
Linking Programs in a Single Address Space

Author/Contributor:
Deller, L; Heiser, Gernot

Publication details:
Proceedings of the 1999 USENIX Annual Technical Conference
pp. 283-294
1880446332 (ISBN)

Event details:
1999 USENIX Annual Technical Conference
Monterey, USA

Publication Date:
1999

DOI:
https://doi.org/10.26190/unsworks/526

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/39919 in https://
unsworks.unsw.edu.au on 2023-09-22

http://dx.doi.org/https://doi.org/10.26190/unsworks/526
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/39919
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Linking Programs in a Single Address Space

Luke Deller, Gernot Heiser
School of Computer Science & Engineering

University of New South Wales
Sydney 2052, Australia

fluked,gernotg@cse.unsw.edu.au, http://www.cse.unsw.edu.au/˜disy

y

Abstract

Linking and loading are the final steps in preparing a
program for execution. This paper assesses issues con-
cerning dynamic and static linking in traditional as well
as single-address-space operating systems (SASOS).
Related loading issues are also addressed. We present
the dynamic linking model implemented in the Mungi
SASOS and discuss its strengths and limitations. Bench-
marking shows that dynamic linking in a SASOS car-
ries significantly less overhead than dynamic linking in
SGI’s Irix operating system. The same performance ad-
vantages could be achieved in Unix systems, if they re-
served a portion of the address space for dynamically
linked libraries, and ensured that each library is always
mapped at the same address.

1 Introduction

Single-address-space operating systems (SASOS) make
use of the wide address spaces offered by modern mi-
croprocessor architectures to greatly simplify sharing of
data between processes [WSO�92,CLBHL92,RSE�92,
CLFL94]. This is done by allocating all data in the sys-
tem, whether transient or persistent, at a unique and im-
mutable virtual address. As a result, all data is visible
to every process, and no pointer translations are nec-
essary for sharing arbitrary data structures. While the
global address space makes all data addressable, a pro-
tection system ensures that access only succeeds when
authorised. Protection relies on the fact that a process
can only access a page if it has been mapped to a RAM
frame, by the operating system loading an appropriate
entry into the translation lookaside buffer (TLB). The

operating system thus has full control over which parts
of the single address space are accessible to a given pro-
cess.

As persistent data, i.e., data whose lifetime is indepen-
dent of that of the creating process, is always mapped
into the virtual address space (at an immutable address),
SASOS do not need a file system. For compatibility with
other systems, a file system interface can be provided,
of course, but it represents nothing more than a different
way to access virtual memory. All disk I/O is done by
the virtual memory paging system.

Such a SASOS is rather different from a system like
MacOS, which also shares an address space between all
executing programs. The main difference (other than the
absence of memory protection) is that the latter system
does not ensure that a data item has a unique address for
its lifetime. For example, files can be mapped into mem-
ory, but each time a file is opened, it will be mapped
at a different address. As each object in a SASOS has
an immutable address, pointers are perfect object ref-
erences which do not lose their meaning when passed
between processes or stored in files. This greatly facili-
tates sharing of data between programs in a SASOS, as
any data item can always be uniquely identified by its
virtual memory address.

Besides sharing, the single address space also signifi-
cantly simplifies system implementation [WM96] and
improves performance even for applications which are
not aware of the single address space [HEV�98]. How-
ever, the changed notion of address spaces makes it nec-
essary to rethink a number of issues relating to how the
system is used in practice. These include preparing pro-
grams for execution: how to bind together separately
compiled program components (“linking”), and how to
get an executable program into a state where the CPU
can execute its instructions (“loading”).

In this paper we examine the issues of linking and load-

ing of programs in traditional Unix systems, as well as
in SASOS. We present the model of (dynamic) linking
used in the Mungi SASOS [HEV�98] which is under
development at UNSW. The implementation of dynamic
linking in Mungi is discussed and its performance com-
pared to that of Unix operating systems.

2 Linking in traditional operating systems

Traditional operating systems, such as Unix systems,
generally feature two forms of linkage, static and dy-
namic.

During static linking, all code modules are copied into a
single executable file. The location of the various mod-
ules within that file implies their location in the memory
image (and hence in the address space) during execution,
and therefore target addresses for all cross-module refer-
ences can be determined and inserted into the executable
file by the linker.

A dynamic linker, in contrast, inserts symbolic refer-
ences to (library) modules in the executable file, and
leaves these to be resolved at run time. In operat-
ing systems conforming to the Unix System-V inter-
face [X/O90], such as SGI’s Irix, DEC’s Digital Unix
or Sun’s Solaris-2, this works as follows.

For each library module to be linked, the linker allo-
cates a global offset table (GOT).1 The GOT contains
the addresses of all dynamically linked external sym-
bols (functions and variables) referenced by the mod-
ule.2 When a program referencing such a dynamically
linked module is loaded into memory for execution, the
imported module is loaded (unless already resident) and
a region in the new process’ address space is allocated
in which to map the module. The loader then initialises
the module’s GOT (which may require first loading other
library modules referenced by the module just loaded).

A variant of this is lazy loading, where library modules
are not actually loaded until accessed by the process.
If lazy loading is used, a module’s GOT is initialised
at module load time with pointers to stub code. These
stubs, when called, invoke the dynamic loader, which
loads the referenced module and then replaces the re-

1The “global offset table” is Irix terminology, Digital Unix calls it
global address table.

2A further level of indirection is used when an entry references a
module exporting a large number of symbols, and for efficiency rea-
sons local symbols are also included.

spective entries in the GOT by the addresses of the actual
variables and functions within the newly loaded module.

Dynamic linking has a number of advantages over static
linking:

1. Library code is not duplicated in every exe-
cutable image referencing it. This saves significant
amounts of disk space (by reducing the size of ex-
ecutable files) and physical memory (by sharing li-
brary code between all invocations). These savings
can be very substantial and have significant impact
on the performance of the virtual memory system.

2. New (and presumably improved) versions of li-
braries can be installed and are immediately us-
able by client programs without requiring explicit
relinking.

3. Library code which is already resident can be
linked immediately, thus reducing process startup
latency.

Lazy loading further reduces startup cost, at the expense
of briefly stalling execution when a previously unac-
cessed library module requires loading. For libraries
which are only occasionally used by the program, this
results in an overall speedup for runs which do not ac-
cess the library. However, this comes at a cost: Should
the referenced library be unavailable (e.g., by having
been removed since program link time) this may only
become evident well into the execution of the program.
Many users will prefer finding out about such error con-
ditions at program startup time.

The main drawbacks of dynamic linking are:

1. Extra work needs to be done at process instantiation
to set up the GOT. However, this overhead is easily
amortised by loading much less code in average, as
some libraries will already be resident.

2. If a dynamic library is (re)moved between link and
load time, execution will fail. This is the main rea-
son that Unix systems keep static linking as an op-
tion.

3. The location of a dynamically linked module in
the process’ address space is not known until run
time, and the same module will, in general, re-
side at different locations in different clients’ ad-
dress spaces. This requires that dynamically linked

libraries only contain position-independent code.3

Position independence requires that all jumps must
be PC-relative, relative to an index-register contain-
ing the base address of the module, or indirect (via
the GOT).

The main cost associated with position-
independent code is that of locating the GOT.
Every exported (“public”) function in the module
must first locate the module’s GOT. The GOT is
allocated at a constant offset from the function’s
entry point (determined by the linker) so the
function can access it using PC-relative addressing.
This code must be executed at the beginning of
every exported function. In addition, there is an
overhead (of one cycle) for calling the function,
as an indirect jump must be used, rather than
jumping to an absolute address. These costs will
be examined further in Section 6.

Note that the GOT is an example of private static data,
i.e., data belonging to a module but not shared between
different instantiations of the module. Any variable de-
clared “extern” or “static” in the library and not used
read-only falls into that category.

It is interesting to note that Digital Unix’ quickstart fa-
cility [DEC94] tries to avoid some of the problems of
dynamic linking by reserving a system-wide unique vir-
tual address range for dynamically linked libraries in
the Alpha’s large address space. This reduces process
startup costs by the ability to easily share an already
loaded library without address conflicts. However, ad-
dress clashes cannot be completely avoided, as there is
nothing to enforce unique virtual address for every li-
brary — only a SASOS can give such a guarantee. Con-
sequently, Digital Unix still needs to use position-inde-
pendent code and pay the overhead this implies. How-
ever, Digital’s attempt to simulate a single address space
for libraries is a good indication of some of the advan-
tages a SASOS offers.

3 Linking in single-address-space systems

A single address space simplifies many things and com-
plicates a few; linking is no exception. Generally speak-
ing, the single address space makes it easy to share data,

3This is different from relocatable code normally produced by
compilers. Relocatable code contains addresses which are relative to
some yet unresolved symbols. The linker resolves these and replaces
them by absolute addresses.

and difficult not to share. The latter implies some special
effort to avoid sharing of private static data.

3.1 Static linking in a SASOS

Static linking by copying all libraries into a single exe-
cutable is possible in a SASOS exactly as in Unix sys-
tems. Consequently, standard static linking in Mungi
has the same drawbacks as in Unix: excessive disk and
memory use, as well as the requirement to re-link in or-
der to utilise new library versions. Therefore, alternative
linking schemes are desirable.

Owing to the fact that all objects in the single address
space are at any time fully and uniquely identified by
their unchanging address, copying library modules is
unnecessary when creating an executable program. In-
stead, libraries can be executed in-place, and the linker
only needs to replace references to library modules with
(absolute) addresses. No position-independent code is
needed, avoiding that source of efficiency loss. This
scheme, called global static linking was proposed by
Chase [Cha95] for the Opal SASOS.

Global static linking is fast and has some of the attractive
features of dynamic linking in Unix systems, in partic-
ular automatic code-sharing. However, the scheme has
two significant drawbacks which limit its applicability in
practice:

� As it is a form of static linking, new versions of
libraries cannot be used unless programs are re-
linked. Note that it is not possible to update a li-
brary in-place, as this would break entrypoint ad-
dresses in all programs which linked that library.
While this could be circumvented by accessing all
entrypoints via a jump table, that would not help
with currently executing programs which use the
library — they would have to terminate prior to re-
placing the library. To maintain smooth operation,
a new library version must be created at a different
virtual address, with a naming service pointing to
the latest version to be used by the linker.

� Global static linking does not allow private static
data. Such data needs to reside at an address where
it can be found by the library code, but that address
must be different for different instantiations of the
library (or the data would not be private to the in-
voking process).

Private static data must reside in a separate data segment,

which must be set up separately for each client process.
Similar to dynamic linking in Unix, the problem is how
to tell the library code where to find the data segment.
Chase suggests a variation of the GOT used by Unix dy-
namic linkers: Each process allocates a table for each
module containing the addresses of that module’s pri-
vate static data. A dedicated register, the global pointer,
is loaded with the base address of the address table of
the presently executing library module. The difficulty
is in loading the global pointer with the correct address.
Unlike the Unix case, this cannot be done by PC-relative
addressing, as the offset differs between instantiations.

Chase favours (but apparently did not implement) an ap-
proach where the called function looks up the correct
global-pointer value in a process-specific table (accessed
via its thread descriptor, which in Opal is reachable from
the stack pointer). The table is indexed by a slot num-
ber which is statically assigned to the module contain-
ing the function. Given that it is impractical to make this
(per-process) table very big, this imposes serious limi-
tations on the use of modules containing private static
data — each process can only use a small number of
such libraries and even then, clashes between the stati-
cally assigned slot numbers preclude importing certain
combinations of library modules. Furthermore, at least
two memory reads plus some arithmetic is required to
obtain the global pointer value on each call across mod-
ule boundaries.

3.2 Dynamic linking in a SASOS

Even if the problem with private static data is resolved
(or ignored), any form of static linking retains one major
drawback: A new version of a library cannot be incor-
porated without relinking client programs. This can only
be achieved by dynamic linking.

The IBM AS/400, a SASOS which, in its former guise
as System/38 [Ber80], goes back to the mid 1970’s, orig-
inally only supported dynamic linking (“late binding” in
IBM terminology) [Sol96]. Static linking (“early bind-
ing by copy”) was only introduced in 1993 for perfor-
mance reasons resulting from the calling overhead. At
the same time they introduced “early binding by ref-
erence” which essentially is global static linking. Ac-
cording to Soltis, while there is some initialisation over-
head when first accessing a bound-by-reference library
module, performance of subsequent calls are “about the
same” as in the bound-by-copy case. No further infor-
mation could be found on how the AS/400 implements
dynamic linking, but the reference to performance prob-

lems of dynamic linking seems to indicate that it does
not have a particularly good solution.

Roscoe [Ros95] presents a dynamic linking scheme for
Nemesis. Each invocation of a library modules has its
own state buffer, containing private static data. Modules
are accessed via interface references, which are instan-
tiated from module interfaces when resolving the sym-
bolic reference to the module. An interface reference
points to a structure containing a pointer to an opera-
tions table and the state buffer. A function is invoked
by an indirect jump via the operations table, and the in-
terface reference is passed as a parameter. As a result,
three memory reads are required to find the address of
the function to be called.

4 Linking in Mungi

Mungi supports static linking (by copying) as well as a
version of dynamic linking, designed to retain the full
flexibility dynamic linking offers in Unix system while
minimising run-time overheads.

During execution of a program in Mungi, a data segment
containing private static variables is associated with ev-
ery instantiation of a dynamically linked module. While
executing such a module’s code, its data segment’s ad-
dress is held in the data segment register.4 The data
segment also contains module descriptors of imported
modules. A module descriptor contains pointers to all
functions imported from the module, plus a pointer to
the data segment of the exporting module. This is shown
in Figure 1.

4.1 Initialisation of module descriptors

Module descriptors are allocated in the importing mod-
ule’s data segment by the linker. To initialise a module
descriptor at run time, the importing module calls the
exporting module’s constructor, passing the address of
the descriptor as a parameter. In order to avoid multiple
instantiation of modules which are imported by several
other modules (such as libc in Figure 1), the construc-
tor is also passed a pointer to a table of already instan-
tiated modules. This table is held in the main module’s
data segment.

4On the SGI Indy we use the global pointer register which Irix
uses to point to the GOT, hence the number of registers available to the
compiler does not change with respect to Irix.

libc data

libc.data
libc:strlen
libc:atoi
 ...

libz data

libc code

int atoi() { ... }

size_t strlen() { ... }

libz code

void aa() { ... }

int bb() { ... }

libc.data
libc:strlen
libc:atoi
 ...libz.data

libz:aa
libz:bb
 ...

main data

main code

void main() { ... }

Figure 1: Memory objects (bold boxes) and module descriptors (other boxes) during execution of a dynamically
linked Mungi program.

After verifying that its module is not already instanti-
ated, the constructor

� allocates and initialises a new data segment,

� initialises the module descriptor passed by the
caller, and

� updates the table of instantiated modules.

Only the second step needs to be performed for a module
which has already been instantiated, in which case the
address of the module’s data segment is obtained from
the table of instantiated modules.

The constructor is passed a third parameter, the expected
size of the module descriptor. The constructor will only
initialise the descriptor up to this specified size. This
supports evolution of library modules — further entry-
points can be added to a library without breaking ex-
isting applications, provided that new entrypoints are
added at the end.

Initialisation of the main module is somewhat different.
Like a constructor, the startup code needs to allocate and
initialise a data segment. In addition, the startup code

must initialise the table of already instantiated modules.
There is no problem with a module having startup code
as well as a constructor, such a module can then be im-
ported by other modules as well as being executed as a
program.

4.2 Lazy initialisation

The first step above, allocation and initialisation of the
new data segment, involves calling the constructors of
all imported modules. To avoid the obvious recursion
problem with cyclic reference, the constructor must at
this stage mark its module’s entry in the table of instan-
tiated modules as partially initialised.

Alternatively, modules can be instantiated lazily, in anal-
ogy to “lazy loading” of library modules in Unix sys-
tems.5 As lazy loading in Unix, this reduces task startup
cost and reduces total overhead if a module is linked but

5While there is some similarity to lazy loading, it is important to
note that there is no explicit “loading” step in a SASOS — everything
is already in virtual memory, and is made resident by the demand pag-
ing system on access. As far as physical memory is concerned, lazy
loading is normal in a SASOS, but does not have the same drawback
of delaying irrecoverable errors when libraries are removed.

not actually accessed at run time (at the cost of delay-
ing fatal “module not found” errors until well into the
execution).

A lazily initialised module has its descriptor point to ini-
tialisation stubs rather than module entry points. Each
stub calls the lazy initialisation routine (which is stati-
cally linked to the module), passing it an index to its own
position in the module descriptor. On the MIPS R4600,
such a stub looks as follows:

1: li $reg, constIndex
2: b lazyInitialiser

The initialiser, after setting up the module’s data seg-
ment, replaces the pointer to the stub by the address of
the appropriate entrypoint in the library module. The
stubs require an extra 8 bytes of space per entrypoint —
really a negligible space overhead.

4.3 Invoking library functions

To invoke a function called printf imported from the
library module libc, the following code is executed on
the MIPS R4600:

1: ld $temp,libc descr+\
printf index($dseg)

2: sd $dseg,const($sp)
3: ld $dseg,libc descr($dseg)
4: jalr $temp
5: ld $dseg,const($sp)

The first line loads the address of the printf func-
tion into a temporary register. This address (relative to
the beginning of the data segment) is determined by the
linker, and is at a constant offset from the data segment
register. The next line saves the data segment register of
the calling module on the stack, and line 3 sets up the
segment register for the called module. Line 4 invokes
the library function and line 5 restores the data segment
register after its return. This code executes in 5 cycles
on the R4600 (single-issue) CPU.

Note that on the R4600, a jump to a constant immediate
64-bit address (as would be used in a naive implementa-
tion of static linking) takes 7 cycles. Irix reduces this to
2–3 cycles (depending on the ability to make use of load
delay slots) by using a global pointer register pointing to

a table of entry point addresses. Comparing this with the
5 cycles required to call a dynamically linked function in
Mungi indicates that the run-time overhead of dynamic
linking in Mungi is only an additional 2–3 cycles per call
of an imported function. This is a very small overhead.

The above invocation code only works if the printf
entry is less than 64kB from the beginning of the data
segment. This allows for about 8,000 imported func-
tions (actually less, as some space is required for private
static data). If the table becomes bigger, a somewhat
longer code sequence is required, which takes 7 cycles
to execute:

1: ld $temp,libc interf ptr
($dseg)

2: sd $dseg,const($sp)
3: ld $tmp2,printf index($temp)
4: jalr $tmp2
5: ld $dseg,0($temp)
6: ld $dseg,const($sp)

Note that the CPU stalls after line 3, although the com-
piler may be able to schedule some other instruction into
the load delay slot.

We found that the biggest libraries generally used in
Unix systems, libc and libX11, have between 1,000
and 1,500 entry points. (Many of these are actually in-
ternal and would not be exported if the C language pro-
vided better control over export of functions from li-
braries. Mungi’s module descriptors, described in Sec-
tion 5 provide such control and will therefore result in
smaller interfaces for the same functionality.) We there-
fore expect that the shorter code sequence will almost
always suffice.

5 Discussion

One remaining issue is that of modules exporting vari-
ables. For example, POSIX [POS90] specifies that the
global variable errno is used to inform clients of the
reason for the failure of an operation. This cannot be
supported by Mungi’s dynamic linking scheme.

It is, of course, always possible to avoid this problem by
resorting to static linking — a highly unsatisfactory way
out. However, exporting global variables from library
modules is very bad practice, as it is not multi-threading

safe. For that reason, Unix systems must break POSIX
compliance if they want to support multithreaded pro-
cesses. Modern Unix systems inevitably6 use a construct
like

extern int *__errno();
#define errno (*(__errno()))

to declare errno when multithreading is supported.
The same works in Mungi without problems.

Another issue concerns function pointers, which are
used, for example, by the C qsort() utility and to
implement virtual functions in C++. Function pointers
can no longer be simply entrypoint addresses, as invok-
ing a function requires loading the data segment register
prior to branching to the entry point. Hence a “function
pointer” must consist of an (address, global pointer) pair.
This does not cause problems with portability of prop-
erly written application code, as the C standard [ISO90]
makes no assumption about the size of function pointers
and explicitly prohibits casts between function pointers
and other pointers. Unfortunately, most compilers do not
enforce this rule and, consequently, there exists plenty
of non-conforming code. However, “bug-compatibility”
is not a design goal of Mungi, and we therefore do not
consider this a significant problem. The format change
of function pointers is the only change required to stan-
dard Unix compilers to allow them to support Mungi’s
dynamic linking scheme.

More changes are required for linking. We decided not
much was to be gained by porting a Unix linker, and
instead implemented a Mungi linker from scratch. Its
size is about 4,000 lines of C.

The mechanics of preparing code for execution differs
somewhat between Mungi and Unix. The main reason
for this is the need to generate a different calling se-
quence for functions exported by dynamically linked li-
braries. In order to do this, the assembler must know
which entrypoints will be loaded from a dynamic library.

This is supported by a module description object (MDO)
associated with each library module. The MDO is a sim-
ple text object (which is presently created manually, al-
though tools will automate this in the near future). It
contains a list of entry points exported by the module,
and a list of imported modules. Figure 2 gives examples
of module descriptions.

C source objects are presently compiled to assembly lan-

6We checked Irix, Digital Unix, Solaris and Linux.

libc.mm
[IMPORTS]

[EXPORTS]
strlen
atoi
...

[OBJECTS]
c1.o
c2.o
...

main.mm
[IMPORTS]
libc.mm
libz.mm

[EXPORTS]

[OBJECTS]
main.o
sub.o
...

Figure 2: Sample module descriptions: At the left,
a typical description (libc.md) of a library module
libc.mm is given, while at the right the module de-
scription (main.md) of a program module main.mm
is shown. Names correspond to Figure 3.

guage by an unmodified GNU C compiler.7 The gcc
output is then processed by the GNU assembler, which
we modified to generate the proper calling sequence for
cross-module calls and to access private static data from
the module’s data segment. The assembler reads the
MDO in order to identify cross-module calls and pro-
duces relocatable binary objects.

When creating a library, the Mungi linker is used to (stat-
ically) link all of the library’s relocatable objects into a
single library module object; the linker determines the
exported entry point from the MDO. It also adds the
initialisation code for the library module, as well as the
initialisation stubs which invoke it and the module con-
structor.

When preparing an executable module, the linker reads
the MDOs of all imported libraries and creates the ap-
propriate initialisation stubs for all imported functions,
and (statically) links all remaining relocatable modules
into the new program module, which is then ready for
execution. Unlike Unix, no “run-time linker/loader” is
required, as each module has its own initialisation code.
The mechanics of Mungi linking are shown in Figure 3.

The Macintosh on the PowerPC uses a similar approach
to dynamic linking [App94]. Function references in
MacOS are represented by a “transition vector”, which
consists of the entrypoint address and the address of a
“table of contents” (TOC), essentially the module’s data
segment.8 The TOC contains pointers to imported func-

7As indicated a few paragraphs earlier, this implies that it is
presently not possible to invoke function arguments outside their own
module without modifications to the C source.

8The Macintosh terminology for modules is “fragments” but in or-

c1.s

gas

gcc

c1.o

ml

libc.mm

c1.c

c2.o

libc.md

ml

main.o

gas

main.mdlibc.md main.s

a.out

Figure 3: Dataflow for linking in Mungi. Left: A source object c1.c is compiled and linked with other relocatables
into a dynamically linkable library object libc.mm. Right: A program main.c is compiled and linked into an
executable module a.out.

tions, in the form of transition vector addresses, as well
as pointers to the module’s static data. C language func-
tion pointers are also represented as transition vector ad-
dresses.

The present module’s TOC address is contained in the
“table of contents register” (RTOC, equivalent to our
data segment register). The invocation sequence for im-
ported functions uses a double indirection. The caller
loads the RTOC with the address of the callee’s transi-
tion vector (i.e., the contents of the function pointer).
The callee then loads the RTOC with the new TOC
address by an indirect load through the present RTOC
value. The main difference to our scheme is the extra
indirection.

While the MacOS scheme is similar to ours, this does not
obviate the need for position-independent code (called
“pure executable code”) on the Macintosh. This is be-
cause MacOS is not a SASOS, and can therefore not en-

der to avoid a proliferation of terms we will stick to calling them “mod-
ules”.

sure that a dynamic library module is always linked at
the same address.

6 Performance

Performance figures are shown in Table 1. The table
gives execution times of a benchmark program (OO1
[CS92] run as a single process as in [HEV�98]) for
static and dynamic linking under Irix 6.2 and Mungi. All
runs were performed on the same hardware running ei-
ther Irix or Mungi in single-user mode. Lazy loading
(for Irix) and lazy initialisation (for Mungi) were turned
off to make timings more consistent. (As explained ear-
lier, lazy loading/initialisation does not normally reduce
overall runtime, only start-up latency.) Irix runs used the
Irix 6.2 C compiler, assembler and linker, while Mungi
runs used GCC version 2.8.1, the GNU assembler ver-
sion 2.8.1 (modified to support dynamic linking) and our
linker.

Irix/32-bit/SGI-cc Mungi/64-bit/GCC
static dynamic dyn/stat static dynamic dyn/stat

lookup 7.26(3) 8.02(3) 1.104(10) 7.568(6) 8.199(4) 1.083(3)
forward traverse 4.77(3) 5.17(4) 1.084(15) 6.013(6) 6.040(3) 1.004(6)
backward traverse 5.13(2) 5.68(4) 1.107(12) 6.976(4) 7.011(4) 1.005(1)
insert 4.61(2) 5.02(2) 1.087(10) 4.528(4) 4.755(3) 1.051(1)
total 21.7(1) 23.9(1) 1.097(12) 25.08(1) 26.00(1) 1.037(1)

Table 1: Average execution times in ms of OO1 operations (single-process version, see [HEV�98]). Figures in
parentheses indicate standard deviations in units of the last digit. Irix figures are for 32-bit execution using the SGI C
compiler, while Mungi figures are for 64-bit executing using GCC.

OO1 tests operations which are considered typical for
object-oriented databases: lookup and insertion of ob-
jects, and traversal of inter-object references. The spec-
ification of OO1 requires a database server running on a
machine different from the client, and also specifies that
all updates are to be flushed to disk at certain points. As
we are here only interested in the cost of function invo-
cation, we ignored that part of the specification and ran
everything in memory, without any I/O, and in a single
process. In every other respect we followed the OO1
specification.

We implemented the “server part” of the database in
a library module which is invoked by application code
via normal function calls. In line with the OO1 spec-
ification, server invocations pass a function pointer to
the database which the database invokes to obtain fur-
ther data or pass data back to the client. The lookup
part of the benchmark consists of 1000 server invoca-
tions, each looking up a different object, and each call
invoking a client function passed as a parameter. The
forward traversal operation consists of a single invoca-
tion of the server code, which invokes a client proce-
dure 3,280 times (for different objects directly or indi-
rectly linked to the object referenced in the server in-
vocation). Backward traversal is similar; the actual in-
vocation counts are different but, in average, the same
as for forward traversal. The insert benchmark consists
of 100 calls to the database, each inserting a new object
into the database and in the process calling a client pro-
cedure three times. Hence the total benchmark performs
about 8960 cross-module calls. The lookup and insert
operations mainly exercise the index data structure (a
B� tree in our implementation) while the traversal op-
erations mostly follow internal links and thus perform
mostly random accesses to the data without much use of
the index structure.

This benchmark was selected as it is “tough” in the
sense that it is dominated by cross-module calls to func-

tions performing very little work. As it is the cross-
module tasks which bear the dynamic linking overhead
in Mungi, this test stresses the overheads of the SASOS
dynamic linking scheme. A benchmark consisting of
the same number of function calls, with a larger frac-
tion of calls being inter-module, would reduce the total
overheads in Mungi while leaving Irix’ overheads un-
changed.

The table shows that on Irix there is an average 10 %
penalty for using dynamically linked libraries, while on
Mungi the penalty is less than 4 %. The average over-
head due to dynamic linking of an inter-module function
invocation in Mungi comes to about 0.1�s or about ten
cycles on the R4600. This is more than the number of
extra instructions required in the calling sequence for dy-
namically linked code. The difference can be explained
with an increased number of cache misses.

The significantly lower overhead of dynamic linking
in Mungi as compared to Irix is mostly due to the
fact that the Mungi scheme does not require position-
independent code. The somewhat higher overhead of
inter-module function invocation in Mungi (2–3 cycles
more than in Irix) is more than compensated by not
requiring position-independent code. Furthermore, the
overhead in the Mungi scheme only applies to inter-
module invocations, where in Irix inter-module calls to
exported functions have the same overhead.

We also attempted to measure the initial overhead of dy-
namic libraries, i.e. the invocation overhead of the con-
structor which initialises the data segment. However,
this overhead is so small that we could not measure it
reliably for either Irix or Mungi. In both cases it is at
most a few tens of microseconds.

While Mungi has a significantly lower penalty for dy-
namic linking than Irix, a seemingly disturbing obser-
vation from Table 1 is that code seems to execute gen-

Irix Mungi Mungi/Irix
good bad good bad

lookup 7.367 7.169 7.452 0.973 1.012
forward traverse 5.904 6.085 6.079 1.031 1.030
backward traverse 6.796 6.992 6.991 1.029 1.029
insert 4.755 4.724 4.801 0.993 1.010
total 24.822 24.970 25.323 1.006 1.020

Table 2: Average execution times in ms of OO1 operations on for 64-bit execution of statically linked code on Irix
and Mungi. Code is compiled with GCC and assembled with the SGI assembler and finally linked with the native
(SGI or Mungi) linker. “Good” vs‘̇‘bad” in the Mungi numbers refers to the cache friendliness of the stack alignment
and the last two column give Mungi execution time normalised to Irix times.

erally slower under Mungi than under Irix. However,
it must be kept in mind that all Mungi executions are
true 64-bit, while Irix only supports 32-bit execution on
the Indy. 32-bit code is inherently faster on the MIPS
R4600 as loading a constant address requires more cy-
cles for 64-bit than for 32-bit addresses. The tests were
also run with different compilers: Mungi benchmarks
could only be compiled with GCC, as SGI’s C com-
piler/assembler/linker toolchain does not support our dy-
namic linking scheme, while the GNU assembler and
linker do not support Irix. Finally, different implemen-
tations of the strcpy() C library functions are used.

In order to eliminate the effects of 32-bit vs. 64-bit exe-
cution and differing tool chains and C libraries, we did a
direct comparison, running an identically compiled ver-
sion of the statically linked benchmark code in 64-bit
mode on both systems. This meant compiling and as-
sembling the code, including the C library, using GCC
and the SGI assembler, and then linking it for Irix with
the SGI linker, and for Mungi with our linker. As the
benchmarks only time user code (no system calls are
performed between time stamps, and the timer overhead
is subtracted), this means that identical instructions are
executed on both systems.

As Irix does not support 64-bit code on our platform,
we had to patch the executable to pretend to the loader
that it was a 32-bit image. This approach works under
certain circumstances (as long as only a very limited set
of system calls are used), but only for statically linked
code. One required system call where extra work was
required is gettimeofday(): As the format of the
timeval struct differs between the 32-bit and the 64-
bit Irix APIs, we had to use the 32-bit C library interface
for this call.

In order to verify that these modifications do not affect
performance of the Irix executable, we ran the “proper”
64-bit image as well as the patched one on an SGI ma-

chine supporting 64-bit executions. We found that the
execution times of the two versions were identical.

The results of running the same code in 64-bit mode on
Irix and Mungi are shown in Table 2. Two sets of Mungi
results are presented: “good” and “bad”, which differ
only in the address at which the user stack is allocated.
The stack address affects the results as it affects conflict
misses in the Indy’s data cache. The R4600 features sep-
arate on-chip instruction and data caches, both 2-way set
associative and 16kB big [R4k95]. The Indy does not
have secondary caches and thus has a high cache-miss
penalty. The Mungi execution times recorded as “good”
and “bad” in Table 2 correspond to the most and least
cache friendly stack layout, respectively. They differ by
about 1.5 %, which gives an indication of the impact of
cache effects on the results. Irix runs used the default
layout (which is cache friendly).

Comparing the Irix times with the “good” Mungi times
it can be seen that they are very close. Mungi is be-
tween one and three percent faster on lookup and insert,
and about three percent slower on the traverse bench-
marks. For the total benchmark time these almost av-
erage out, with Mungi being 0.6 % slower. Given the
fact that Mungi is several percent faster on some bench-
marks and Irix on others, that overall difference is negli-
gible and insignificant. They are much smaller than the
performance gain of Mungi’s dynamic linking scheme
compared to the one used in Irix.

It is nevertheless interesting to speculate about the
sources of these remaining differences. We can think
of two possible reasons for the observed discrepancies
in execution times: TLB misses and other cache effects.

The R4600 has a software-loaded, fully associative, 48-
entry tagged TLB; each entry maps a pair of virtual
pages [R4k95]. Hence the TLB can map a maximum of
96 pages, or 384kB. As the total database is about 4MB

in size, and the benchmark is designed to access its con-
tents randomly, a significant number of TLB misses is
expected, particularly in the traverse operations.

Mungi is implemented on top of the L4 microkernel
[EHL97], hence TLB misses are handled by L4. The
microkernel’s TLB miss handler is highly optimised and
loads the TLB from a software cache [BKW94, EHL99]
which is big enough to hold all page table entries re-
quired for the benchmark. However, the need to support
64-bit address spaces makes L4’s TLB miss handler in-
herently slower than what can be achieved in a system
only supporting 32-bit address spaces. Slightly slower
handling of TLB misses in L4, and thus Mungi, is a
likely explanation for the somewhat slower Mungi ex-
ecution in the traverse benchmarks (which particularly
exercise the TLB).

Other cache effects which could impact on the results are
instruction cache conflicts. While we made certain that
the same user-mode instructions are executed in both
benchmarks, the layout of the executable still differs as a
result of linking different system libraries and the linkers
using different strategies for collecting relocatable mod-
ules. These differences can lead to different cache miss
patterns. The traverse benchmarks contain the largest
number of cross-module invocations (and hence non-
local jumps) and are most likely to be affected.

7 Conclusions

In this paper we have reviewed linking in a Unix sys-
tem and examined the issues relating to linking in a sin-
gle address space system. We have presented a dynamic
linking scheme for Mungi and have discussed its mer-
its and limitations. Benchmarking shows that the run-
time overhead of Mungi’s dynamic linking scheme is
less than half of dynamic linking in Irix, in a scenario
which favours Irix.

The performance advantages of the Mungi dynamic
linking scheme could also be obtained in traditional sys-
tems on 64-bit architectures if they used a global address
space for dynamically-linked libraries. As in quickstart,
a region of the address space must be reserved for library
modules, and each participating module must be linked
at the same address in all processes. Such a scheme can
eliminate the need for position independent code even
in traditional systems. It requires a system-wide man-
ager which hands out unique address regions for linking
libraries. Each of a participating library’s clients must

follow the protocol of always linking the library at this
same address. A single-address-space operating system
guarantees this automatically; in such a system every ob-
ject is always mapped to a fixed virtual memory address.

8 Acknowledgements

Luke Deller gratefully acknowledges his School of
Computer Science & Engineering Vacation Scholarship
under which most of the work presented here was per-
formed. The project also received support from the
Australian Research Council under the Small Grants
Scheme.

We appreciate the helpful suggestions and comments
from our shepherd Chris Small and from anonymous
USENIX reviewers.

9 Availability

Mungi will be freely available in source form
under the GNU General Public License from
http://www.cse.unsw.edu.au/˜disy/Mungi.html.

References

[App94] Apple Computer Inc. Inside Macintosh:
PowerPC System Software. Addison-
Wesley, 1994.

[Ber80] Viktors Berstis. Security and protection in
the IBM System/38. In Proceedings of the
7th Symposium on Computer Architecture,
pages 245–250. ACM/IEEE, May 1980.

[BKW94] Kavita Bala, M. Frans Kaashoek, and
William E. Weihl. Software prefetching
and caching for translation looka-
side buffers. In Proceedings of the
1st Symposium on Operating Systems
Design and Implementation, pages
243–253, Monterey, CA, USA, 1994.
USENIX/ACM/IEEE.

[Cha95] Jeffrey S. Chase. An Operating Sys-
tem Structure for Wide-Address Architec-

tures. PhD thesis, University of Washing-
ton, 1995. URL http://www.cs.duke.edu/-
chase/research/thesis.ps.

[CLBHL92] Jeff S. Chase, Hank M. Levy, Michael
Baker-Harvey, and Edward D. Lazowska.
How to use a 64-bit virtual address space.
Technical Report 92-03-02, Department of
Computer Science and Engineering, Uni-
versity of Washington, Seattle, WA, USA,
1992. URL ftp://ftp.cs.washington.edu/tr/-
1992/03/UW-CSE-92-03-02.PS.Z.

[CLFL94] Jeffrey S. Chase, Henry M. Levy,
Michael J. Feeley, and Edward D. La-
zowska. Sharing and protection in a
single-address-space operating system.
ACM Transactions on Computer Systems,
12:271–307, November 1994.

[CS92] R. G. G. Cattell and J. Skeen. Object oper-
ations benchmark. ACM Transactions on
Database Systems, 17:1–31, 1992.

[DEC94] Digital Equipment Corp. DEC OSF/1 Pro-
grammer’s Guide, 1994. Order No AA-
PS30C-TE.

[EHL97] Kevin Elphinstone, Gernot Heiser, and
Jochen Liedtke. L4 Reference Man-
ual — MIPS R4x00. School of Com-
puter Science and Engineering, Uni-
versity of NSW, Sydney 2052, Aus-
tralia, December 1997. UNSW-CSE-
TR-9709. Latest version available from
http://www.cse.unsw.edu.au/˜disy/.

[EHL99] Kevin Elphinstone, Gernot Heiser, and
Jochen Liedtke. Page tables for 64-
bit computer systems. In Proceedings
of the 4th Australasian Computer Ar-
chitecture Conference, pages 211–226,
Auckland, New Zealand, January 1999.
Springer Verlag. Available from URL
http://www.cse.unsw.edu.au/˜disy/.

[HEV�98] Gernot Heiser, Kevin Elphinstone, Jerry
Vochteloo, Stephen Russell, and Jochen
Liedtke. The Mungi single-address-space
operating system. Software: Practice and
Experience, 28(9):901–928, July 1998.

[ISO90] International Standard, ISO/IEC 9899,
Programming Languages — C, 1990.

[POS90] Portable Operating System Interface
(POSIX)—Part 1: System Application

Program Interface (API) [C Language],
1990. IEEE Std 1003.1-1990, ISO/IEC
9945-1:1990.

[R4k95] Integrated Device Technology.
IDT79R4600 and IDT79R4700 RISC
Processor Hardware User’s Manual,
April 1995.

[Ros95] Timothy Roscoe. The Structure of a
Multi-Service Operating System. Phd
thesis, University of Cambridge Com-
puter Laboratory, April 1995. TR-376,
URL http://www.cl.cam.ac.uk/ftp/papers/-
reports/TR376-tr-multi-service-os.ps.gz.

[RSE�92] Stephen Russell, Alan Skea, Kevin Elphin-
stone, Gernot Heiser, Keith Burston, Ian
Gorton, and Graham Hellestrand. Distri-
bution + persistence = global virtual mem-
ory. In Proceedings of the 2nd Interna-
tional Workshop on Object Orientation in
Operating Systems, pages 96–99, Dour-
dan, France, September 1992. IEEE.

[Sol96] Frank G. Soltis. Inside the AS/400. Duke
Press, Loveland, CO, USA, 1996.

[WM96] Tim Wilkinson and Kevin Murray. Evalu-
ation of a distributed single address space
operating system. In Proceedings of
the 16th International Conference on Dis-
tributed Computing Systems, pages 494–
501, Hong Kong, May 1996. IEEE.

[WSO�92] Tim Wilkinson, Tom Stiemerling, Peter E.
Osmon, Ashley Saulsbury, and Paul Kelly.
Angel: A proposed multiprocessor oper-
ating system kernel. In European Work-
shop on Parallel Computing, pages 316–
319, Barcelona, Spain, 1992.

[X/O90] X/Open. System V Application Binary In-
terface, 3.1 edition, 1990.

