces a bijection as in (6.2)
when the strict D-morphism f is replaced by an arbitary
D-morphism F; provided the 2-category K admits comma
objects. (It is possible to establish this result without
the last hypothesis, but the proof is then much less direct.)

The essential tool for this is the following:

Proposition 6.1. Let comma objects exist in K. Then for a

morphism F: B » C in D the comma object

(6.3) X > B

@
o
{|/>J
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of 1C and F ig_v exists. Moreover 30 and 81 are strict

D-morphisms, and the D-morphism G: C »+ X is strict if and

only if both 3,G and 9,G are strict.

Proof. Let F = (f,f): B+ C be the given D-morphism. To
get the underlying object of the D-algebra X = (X,x) we

form the comma object

1
(6.4) X — B
A
9, = f
C C
1

of 1C and £ in K. By the universal property of A there is

a unique 1l-cell x: DX » X in K such that

D31 b X 31
(6.5) DX > DB > B = DX > X > B
DA f A
DBO = Df => f 30 = £
DC —> DC > C > C ’
1 c 1

where b: DB + B and c: DC - C are the algebra-structures for
B and C. We have now to verify that (X,x) is a D-algebra;
we will however only show that x satisfies the unit 1law,
leaving the equally simple associativity axiom to the
reader. By the naturalityof i we get that the composite of

the left-hand side of (6.5) with iX: X > DX is equal to
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1 iB b
X > B —> DB > B
A f
80 = f Df = £
C > C > DC > C ,
1 iC c

which is just A by the unit law for (f,f). We have,
therefore, the required equation x.iX = 1. Equation (6.5)
now tells us that ao and 9, are strict D-morphisms and that

A is a D-2-cell from 80 to Fal.

We have now to verify that (6.3) is indeed the
comma object in D. Suppose that we have D-morphisms

U = (u,u) and V = (v,v) and a D-2-cell o as in

U
(6.6) A > B
o
A" 1 == lF
C > C
1

The axiom for o to be a D-2-cell can be expressed by the

equality of the 2-cells (ignore for the moment the broken

arrows)

a u

(6.7) DA > A > B
E v a

Dv N == v # f
v

DC ---------2 > C > C

c 1

and
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a
(6.8) DA -----======-==-3 > A
Du 2=%> \‘xx\u
Dv ~\\\
b Sw
DB >
Y Da
DC \ i
| N\ i
Df => £

B

-
A4
(@]

DC
C

By the universal property of (6.4) there is a unique

w: A > X in K such that
u w 3].
(6.9) A— 5B = A > X > B
' o A
= f P > f
v 0
C C

It is easily verified that the unbroken part of (6.7) and
(6.8) are A.w.a and A.x.Dwrespectively; hence, by the

universal property of A for 2-cells, there is a unique

2-cell w as in

(6.10)
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whose composite with A is the common value of (6.7) and
(6.8). An easy calculation shows that W = (w,w) is a
D-morphism from A to X; the statement that the composite of
(6.10) with A is the common value of (6.7) and (6.8) says

exactly that

U W
(6.11) A —  &B = A
o
A" =2 F

We leave to the reader the task of checking the universal
property of (6.3) on 2-cells (which is, of course,
unnecessary if K is complete). This completes the proof

that (6.3) is the comma object in D.

Finally, if u and v are identities, the uniqueness-
part of the universal property of (6.4) at the level of
2-cells gives at once that w = id; that is, W is strict if

U and V are. Clearly U= 03,W and V = 9;W are strict if W

0
is. O

Theorem 6.2. Suppose that K is cocomplete and admits

comma objects, and that D has a rank. Let m be the

isomorphism of Theorem 1.1. Let U: A > B, F: B > C and

V: A > C be D-morphisms. Then every D-2-cell a: V > F.U is

of the form

A wU
(6.12) A — 5B = A N2 5 A > B
A" 1 o lF B lF
L= Vv
C—5¢C C

1
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for a unique D-2-cell B.

Proof. Let (6.3) be the comma object in D of 1C and F;
then every 2-cell a as in (6.12) is of the form A.W as in
(6.11) for a unique W: A ~»> X in D with aow = V and 9,W = U.
Furthermore every B as in (6.12) is A.g for a unique

g: ®A » X and moreover g is strict as mU and mV are strict.
Finally, by Theorem 1.1, W is g.nA for a unique strict

D-morphism g: A » X. o

7. The most convenient way of getting op-lax-natural
transformations p and t as described in section 1 is to
extend the result of Theorem 1.1 from the 2Z-category K to

the 2-category K' = [2,K].

From the doctrine D = (D,i,m) on K we get a

doctrine D' = (D',i',m') on K' by setting
(7.1) D' = [2,D]

i' = [2,i]

m' = [2,m]

We embed K in K' as a (non-full) sub-2-category by the
2-functor Ip: K » K' which sends the object A of K to the
object (A,lA: A > A,A) of K', which sends the morphism f in
K to the morphism (f,id,f) in K', and which sends the
2-cell o in K to the 2-cell (a,a) in K'. It is clear that
K is stable under the doctrine D' and that the restriction

of D' to K is precisely D. In consequence the 2-functor I0
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induces 2-functors I: D > D' and I,: D4 » D,' where D, '
and D' are the analogues for D' of P, and D for D; we have

commutativity in

(7.2) D* >

Jl
where J': D,' » D' is the analogue of J: Dy + D.

The point of the passage from D to D' is that a
D'-algebra is a triple (A,G: A > E,E) where A and E are
D-algebras and G is a D-morphism, while a D-morphism from
G: A+ E to F: B~ C is a triple (U,a,V) where U and V are
D-morphisms and a: FU + VG is a D-a-cell. (see Chapter 0

section 9 ).
The main result of this section is:

Theorem 7.1. If K is cocomplete and admits comma objects,

and if D has rank, then the 2-functor J': D,' - D' has a

left adjoint &' whose value ¢'G at the object G: A > E of

D' is the object ¢G: ®A + 9E of D,'. The unit n' of the

adjunction has components n'G given by

nA
(7.3) A —> QA
id
G = oG
E > OF

nE
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If we denote the adjunction isomorphism by

m': D'(F,J'G) = D4(@'F,G)

then n'(UO,ﬁ,Ul) has the form (VO,V,VI) where Vo = nUO and

V1 = ﬂUl.

Proof. It suffices to show that every morphism

U = (Uo,ﬁ,Ul) in D' from G: A+ E to F: B> C factorises as

Up - A Vo
A— > B = A > ®A > B
i} %
G = F G oG => E
E——>5¢C E > OF > C
U1 nNg V1

for a unique morphism V = (VO,V,Vl) in D4' (V being strict
means exactly that V, and V; are strict D-morphisms.). By
Theorem 1.1 we do have unique V,, and V,, namely wU, and
mU;. Since nE.G = ¢G.nA by the naturality of n, the exis-
tence of the unique V follows from Theorem 6.2. The
corresponding property on 2-cells follows from the unique-

ness clause in Theorem 6.2. 0O
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8. In this section we prove:

comma objects, and let D have a rank. ©Let U: D » C be a

2-functor such that the 2-functor UJ: D, - C has a left

adjoint F with unit j, counit n and adjunction isomorphism

Y. Then there exists an op-lax-natural transformation

k: JFU “AA»ID'SUCh'that

(8.1) . kJ = Jn,

and such that j and « exhibit JF as an op-quasi-left adjoint

to U.

We thus have:

Proof of Theorem 1.2. Since (JF,U,j,k) is an op-quasi-

adjunction we know that the functor

Y
= J

(8.2) c(Xx,uJB) —> 0, (FX,B)—/—> D (JFX,B),

which is equal to
JF D(1,xJB)

(8.3) ¢c(X,uJB) ——> D(JFX,JFUJB) —— > D (JFX,JB).

is the left adjoint of (see Chapter 0 section 6)

..... U S C(jXx,1)
(8.4) 9 (JFX,JB) ——> C (UJFX,UJB) ———> C(X,UJB).

Thus the required result follows immediately. 0O
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The first step in the proof of Theorem 8.1 is:

Proposition 8.2. ~ There is an op-lax-natural transformation

p: J® VW 1D'such‘that

. (8.5) pd = Je
and
(8.6) p.n = id.

Proof. The component €'F of the counit of the adjunction of
Theorem 7.1 is the unique D'-morphism satisfying e€'F.n'F = 1;

by Theorem 7.1 it has the form

€A
(8.7) oA > A
oF e’ F
>
®B —> B
€B

where € is the counit of the adjunction of Theorem 1.1.

We define the op-lax-natural transformation

p: J& YW\ 1 by setting

(8.8) oA

oF PP F

oB > B
pB
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equal to (8.7) for all D-algebras A and B and all
D-morphisms F: A + B. The part of the lax-naturality of p
relating to identities and composition is now immediate
from the universal property of n'; the part relating to
2-cells is immediate from the naturality of e'. Clearly by

the above definition we have

(8.9) pF.nA = id.

Further if F is strict the exterior of (8.7) commutes by

the naturality of e; hence by the universal property of n'

we have

e'F = id ;
that is
(8.10) pF = id

From these considerations we obtain the equations

(8.11) pJ = Je

and

(8.13) p.n = 1id . 0
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The second step in the proof of Theorem 8.1 is:

Proposition 8.3. If F: C + Dy and U: p » ¢ are 2-functors

as in the hypotheses of Theorem 8.1, then there exists an

op-lax-natural transformation k: JFU s 10 such that
(8.14) kJ = Jn

and

(8.15) : Uk.ju = id

Proof. We define k to be the op-lax-natural transformation

(8.16)

J
N
>0

By putting J on the bottom left-hand corner of (8.16), and

by using (8.5) and the triangle equation Je.nJ = id, we

get equation (8.14) as required.

Pasting j on to the right hand side of (8.16)

gives
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(8.17)

which is the composite Uk.jU. Using the naturality of j,n
and n to change the order of composition allows us to apply

the triangle equation UJn.jUJ = id to get (8.17) equal to

1
/M
(8.18) 9 ¢ ,p, —J Iy 5 C

N

W

But by (8.6) the op-lax-natural transformation (8.18) is

equal to id; that is, we have (8.15). O

We now complete the proof of Theorem 8.1 by

proving:

Proposition 8.4. Let F: C » D, and U: D » C be 2-functors

such that F — UJ with unit j and co-unit n. Let

k: JFU W 10 be an op-lax-natural transformation such

that

(8.19) kJ = Jn
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and
(8.20) Uk.ju = 1.

Then j and k exhibit JF as an op-quasi-left adjoint to U.

Proof. Recall from Chapter 0 that we have only to show
that the two triangle-equations are satisfied and that both

jj and K. are identities.

The first triangle-equation is precisely (8.20),

while the second is given by

kJF.JFj = JnF.JFj
= J(nF.Fj)
= 1.
Since j is a proper natural transformation we have jj = id;

while the chain of equalities

kB kJB
= Ky by (8.19)
= Jn g by (8.19)
= id as n is 2-natural

gives Ke = id. 0
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Before leaving this Chapter we consider two
special cases of Theorem 1.2 that will be of interest in

Chapter 2.

Examples 8.5.

1. From Proposition 5.2 we know that under the
hypothesis of Theorem 1.2 the 2-category D, is cocomplete
as a 2-category; thus, D4y is a tensored CAT-category, by
which we mean that for all A € D, the 2-functor
Dx(A,-): Dx N CAT has the left adjoint -®A: CAT + Dx.

From the isomorphism 7 of (1.1) we see, therefore, that the
2-functor D(A,J-): Dix - CAT has the left adjoint

-®®%A: CAT » D4 giving a natural isomorphism

~

x: CAT(C,D(A,JB)) = D, (C8®A,B),
the unit and counit of which are

v: 1 =D(A,J(A,J(-80A))
and
o D(A,J-)B0A = 1
respectively.
Putting F = -Q0A, U = D(A,-), j = v and n = g in

Theorem 1.2 we find that the functor

J: Dx(COBA,B) + D(J(COBA),JB)
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is the left adjoint of the functor W, where W is the composite

D(A,-)
D (J (COBA) ,JB) ——> CAT(D(A,J (C89A)) ,D (A,JTB))
CAT (vC,1)
CAT(C,D(A,JB))
W
= | X
0, (CO2A,B)

2. Let C be the 2-category K and let F be the free-algebra
2-functdr D while U is the forgetful 2-functor uD: D » K.
It is well known that F —] UJ; since this is the usual
Eilenberg-Moore adjunction. If we make the observation that

j = i, then Theorem 1.2 gives that the functor
J: D4 (FX,B) » D(FX,B)

is the left adjoint of the functor W, where W is the composite

0 (FX,B) -—U—>K(UFX,UB)
4 K(iX,1)
W K (X,UB)
= | v

Da (FX,B)
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CHAPTER 2

1. In any 2-category E which is equipped with a notion

of small object, and which has a terminal object 1, we can

imitate the classical notion of a cocomplete object that we

have in CAT. That is to say, we call A € E cocomplete in

E if A has all small colimits, by which we mean that for

each small X € E the functor:

E(!,A)
(1.1) EA,A) — E(X,A)

has a left adjoint L. We then call LF: 1 > A the colimit of
F, and the component F = (LF)! of the unit we call the

colimit-cone.

Such a definition of cocompleteness is of no use at
all in many good 2-categories; it gives a perfectly trivial
notion of cocompleteness if applied to the 2-category of
additive categories. In fact it has long been recognised
(see Day-Kelly [5]) that cocompleteness in the 2-category
V-CAT of categories enriched over a symmetric monoidal
closed V should be defined quite differehtly (and of course
it is this definition of cocompleteness that we have been
using and will continue to use for 2-categories). Only
recently has a sufficiently general notion of "colimit" in
V-CAT been given, for which cocompleteness in the Day-Kelly
sense means "admits all small colimits" (see Borceux-Kelly

[ 4 ],'Auderset [11).
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In spite of this the primitive definition of co-
completeness in terms of a left adjoint to (1.1) turns out
to have considerable significance for the 2-category D-CAT
of algebras for a doctrine D on CAT; and it is this
definition of cocomplete object in D-CAT that we use in this
chapter. In fact the special case of this where D is the
doctrine whose algebras are monoidal categories was the
impulse for much of the work in this thesis; for it turns
out, as we shall see in Chapter 3, that many important
questions of monadicity reduce to questions of the existence
of colimits of 1-cells in Mon-CAT. Although our principal
applications are with Mon-CAT, there is nothing special about
it, and it is just as easy to work with D-CAT for a ranked
doctrine D. Of course the terminal object in D-CAT is just
the unit category 1 with its unique D-structure; and a

D-algebra is small if its underlying category is small.

One feature that the above notions of cocompleteness
have in common is that they all demand the existence of
certain left Kan extensions. The definition we are using
calls A € E cocomplete if every morphism F: X + A from a
small X admits a left Kan extension along !: X » 1, the unique
morphism into the terminal object. On the other hand the
Day-Kelly [5 ] definition of cocompleteness in V-CAT amounts
(see Borceux-Kelly [ 4 ]) to demanding the existence of the
ﬁointwise left Kan extension of any F: X - A from a small X,
along any morphism G: X » B. A difficulty in comparing these
two definitions is the lack, in a general 2-category E, of

a notion of pointwiseness for Kan extensions.
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2. Let D = (D,i,m) be a doctrine on CAT and let Cat be
stable under D (that is, the category DX is small whenever
X is small); furthermore let D have a small rank. In this
chapter we will be concerned entirely with doctrines of

this type.

As usual we denote the 2-categories of D-algebras by
Dy and D; if at any time we need to refer to small D-algebras
we denote the respective 2-categories of small D-algebras
by D-Cat, and D-Cat. We will use the terms D-algebra and
D-category intérchangeably; similarly with D-morphism and

D-functor, and D-2-cell and D-natural transformation.

A D-category A = (A,a) is said to admit the colimit
in D of the D-functor G: X » A if there is in D a universal

diagram of the form

X G > A
\a/
i ;

that is if there is a free object over G relative to the

functor

D(!,A)
»(2.1) P(M,A) —— D(X,A).

If such a free object exists over every G: X + A with X

small, that is if (2.1) has a left adjoint for every small
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D-category X, we say that A = (A,a) is cocomplete in D or

D-cocomplete; or that A = (A,a) admits all D-colimits.

The category D(1,A) will play an important role in
the work of this chapter; we therefore give this category
a special name. If we consider the case when D is the
doctrine for monoidal categories, we observe that a monoidal
functor 1 + A is just a monoid in the monoidal category A
(see Mac Lane [14] page 166); consequently we call a
D-functor 1 + A a D-oid in A, and call the category D(1,A)

the category of D-oids in A, denoting it by D[A].

From the forgetful 2-functor uD. D » CAT we get a
forgetful functor U = UA: D[A] + A which is equal to
, UD D D .
(2.2) P@,A) ——> CAT(U"1L,U"A) = CAT(L,A) = A.
We have already mentioned that if D = Mon-CAT then
the objects of DIA] are precisely the monoids in A; it is

in fact true that D[A] is the category of monoids and

monoid-morphisms in A, which is called Mon(A) by Dubuc [6].

If D =/A x-, where A is the simplicial category, it is well
known (see Kelly [4 ]) that the algebras for D are categor-
ies equipped with a monad. Then if (A,T) is a D-algebra

it is easy to check that D[A] = AT, the category of
Eilenberg-Moore algebras for the monad T, and that U is the

usual forgetful functor for such algebras.
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3. Since CAT is cocomplete as a CAT-category and hence
a fortiori as a Cat-category, since further Cat is cocompl-

ete as a Cat-category, and since moreover D has a small

rank, all the results of Chapter 1 apply both to D and to

the restriction of D to Cat.

We observe that the constructions in Propositions 3.1,
4.1, 5.1 and 5.3, from which the adjoint ¢ of J: D, + D was
obtained, only used the construction of colimits in K of
size not exceeding 6; the rank of D. It follows, therefore,
that smallness'is stable under all of these constructions.

In particular this gives:

Lemma 3.1. (i) The D-category ®A is small whenever the

D-category A is small.

(ii) The D-category COA is small whenever the

D-category A and the category C are both small. 0

4. In this section we give a characterization of those
D-categories B = (B,b) that are cocomplete in P; in terms
of the cocompleteness in CAT of D[B] and the existence of a
left adjoint to the functor U: D[B] » B. Of equal importa-
nce for our applications, however, is the question of the

preservation of D-colimits by a strict D-functor H: B » C;

here we give only sufficient conditions in terms of the

preservation by D[H] = D(ML,H): D[B] » D[C] of colimits in

CAT, and of the preservation by D[H] of free objects
relative to U. In our applications it will not in general

be the case that C is cocomplete in ¥, and our only concern
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is with colimits of those D-functors X + C which factor
through H: B » C. To avoid repetition we collect into one
theorem the results on the existence of D-colimits and

those on their preservation. Observe that our proofs of
sufficiency for the conditions we give are quite elementary;
while our proof of necessity, as regards existence, requires

the results of Chapter 1.

Theorem 4.1. Let D be a doctrine on CAT under which Cat is

stable and which has a small rank. Then a D-category

B = (B,b) is cocomplete in D if and only if the following

two conditions are satisfied:

(1) the functor UB: D[B] - B has a left adjoint F;

(ii) the category D[B] is cocomplete in CAT.

Let H = (h,id) be a strict D-functor from B to C where

B satisfies the conditions (i) and (ii) above. Then H: B » C

preserves colimits in D provided that:

(1ii) if n,: x > UpFx is the x-component of the unit of

F 4 UB then h(nx) : h(x) » h(UBFx) = UC D[ H] (Fx) is

the unit of the free object over h(x) relative to UC.

(An equivalent statement is that D[H]. F : B » D[C(C]

is the partial left adjoint of UC relative to

h: B » C);

(iv) D[H]: D[B] =+ D[C] preserves colimits in CAT.

Proof. We first show the necessity of (i) and (ii) for

the cocompleteness in D of B = (B,b). Consider the diagram
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