
The numerical solution of Fredholm integral equations of the
second kind

Author:
Graham, Ivan

Publication Date:
1980

DOI:
https://doi.org/10.26190/unsworks/4150

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/54440 in https://
unsworks.unsw.edu.au on 2024-04-23

http://dx.doi.org/https://doi.org/10.26190/unsworks/4150
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/54440
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


TI£ NIM:RICAL sownrn 
(f FIEJHOLN INTEGRAL EQUATIONS OF lHE SECOND KIND 

by 

Ivan G. Graham 

A thesis submitted for the degree of 

Doctor of Philosphy 

at the University of New South Wales 

1980 



CONTENTS 

Foreword i 

Acknowledgements ii 

Publication Details iv 

Abstract 

Notation 

CHAPTER 1 

CHAPTER 2 

CHAPTER3 

CHAPTER 4 

CHAPTER 5 

CHAPTER 6 

APPENDIX 

References 

v 

vii 

INTRODUCTION 1 

THE COMPACTNESS OF INTEGRAL OPERATORS 

Introduction 9 
2.1 A necessary and sufficient condition for 

compactness 16 
2.2 Kernel functions of product type 23 
2.3 Two important special cases 25 
2.4 A practical illustration 28 

SINGULARITY EXPANSIONS FOR THE SOLUTIONS OF WEAKLY 
SINGULAR EQUATIONS 

3.1 Introduction 
3.2 Theoretical basis 
3.3 The main result 
·3.4 Applications 

GALERKIN METHODS FOR EQUATIONS WITH SINGULARITIES 

4.1 Introduction 
4.2 Methods and background 
4.3 Regularity and approximation 
4.4 Order of convergence estimates 
4.5 A graded mesh 
4.6 Numerical examples 

COLLOCATION METHODS FOR TWO DIMENSIONAL EQUATIONS 

5.1 The methods 
5.2 Theoretical framework 
5.3 Equations without singularities 
5.4 Regularity results for weakly singular 

equations 
5.5 Convergence results for weakly singular 

equations 

31 
38 
49 
61 

69 
74 
79 
83 
92 
97 

102 
105 
111 

117 

129 

NUMERICAL SOLUTION OF A CURRENT DISTRIBUTION PROBLEM 140 

154 

172 

SUBMITTED AS SUPPORTING WORK: 

Some application areas for Fredholm integral equations of the second kind, 
reprinted from "The Application and Numerical Solution of Integral 
Equations" (eds. R.S. Anderssen, F.R. de Hoog, and M.A. Lukas), Sijthoff 
and Noordhoff, 1980. 



i. 

FOREWORD 

This thesis is dedicated to all those who tolerated bizarre 

mixtures of euphoria and demented paranoia and always gave me shelter 

from the storm. It is especially dedicated to Mary (Why don't 

you just look the answer up in the back of the book?) Tierney and 

Chris (You must be getting pretty near the end now) Kowal who lived 

with graceful acceptance through the birth pangs of this thesis (and 

came home to tell the tale). 



ii. 

ACKNOWLEDGEMENTS 

The majority of the work of this thesis was prepare9 under the 

direction of Professor Ian Sloan. I shall always be indebted to him 

for teaching me many things, and particularly, for helping me understand 

the balance between theory and practice. His enthusiasm and encouragement 

have kindled many rushes of inspiration during the time that we have 

worked together. More personally, I thank him for steadying my (at 

first) shaky confidence, and for helping me settle in to life at the 

University of New South Wales when I first arrived. The results of 

Chapter 2 of this thesis were obtained jointly with Professor Sloan 

and were published in [26]. 

During the year 1979 this work was directed temporarily by 

Professor W.E. Smith, during which time the material contained in 

Chapter 3 was developed. I appreciate greatly the patience and 

support which Professor Smith gave me during this difficult time, 

and thank him for several enlightening discussions concerning the 

function spaces used in Chapter 3. 

The work of this thesis has been greatly enhanced by friendships 

with several other people. Most particularly, I have had many great 

conversations over the past few years with Dr. Graeme Chandler. Those 

which concerned mathematics were a powerful catalyst for the development 

of a numerical analysis of weakly singular equations. The Nikol'skii 

space approach to singularities was first proposed by Graeme, and I 

thank him for sending me the manuscript of [12] and for drawing my 

attention to [14]. 



iii. 

In addition, I am indebted to several members of the School 

of Mathematics at the University of New South Wales for useful 

discussions. In particular, I thank Dr. Jeff Sanders for generously 

giving of his time on many occasions. 

The work of this thesis was supported in part by a University 

of New South Wales Dean's Postgraduate Award. 

I thank Mrs Helen Langley for her expert and prompt typing 

of the manuscript. 



iv. 

PUBLICATION DETAILS 

The publication details of this thesis are given in references 

[26], [27], [28] and [29] • 
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ABSTRACT 

This thesis tackles some problems encountered in the numerical 

solution of Fredholm integral equations of the second kind. We are 

concerned specifically with the applicability and numerical performance 

of algorithms for these equations, and are guided by the existence 

of the following problems. 

(i) Theoretically, the applicability of many algorithms 

often depends on certain highly abstract assumptions being satisfied. 

These assumptions are often difficult to verify in practice. 

(ii) Error analyses for certain algorithms have tended to 

assume that the given information and the solution are smooth, and 

hence predict a higher order of convergence than that obtained in 

practice (where there are usually singularities present). 

In Chapter 2 we develop practical methods for deciding whether a 

given integral operator is compact as an operator between certain 

spaces of functions. This solves a problem of type (i), since 

compactness is an abstract assumption used in the analysis of many 

algorithms for integral equations. In Chapter 3 we look at a class 

of weakly singular convolution type equations (typical of many that 

arise in p~actice),and answer the question: What kind of singularities 

arise in the solutions to such equations? In Chapter 4, the results 

of Chapter 3 are used to give a realistic error analysis (i.e. one 

which takes account of the singularities in kernel and solution ) for 

Galerkin type methods for the class of equations introduced in Chapter 3, 

hence solving a problem of type (ii) for that class. The results of 

Chapters 3 and 4 concern only one dimensional integral equations. An 

analysis of collocation methods for two dimensional equations is given 
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in Chapter 5. Convergence rates are obtained for the cases of equations 

with both smooth kernels and weakly singular kernels. The analysis 

in the latter case depends on a characterisation of the properties 

of the solution to a typical two dimensional weakly singular equation. 

This characterisation is also given in Chapter 5. The methods 

proposed in Chapter 5 are illustrated in Chapter 6 by the numerical 

solution of a two dimensional equation arising in electrical engineering. 
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NOTATION 

Throughout this thesis, will denote the set of natural 

numbers and NO = :N U{O}. C will denote a generic constant which 

will be allowed to vary from instance to instance. In proofs we shall 

mention the variables which c is independent of only when it is 

necessary to do so. The distributional derivative of a function 

will be denoted by ncp or cp• • If depends on more 

than one variable, we shall write for the distributional 

derivative of with respect to the variable t • The notation 

for higher order derivatives is explained on p.111. Unless otherwise 

stated will be a domain (i.e. an open connected set) which is 

bounded in :JR.n 
' 

and n will denote its closure. 

In each of Chapters 1, 2, and 6 the equations are numbered 

consecutively within that chapter, so that, for example, they run 

from (2.1) to (2.21) in Chapter 2. In Chapters 3, 4, and 5 the 
<, 

equations are numbered consecutively within each section, so that, for 

example, the equation numbered (5.2.3) is the third equation in 

Section 2 of Chapter 5. 

Function Spaces and Classes 

Space/class Norm Page 

L (0), 1 < p <co II ·II 9 p p 

C(O) II •IJco 9 

M (0)' 1 < p <co class 12 p 

w;[a, b] , 1 < - p ::: co, me :N0 II ·II 32 m,p 
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Space/class 

NXOR)' 1 p :: p :: oo, a> 0 

a 1 a > 0 N [a, b], :: p :: oo, p 

A(a,p,q, E.) 

Ba;p,q(:R) 

v S (TI ,[a,b]), r n 

mesh on [a,b] 

Cm(QxQ) 

Lip a CO> 

Lipa(nxm 

W~(n) 

) 1 :: p,q :: oo, a> 0 

r E :N, v E :N
0
., v < r, 

mE EO , 0 < (3 :: 1 , 

n a bounded domain 

in Po?-

r E :N, 

P a bounded domain in E.2 

{~(T): T E (0,1]} a family of M.S. 

meshes on n (p.130). 

n a n 

Norm 

II ·II a :R ,p, 

II ·II a,p,[a,b] 

Banach Spaces 
but 

norms not 
required 

class of splines 

on [a, b) 

Banach spaces 
but norms not 
required 

class of 
splines on n. 

Page 

39 

39. 

41, 154 

76 

111 

132 



1. 

CHAPTER 1. 

INTRODUCTION 

This thesis tackles some problems encountered in the numerical 

solution of Fredholm integral equations of the second kind. All the 

integral equations which we shall consider here will be of the general 

form 

y(t) = f(t) + A·f_ k(t,s) y(s)ds, 
n 

tEO, (1.1) 

where n ~ ~ (n = 1 or 2) is a domain (i.e. an open connected 

se~ which is bounded, and n denotes its closure. The kernel k ' 

and the inhomogeneous term f, will be given functions on 0 X 0 

and n respectively, will be a given scalar, and our task will 

be to determine, by numerical approximation, the unknown solution y • 

We abbreviate (1.1), using operator notation, by 

y = f + AKy ,, (1.2) 

where K is the integral operator given by 

Ky(t) = f_ k(t,s) y(s)ds , 
n 

(1.3) 

The main body of the work in this thesis is split into five 

chapters - Chapters 2 to 6 inclusive. Chapters 2 and 3 consist of 

some new developments in the theoretical analysis of (1.1). In 

Chapters 4 and 5 we then use .this theoretical analysis to construct 

and analyse the convergence of variousnumerical methods for solving 

(1.1). In Chapter 6, we illustrate the uses of our theoretical and 

numerical analysis with the numerical solution of an equation of the 

form (1.1) which arises in electrical engineering. At the end of 

the thesis there is an Appendix, in which we give the proofs of some 
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of the more technical results appearing in Chapters 2 to 6. The 

review [27] is submitted as supporting work. 

Both the theoretical analysis of Chapters 2 and 3, and the 

numerical analysis of Chapters 4 and 5, will be applicable to a wide 

class of integral equations which arise in practice. In order to 

demonstrate our practical motivation, let us first look briefly at a 

few examples of integral equations of the form (1.1) which arise in 

applications. 

Example 1 [ 34] • 

y(t) = 

The equation 

b 
f(t) +A J lt-sla-1 y(s)ds, 

a 

where f is a function on [a,b], and 

t E [ a,b] , 

is a scalar, is the 

(1.4) 

Kirkwood-Riseman equation, which arises in certain problems of polymer 

physics. 

Example 2 [27] • The two dimensional integral equation 

where n is a simply-connected closed plane region, and 

are scalars, and 

arises in the mathematical formulation of the problem of determining 

the skin effect produced when an alternating current flows in a conducting 

bar of cross section n· 

Example 3 [4] • Atkinson considers the Dirichlet problem 

~u(r) rED 
' 

rEf 
' 
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where D is a plane region with boundary r ' D and r satisfy 

suitable topological and regularity requirements, and 

where 2. 2 + 2 r ·• = x y for each !: = (x,y) E D • Atkinson shows 

that this problem may be solved by a technique inyolving the numerical 

solution of 

]J(t) 

with 

1 
= -- f(t) 

'IT 

k(t, s) 

1 --
'IT 

A 
f k(t,s) }l(s)ds, 
0 

O<t<A<oo (1.6) 

where k1 is continuous, k2 is bounded and continuous except 

for s = t ' and the parametrisation r(t) is chosen so that, 

as t runs from 0 to A ' :<t) travels around the 

boundary r of D • 

The three equations (1.4), (1.5) and (1.6) are all of the 

form (1.1). In each case the kernel function contains at least one 

term which has a "weakly singular" factor, i.e., as is the case in 

(1.4) and (1.5), a factor of the form w<lt-sl> , or, as is the 

case in (1.6), a factor of the form w<lr(t)- r(s>l> ' where, 

in all three cases, is a scalar-valued function which bas an 

infinite singularity at the origin, but is integrable over any finite 

interval containing the origin. Such "weakly singular" kernels are 

a common feature of many cases of (1.1) which occur in applications. 

We shall be concerned with the numerical solution of (1.1), and 

we shall be especially interested in practical integral equations of 

the type given in the three examples above. All of the numerical 

methods which we sh~ll consider can be grouped under the general 
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heading of p~o{ection metho~. Before we define these methods, we 

usually make the assumption that (1.1), or equivalently (1.2), 

has a unique solution y , in some Banach space say, 

of functions defined on n . 

Then, for nE E 
' 

we seek an approximation to 

of the form 

I n 
yn = L aiui 

i=1 

Here {u1 , •••• un} ~ B(O). is a set of linearly independent basis 

functions, which are chosen for their suitability in approximating 

the unknown solution y • To find the scalar coefficients 

we demand that 

y 

Pn(f + AKy!) (1. 7) 

where is a projection (i.e. a linear idempotent operator) 

from onto Un: = span{u1,u2, ••• ,un} 
t 

holds in the n-dimensional vector space u 
n 

to an linear system with solution set 

This system may be solved on a computer. 

~ 
The equation (r.7) 

and hence is equivalent 

Once has been found, we may also define another 

~pproximation to y ' which we denote by 

"natural iteration" 

= 

When 

f + AKy1 
n 

is an orthogonal projection, 

via the 

and 

are usually called the Galerkin and iterated Galerkin solutions 
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n 

5. 

is an interpolatory projection, 

and are usually called the collocation and iterated collocation 

solutions respectively. 

General theories for projection methods are well documented, 

and, in particular, the existence and rate of convergence of the first 

approximation, has been extensively studied [5], [7], [25], 

[31], [35], [44], [59]. More recently, in the work of Sloan [63], 

[57], [58] and [64], and Chandler [9], [10] and [11], a theory 

for the second approximation, II y , has also been developed. 
n 

The main thrust of the work of this thesis will be towards 

developing analyses of the error committed when projection methods 

are used to solve practical integral equations of the type described 

in Examples 1, 2 and 3. 

Most error analyses for projection methods assume that the 

integral operator K , given by (1.3), is compact on the Banach 

space Compactness is a property which, if possessed by 

K , ensures that K has some "nice" properties. For example, 

if K is compact on then the Fredholm alternative 

[33, p.497] allows us to make deductions concerning the existence, 

uniqueness, and properties of the solution y of (1.1). Moreover, 

compactness features crucially in the proofs of the convergence of 

any of the projection methods described above. However. compactness 

is an abstract mathematical concept which is often very difficult for 

the practical person to verify. Chapter 2 is devoted to the develop-

ment of sufficient .and also (in some cases) necessary conditions for 

K to be compact as an operator from a certain Banach space to another. 
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These conditions are designed to be simple enough as to be easily 

verified practically and are particularly easy to apply to the 

operators of the type contained in equations (1.4),(1.5) and (1.6). 

Until relatively recently, error analyses of projection 

methods for the solution of (1.1), although often allowing k to 

be weakly singular, have tended to assume that y is smooth. In 

practice, y is rarely smooth, and the assumption of a smooth 

has led to the prediction of theoretical orders of convergence that 

y 

are generally higher than those achieved when weakly singular equations 

are solved in practice. The key to obtaining error analyses that 

are accurate for the weakly singular case lies in the careful 

characterisation of the true nature of the solution in such a case. 

This characterisation is obtained for a class of weakly singular 

equations in Chapter 3. 

Then, in Chapter 4, we consider the numerical solution of the 

class of equations analysed in Chapter 3. Using the analysis giten 

there, we derive order of convergence estimates for Galerkin and 

iterated Galerkin methods, which take into account the natural 

singularities which will be contained in the solution y • The 

numerical methods of Chapter 4 use a space of spline functions as 

their underlying approximating subspace. 

The results of Chapters 3 and 4 are valid only for one 

dimensional integral equations defined over finite intervals. In 

Chapter 5 we consider the case when (1.1) is defined over a closed 

region n ' of two dimensional space. For this case, very little 

information is known about the convergence of projection methods, 

even when the kernel and solution are smooth. 
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In the first two sections of Chapter 5 we introduce and prove 

the basic convergence properties of a class of collocation and 

iterated collocation methods for the solution of the two dimensional 

version of (1.1). This time, the underlying approximating space, 

which we denote by UN is a certain space of piecewise constant 

functions (i.e. splines of degree 0) defined on Q • (The use 

of N instead of n here is merely a notational device to 

distinguish between one and two dimensional analyses.) 

In Section 5.3, order of convergence estimates for these 

collocation methods are obtained for the case when the kernel and 

solution are smooth. Section 5.5 is devoted to proving the 

analogues of the results of Section 5.3 for a class of two dimensional 

weakly singular equations. The analysis depends, as in the one 

dimensional case, on an accurate characterisation of the smoothness 

properties of the solution to a typical two dimensional weakly 

singular equation. These properties are proved in Section 5.4. 

In Chapter 6, we use the methods introduced in Chapter 5 to 

solve the equation (1.5) numerically. The numerical results obtained 

are used to check the accuracy of the order of convergence estimates 

derived in Chapter 5. 

Each of the chapters 2, 3, and 4 have an introduction in which 

the leading literature on the problem to be considered is surveyed, 

and the main results to be proved in that particular chapter are 

stated. In Chapter 5 this function is performed by the first two 

sections. It is worth pointing out at this stage, however, that one 

of the main themes of the thesis, namely the characterisation of weakly 
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singular behaviour in integral equations, and the construction of 

numerical methods which are best geared to cope with that behaviour, 

was also being investigated by several other authors whi1e this work 

was progressing. The most notable of these authors are Chandler [11], 

[12] (see also Acknowledgements) and Schneider [53],[54], [55]. A 

complete survey of the recent explosion of work on weakly singular 

equations is contained at relevant points in Chapters 3 and 4. 

The applications review [27] is included as supporting work for 

this thesis. As well as describing the physical theory behind 

equation (1.5), it also describes an important class of second kind 

Fredholm integral equations which arise in applications-namely those 

which are reformulations of boundary value problems for differential 

equations. Although such equations are usually not strictly of the 

form (1.1), they do have some of the characteristics of the equations 

discussed in this thesis - e.g. they have weakly singular kernels. 

Since [27] was written, work has progressed on the numerical solution 

of boundary value problems using integral equation methods on a number 

of fronts. Specifically, we mention the recent paper of Atkinson (6] 

and the continuing interest in the Boundary Integral Method e.g. 

[15], [23]. A very useful review of integral equation methods for 

boundary value problems which came to hand after [27] was written, 

is contained in [14]. 
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CHAPTER 2. 

THE CIT·lPACflf:SS OF INTEGRAL OPERATORS 

INTRODUCTION 

In this chapter we consider the linear integral operator K , 

defined by 

Ky(t) = L k(t,s)y(s)ds 
n 

(2.1) 

where n is a bounded domain in ~ ' n denotes its closure, and 

k and y are real-valued or complex-valued functions defined on 

and -n respectively. Defining, for each tEn, the 

function as 

k t ( s) = k( t, s) , 

we can rewrite (1) more concisely as 

Ky(t) = f_kt{s)y(s)ds 
n 

sEn , 

We shall assume throughout the chapter that y and for each 

tEn, are Lebesgue measurable functions, so that (1) is well defined. 

We introduce the space Lp{n) , defined for 

to be the space of all scalar valued measurable functions on n with 

the property that 

We note that 

introduce 

II t~>l~ = 

= 

{ 
p \1/p 

1 n 14> ( s) I d s J . < co 

e ss sup 14> ( s) I < co 
sc;:n 

L (n) is a Banach space under the norm 11.11 
p p 

We also 

C(n) ' the space of scalar-valued functions, -which are bounded 

and uniformly continuous on n is a Banach space under the norm 

llq,ll = 
co sup ltPCs) I 

sdl. 
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Every function in may be uniquely extended to all of n 

and we shall henceforth consider functions in to be defined 

on n via this extension. 

We shall refer to K as the integral operator induced by the 

kernel and consider it as an operator from 

or as an operator from c(n) to where 

L (n) 
q 

to 

1 < q < 00 

C(n) ' 

We recall that a linear operator K is compact (or complet~ly 

continuous) if it is bounded, and if the image under K of any boliDded 

set has compact closure. 

We will be concerned with the development of sufficient 

conditions for the integral operator 

operator from L <n> to c(n) q 

such 

then 

a compact operator for some 

for all r in q_::: r < oo 

C(n) C L (n) C L (n) 
- r - q 

. 
q 

induced by k to be a compact 

Of course, if k does induce 

in the range 1 < q~oo 

it follows from the inclusions 

(Which are valid because n is compact), that k also induces 

a compact operator from Lr(n) to C(n) ' and from to 

c(n) • The latter is often the most important case for applications. 

This work is motivated by both abstract and practical 

considerations. 

The abstract study of compact operators has long been an 

important part of functional analysis, these operators being in a sense 

the natural extension of linear transformations in a finite-dimensional 

space. Similarly, the well developed spectral theory for compact 

operators can be seen as an elegant generalisation of the classical 

eigenvalue theory for matrices. 
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On the other hand, practical applications of this chapter arise 

both within and outside the present thesis. In both Chapter 4, 

and, more particularly, in Chapter 5, where we consider the solution of 

equations of the form 

y = f+ XKy ' (2.2} 

the compactness of K plays a vital role in the convergence the~ry 

of numerical methods. In addition, the work of this chapter has 

already found applications in a broader context, for the compactness 

of K is found to be equivalent to two conditions on the kernel -k 

(see Theorem 2.1), and these conditions are an important ingredient in 

the theory of a much wider range of numerical methods for (2.2) than those 

considered in this thesis, see [60], [61], and [62]. 

From either the theoretieal or practical viewpoint, it is clear 

that the easy recognition of compact operators is a useful goal, and 

the purpose of this chapter is to make that recognition easier. 

A convenient starting point is a necessary and sufficient condition 

for compactness, contained in Theorem 2.1 below. The theorem is based 

on results attributed to Radon [47]. (For a summary of Radon's results, 

see [70, pp.90-91].) Related results are also given by Krasnosel'skii 

et. al. [36]. 

Throughout this chapter, we use /f as an abbreviation for the 

integral 

Two numbers p,q 

(implying that q 

L f(s)ds 
n 

which satisfy 

also lies in the range 

and 1/p + 1/q = 1 

1 ~ q ~ oo) will be 

referred to as c.onjugate lncLic.u. In this definition we use the 

convention 

1 ;;=0 

and this convention will also be used elsewhere in the thesis without 

further comment. 
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THEOREM 2.1 A NECESSARY AND SUFFICIENT CONDITION FOR COMPACTNESS. 

Let p,q be any pair of conjugate 

the integral operator K given by 

from 

if and 

and 

L (Q) to C(Q) for r 

only if k satisfies 

su~ D·k D < co 
td2 t p 

lim Dkt - k 0 = o , 
t-Yt T p 

all 

indices, 1 ~ p ~ co 

(1) is compact as an 

r in the range 

for all T E n . 

The theorem is proved in Section 2.1. 

Then 

operator 

q < r<co 

(2.3) 

(2.4) 

The two conditions in this theorem occupy a central place 

in the work of this thesis. It is therefore convenient to introduce 

the following definition. 

DEFINITION. A kernel function k which satisfies both (2.3) 

and (2.4) will be said to belong to the class M (n) • p 

For the particular case p = 1 , Theorem 2.1 asserts that 

the two conditions 

and 

suE [_ lk(t,s)lds <co 
t€n n 

lim [_ lk(t,s)- k(T,s)lds = 0, 
t+'t n 

are necessary and sufficient for K to be a compact operator from 

to and hence are sufficient for K to be a 

compact operator from C(Q) to C(Q) • These conditions, or similar 

ones, are often cited in papers on the numerical solution of integral 

equations (for example [44], [5, p.25]). 
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It may be noticed, however, that verification of the conditions 

(2.3) and (2.4) of Theorem 2.1 (and especially of the latter) is not 

necessarily a trivial task, even if p = 1 • It is true that many 

of the commonly occurring kernels are of so-called potential type 

(see for example [36, p.144]), for which the compactness question has 

been well studied. However, more complicated kernels may present 

problems. Consider, for example, the kernel given by 

k(t,s) = cos(ts)lt- sl-~ tnlt + sl (1- s2)-~, (2.5) 

with n = [ -1 ' 1] ~ cR. In this case the verification of (2.3), for 

appropriate values of p ' is straightforward, but the direct 

verification of (2.4) involves much tedious analysis. 

The problem is further complicated if the underlying space is 

of more than one dimension. Consider, for example, the difficulty 

of analysing the two-dimensional analogue of (2.5), 

where 

and 

t,s E 0 C ~ , t•s 
t 

is the inner product of 't 

denotes, say, the Euclidean norm in ~ • 

(2.6) 

and 
~ 

s ' 

It is clear from these examples that the practical value of 

Theorem 2.1 depends on the development of useable tests for determining 

when (2.3) and (2.4) are satisfied, i.e. for determining values of p 

for which k EM (n) • 
p 

The first such test, expressed in Theorem 2.2 below, is based on 

the recognition that the kernels occurring in practice often consist, 

as in (2.5) and (2.6) above, of the product of a finite number of more 

or less simple factors. (They may also, of course, consist of a sum 

of such products. However, the handling of sums is in practice trivial, 

since the sum of two compact operators is compact.) 
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The purpose of the theorem is to show that if k is a product 

of factors ki , i = l, ..• ,m , and if each factor ki satisfies 

the conditions (2.3) and (2.4) of Theorem 2.1, with p replaced by 

pi ' then k itself also satisfies the conditions for a certain 

value of p • 

THEOREM 2. 2 KERNEL FUNCTIONS OF PRODUCT TYPE. 

Let 
(1) (2) (m) 

k(t,s) = k (t,s) k (t,s) ••• k (t,s), where 

with and let the numbers 

be such that 

Then k EM (0) • 
p 

+ + ••• 

This theorem is proved in Section 2.2. 

k(i) EM (0) 
p ' i 

To make use of Theorem 2.2, one should be able to determine, 

for each factor ki in the kernel, the values of 
~ 

for which 

k. E M (0) • Two special cases of importance are dealt with in 
1. pi 

Theorem 2.3. Between them, they appear to cover the great majority 

of cases likely to be encountered in practice. 

The first part of Theorem 2.3 deals with the case of continuous 

kernels, for which the result is especially simple. 

THEOREM 2.3(i) CONTINUOUS KERNELS. 

If k is continuous on 0 x 0 , 

in the range 

then k EM (0) 
p 

for all p 

(Note that it is not necessary to specify a norm on the space 0 x 0, 
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because all norms on a finite-dimensional space are equivalent.) 

The second part of Theorem 2.3 is designed to handle kernels 

(or factors within a kernel) of the difference form k(t,s) = $(s-t), 

or other similar forms such as $(s+t), or even·just $(s) • 

More generally, we consider k(t,s) = $(s-g(t)) where g is 

a continuous function from 0 to fifl • The set O* in the 

theorem is simply the set of all values of the argument of $ as 

and t range over 0 

THEOREM 2.3(ii) DIFFERENCE-TYPE KERNELS. 

Let the kernel function k be given by 

k(t,s) = $(s-g(t)), s,t E 0 

where g is a continuous function from 0 to ~n • 

let $ E L (0*) 
p 

o* = {s - g{t) 

for some p in the range 

s,t E S'l} Then k EM (0) 
p 

1 < p < 00 

Moreover, 

where 

EXAMPLE. If 0 = [ -1 ' 1] c ~ ' and k(t,s) = It - sl-1/a 

with 1 < a-< oo 

$(x) = lxl-1/a and 

then the theorem can be applied with 

-* S'2 = [ -2,2] • Since $ E L (0*) 
p 

g(t) = t, 

if 

s 

it follows that k EM (0) 
p 

for all p in the range 

1 < p < a 

Theorems 2.3(i) and 2.3(ii) are proved in Section 2.3. 

Taken together, Theorems 2.2 and 2.3 give a method for 

determining, in most cases, whether a given kernel function satisfies 

(2.3) and (2.4). If it does, then Theorem 2.1 gives a range of values 

of r for which K is compact from L (S'l) 
r 

to C(S'l) • 
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A bonus from Theorem 2.1 is that, since (2.3) and (2.4) are 

both necessary and sufficient, their necessity can be used, in principle 

and often also in practice, to determine the range of values of r for 

which K is not compact. However, the remaining theorems, 2.2 

and 2.3 express merely sufficient conditions, and so cannot be used to 

prove non-compactness. 

The following three sections are devoted to the proofs of the 

theorems stated above. In the final section, Section 2.4, we discuss 

an example to illustrate the way the results can be used in practice. 

2.1. A NECESSARY AND SUFFICIENT CONDITION FOR COMPACTNESS. 

The main result of this section is the proof of Theorem 2.1, 

which is stated in the Introduction to the chapter. The proof follows 

easily from three results, Theorems R1-R3 below, which are attributed 

to Radon (as described in the Introduction). 

THEOREM R1. Let p,q be conjugate indices, 

K be the integral operator defined by (2.1). 

from 

and 

PROOF. 

L (0) 
q 

(i) 

to if and only if 

SU.E_ ~k I < co 
tdl t p 

(ii) for all measurable subsets D 

we have 

Suppose K 

Ky(t) 

= J k (s)ds 
D 't' 

operates from L (0) 
q 

and let 

Then K operates 

of n and for any 

to 

y E L (Sl) 
q 

with 

, 
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for some q in the range We first prove (ii). 

Suppose D is a measurable subset of Q and let Xn denote 

the characteristic function on Q of the set Now Xn E Lq(Q) , 

is compact and hence has finite measure, and it follows 

D • 

since Q 

from the assumption that K Xn E C(Q) • Since 

(ii) then follows. 

To prove (i), we.first observe from the assumption that kty 

is integrable for all t E Q and all y E L (Q) , 
q 

from which it 

follows that kty E L1 (Q) Hence we can assert that kt E Lp (Q) -

for 1 < q <co a proof is indicated in [ 30, p.232, (15.14) (b)] , 

and for q = 1 in [ 30, p.348] • For 

easily by considering Kz , where z 

which is identically 1 • 

Now for each t E Q define q;t 

It is clear from Holder's inequality that 

linear functional on L (Q) , 
q 

ll~~>tll :s llktUp 

and that 

q=co the result follows 

is the function on Q 

on L (Q) 
q 

by 

is a continuous 

(2.7) 

We now demonstrate, using standard methods, that in fact 

(2.8) 

Consider first p in the range If 

then (2.8) follows trivially. If let 
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is zero if w is 

zero and is w/lwl if w is non-zero. It then follows that 

y E L em ' II Yll = 1 and q q 

from which (2.8) follows. For p = ~, either ~ k~ll~ = 0 , in 

which case (2.8) is trivially satisfied, or llkt~~ > 0 • In the 

latter case, let e > 0 and E ={sEn: lkt(s)l > llkJI~- e} • 

It is clear that 0 < ~(E) ~ ~(n) < ~ where for any measurable 

set A, the measure ~(A) is given by 

If we define y by 

then it follows that II y 111 = 1 , and that 

Since this is true for arbitrary e > 0 , (2.8) is satisfied. 

Now since K operates into C(n) and since n is 

compact, it follows that, for all y E L (n) , 
q 

where N is a positive number which may depend on y • y It follows 

by the principle of uniform boundedness [50, p.lO~, applied to the 

Banach space Lq(n) , that 

sup ll~tll < ~ • 
te:n 

Then, on using (2.8), (i) follows. 
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Conversely, let conditions (i) and (ii) hold. First we consider 

p in the range 1 < p ~ ~ , so that q lies in the range 

1 < q < ~ Let y E L (f2) 
q 

and let E > 0 • Since the simple 

(step) functions are dense in L (f2) ' q 
there exists a simple function 

g such that 

(2.9) 

Now fix T in f2 • From the triangle inequality and 

Holder's inequality it follows that for all t E f2 

IKy(t)- Ky(T)I ~ IKy(t)- Kg(t)l + IKg(t)- Kg(T)I + IKg(T)- Ky(~)~ 

< ~ktll b-d + IKg(t) - Kg(T) I + ~k.J ~g-yl - ·p q •P q 
(2.10) 

Now since g · is a simple function, it follows from (ii) that there 

exists o > 0 such that, for all tEn satisfying It- Tl < o 

we have 

IKg(t) - Kg(T)I < E 

and hence from (2.9) and (2.10), 

IKy(t)- Ky(T)I < (2 SUE_ llktR + 1)E 
- t€f2 p 

This implies, with the aid of (i), that Ky E C(f2) as required. 

For the case p = 1 , refer to [21, p.291]. From this source 

it follows that if k satisfies conditions (i) and (ii), then kt 

converges weakly (in the sense of Dunford and Schwartz [21, p.67] 

as t -+- T for all T E f2 • Hence by 

the known results on the representation of linear functionals on 

L1<n> [so, p.136], 

for all T E f2 , 

it then follows that, for all y E L~(f2) and 
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t-Yt 

Thus, since Ky(t) = J kty , 

20. 

it follows that Ky E C(O) 

completes the proof of Theorem R1. 

This 

THEOREM R2. Let K be the integral operator defined by (2.1), 

and let q 

from L (n) 
q 

lie in the range If K operates 

to c(n) , then K is bounded. 

PROOF. The proof follows immediately from Theorem Rl, with the aid 

of Holder's inequality. Let y E L (n) 
q 

and consider the uniform norm of Ky in C(n) • Then 

where N 

IIKYII = su.E_ I /_ kt(s) y(s) dsj 
te:O 0 

is some positive number independent of y • 

bounded with II K II ~ N • 

THEOREM R3. Let p,q be conjugate indices, 

and let K be the integral operator defined by (2.1). 

So K is 

Suppose K 

operates from L (n) 
q 

to C(n) • Then K is compact if and only 

if, 

for all 't'--e 0 • 

PROOF. Suppose K is compact as an operator from Lq(O) to 

for some q in the range 1<q<co Then conditions (i) and 

(ii) of Theorem Rl hold for the kernel k • 
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For let denote the linear functional on 

defined by (2.7). Then by an argument similar to that used in 

proving (2.8), it follows that for all t,T E 0 , ~t - ~L is also 

a linear functional on L (0) , 
q 

But we also have, by definition, 

and satisfies 

(2 .11) 

sup 
yeB 

q 

jKy(t)- Ky(L)j , (2.~2) 

where B 
q 

denotes the closed unit ball in Lq(O) • 

Since K is compact, the Ascoli-Arzela theorem [21, p.266] 

implies that the set KB 
q 

must be equicontinuous, hence it follows 

from (2.12) that 

for all 'LEg 

Hence, using (2.11), it follows that 

as required. 

Conversely, suppose 

This implies that the mapping 

into L (0) 
p is continuous. 

for all 
' 

for all 'LEO 

t -+ kt which, by Theorem R1, maps 0 

Hence, since t-+k 
t 

is a continuous 

mapping from a compact metric space to another metric space, it follows 

(see, for example ['21, p.24]) that this mapping is also uniformly 

continuous. 
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To prove that K is compact, we must show that the closure 

of is compact as a subset of We do this by showing KB q 

that KB 
q 

is bounded and equicontinuous, and evoking the Ascoli-Arzela 

theorem. It follows easily from Holder's inequality that, for all 

t, T E Sl and all 

Now fix E > 

y E B , 
q 

we have 

0 . The uniform 

(2.13) 

continuity of the mapping 

t -+ k t then implies the existence of 0 > 0 with the property that 

~kt - kTIIP < e: ' 

for all t, T in n satisfying It - Tl < 0 Thus it follows 

from (13) that 

IKy(t)- Ky(T)I < e: (2.14) 

for all t, T in n satisfying It- Tl < 0 and all y E B • q 

Hence KB is an equicontinuous subset of C(Sl) . Also, Theorem q 

R2 implies that K is,bounded, so KB is also a bounded set. q 

The Ascoli-Arzela theorem then implies that the closure of KB 
q 

compact, and this completes the proof of the compactness of K • 

We now prove the main result of this section. 

is 

PROOF OF THEOREM 2.1. Suppose K is compact as an operator from 

L (n) 
r 

to for all r in the range q<r<co Then, 

using the specific case of r = q ' we have, by Theorem R1 

and, by Theorem R3, 
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for all T E 0 • 

Thus k satisfies conditions (2.3) and (2.4). 

Conversely, suppose k EM (0) 
p 

that i~, k satisfies 

(2.3) and (2.4). Let D be any measurable subset of 0 , and 

let T E 0 • Then 

- J k (s)dsl < f lkt(s)- k (s) Ids< i_lkt(s)-k (s)!ds 
D T D T 0 T 

< Ilk - k H (}l(n)) 1/q -+ 0 
- t TUp ' 

since k EM (n) • 
p 

as t -+ T 

Then we deduce from Theorems R1 and R2 that K is a bounded 

operator from L (0) 
q 

to C(n) , and in turn, from Theorem R3, 

that K is compact as an operator from L (n) 
q to C(n) • 

If r is any number in the range it then follows 

trivially, as discussed in the Introduction, that K is compact 

as an operator from L (n) 
r 

to Thus the proof of Theorem 

2.1 is complete. 

2.2 KERNEL FUNCTIONS OF PRODUCT TYPE. 

The main result of this section is Theorem 2.2, which is stated 

in the Introduction. The proof follows easily once some preliminary 

results have been established. We will require the following simple 

consequence of the Haider inequality, stated without proof. 

PROPOSITION. Suppose p, p1, p2 satisfy 

1 < p < 00 ' 1 < p1 < 00 ' 1 < p2 < 00 and 1/p1 + 1/p2 = 1/p. (2.15) 
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Moreover, suppose X is any measure space and let 

g E L (X) • Then fg E L {X) and 
p2 p 

Then we have the 

Lemma Suppose k(t,s) = k(l)(t,s) k(2)(t,s) , 

f E L {X) , 
pl 

for all 

(t,s) E Q x Q , and let 

such that k(l) EM (Q) 
pl 

p, p1, p2 be numbers satisfying (2.15), 

and k (2) E M {Q) • Then it follows 
P2 

that k E M {Q) • 
p 

Proof. Suppose the hypotheses are satisfied, and let t E Q • 

Then 

which implies 

and therefore (2.3) is established. 

Next, let t, T E Q and consider 



-+ 0 ' as t -+ T 

Thus (2.4) is satisfied and 

25. 

k EM (Q) 
p 

PROOF OF THEOREM 2.2. The theorem follows easily from the Lemma 

by induction on m , where m is the number of factors in the 

product. 

2. 3 TWO IMPORTANT SPECIAL CASES. 

This section is devoted to the proof of Theorems 2.3 (i) 

and (2.3) (ii), stated in the Introduction. The first is the simpler 

result and is already known [22, p.657], but a proof is included for 

completeness. 

PROOF OF THEOREM 2.3(1) • Since n is compact, n X n is compact 

and k , Since it is COntinUOUS on 0 X 0 , must also be bounded 

there. Thus, by a trivial argument, we have, for any p in the 

range 1 < p < 00 , 

Also, the function (t,s) -+ k(t,s) is continuous, and hence 

uniformly COntinUOUS on n X 0 with the uniform topology. Thus, 

choosing e: > 0 ' we can find a 0 > 0 such that 

jk(t,s)- k(T,s)j < e: 

for all sEO and all t,T E 0 satisfying 

It- Tl < 0 • 
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It follows easily from this that, for any p in the range 

for all '[' E 0 , 

and the theorem is proved. 

PROOF OF THEOREM 2.3(ii) Let II II* denote the p norm in the p 

space Lp csr> , and for all tEO let wt(s) = w(s - g(t)) • 

It then follows that 

~ktllp = lwtlp 

* t E 0 , < NIP < 00 for all -

where the first inequality is achieved merely by extending the domain 

of integration from n to Q* • Thus (2.3) follows. 

To prove (2.4), let e: > 0 be given. Since l~p<oo 

and since W E L (O*) 
' 

it follows [50, p. 711 that there exists p 

F E C("fi*) such that 

* ~w - F~P < e:/3 • (2.16) 

For all t E 0 let Ft(s) = F(s - g(t)) • Then, fixing T E 0 

we can write, for all t E 0 , 

= llwt - F t + F t - FT + F'[' - WTip 

< llwt - F tip + IIF t - F'['~p + ~F'[' - w'['lp (2.17) 
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Now, for any t E Q we have 

= {2.18) 

by {2.16) • 

Also, Q* is compact, since it is the image of the compact 

set li x Q under the continuous mapping (s,t) + s - g(t) , 

and it follows that F ' being continuous on must also be 

uniformly continuous there. Hence we can find o > 0 such that 

IF{s- g{t))- F{s- g{T))I < E/3{~{Q)) 11P, {2.19) 

for all s E Q and all t E Q satisfying 

lg{t)- g{T)I < o 

By the continuity of g we can find o' > 0 such that (2.19) 

holds for all s Eli and all t E Q satisfying 

It- -rl < o' . 

Thus, if It- Tl < o' we have 

{2.20) 

Using {2.18) and {2.20) in {2.17), it follows that 
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for all t E S'l satisfying 

Since E was chosen arbitrarily, (2.4) follows, and the theorem 

is proved. 

2.4 A PRACTICAL ILLUSTRATION. 

We now show how to apply Theorems 2.1 - 2.3 to find a range 

of values of p for which the induced operator of the kernel 

function 

is compact as an operator from Lp{n) 

n ~= l -1 , 11 c 4l • 

We adopt the following notation: 

k{l) (t,s) 

k(2 ) (t,s) 

k(J)(t,s) 

k (4) (t,s) 

cos( ts) , 

= 

= R.n It+ sl , 

= 

to C{n) , where 

Our first step is to investigate the ranges of p for which 

each of the above functions is in M (0) • 
p 

To do this we use the 

following easily verified facts: 

Let 0 < b <co Then, 

(F1) If ljJ(x) = x-1/a on the interval (0, b)' where 1 <a<oo 

then 1JJ E L ( O,b] for all p in the range 1 < P <a p -
' 
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(F2) If tiJ (x) = R.n I xI on the interval (O,b) , then 

t1J E L [O,b] 
p 

for all p in the range 1< p<oo 

Now, with the aid of these facts, we apply the results of 

Theorem 2.3. 

i~ continuous on n X n and thus, by Theorem 2.3(i), 

for all p in the range 1 ~ p ~ 00 • 

(2) k(
2)(t,s) = tiJ( s- g(t)) where g(t) = t and ~(x) = lxl-~, 

and employing (F1) and Theorem 2.3(ii) we can infer that K(2) EM (rl") 
p 

for all p in the range 1 ~ p < 4 . 

<3> I I (3) k (t,s) = tiJ(s - g(t)) where g(t) = -t and W(x) = R.n x • 

Using (F2) and Theorem 2.3 (ii), it follows that 

for 1 ~ p < oo 

(4) k(
4)(t,s) = tiJ(s- g(t)) where g(t) = 0 and 2 -~ W(x) = (1-x ) • 

It is easy to verify that tiJ E L (n*) 
p 

for p in the range 

which in turn implies that for p in 

(Note that in this case n = n*.) 

The next step is to collect results (1), (2), (3) and (4) 

above, and use Theorem 2.2 to infer that k EM {n) 
p 

where 

any number strictly less than the number P given by 

3 
= 4 

p is 
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p 

for any p 

4 
1 < p < -

3 
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in the range 

The final step is to employ Theorem 2.1 to, assert (because 

the conjugate index of 4/3 is 4) that K is compact from L (0) 
r 

to C(n) (and hence also from C(O) to C(O)) , where r is 

any number in the range 

4<r< 00 (2 .21) 

In this particular example we can also use Theorem 2.1 

directly to show that K is not compact from L (Q) 
r to C(O) 

if r is any number outside the range (2.21). To see this, let 

t = 1 and consider 

1 
f Jcos(s)(1 - s)-~ in(1 + s)(1 - s2)-~IP ds 
-1 

= / 1 

1 

cos(s) in(1 + s) lp ds 
-1 (1'- s) 314 (1 + s) 112 

which is clearly infinite if p ~ 4/3 • So k ft M (n) 
p 

if 

p ~ 4/3 and Theorem 2.1 implies that K is not compact from 

to C(Q) for any r outside the range (2.21). 
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CHAPTER 3 

SINGULARITY EXPANSIONS FOR THE SOLUTIONS 

OF WEAKLY SINGULAR EQUATIONS 

3.1 INTRODUCTION 

In this chapter we will be concerned with integral equations 

of the form 

b 
y(t) f (t) + A fa k(t-s)y{s)ds, t E [a, b] , (3.1.1) 

where -oo < a < b < co , and AEI&. The kernel, k, and the 

inhomogeneous term, f are given real or complex-valued functions 

on [a-b, b-a] and [a,b] respectively, and y is the solution 

to be determined. 

Throughout the chapter, we shall abbreviate (3.1.1) by 

y = f + KAy , 

where KA = AK, 

given by: 

and K denotes the linear integral operator 

b 
Ky(t) = J k(t-s)y(s)ds , 

a 

It is obvious that, if a solution y 

t E [ a,b] • (3.1.2) 

of (3.1.1) exists 

(and conditions sufficient to ensure this will be assumed), then 

y will inherit its properties from the given information k, f, 

and A • However, the more intimate connections between the given 

information and the induced solution are not yet fully understood. 

It is the aim of this chapter to investigate these connections, 

with emphasis, in particular, on the case when k is weakly singular. 
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This case is exemplified by the prototype equations, 

b 
I 1cx-1 y(t) = f(t) + A I t-s y(s)ds t E [ a,b] , 0 < ex < 1, (3.1.3) 

a 

and 
b 

y(t) f(t) + A I R.nlt-sl y(s)ds, t E ( a,b] . (3.1.4) 
a 

Equations of this form often arise in practical applications. 

For examples, see [ 27) , [54] , [55) , and the references given 

there. 

Before we can state the main results of the chapter, some 

explanation of notation is necessary. 

For any interval [ a, b) , 

define the indefinite integral 

I [a,b] ~(t) = 
t 

I ~(x)dx , 
a 

and any ~ E L
1
[a,b] , 

t E [ a,b] , 

and abbreviate this by I~(t) when the interval [ a, b) 

is unambiguous. 

We introduce the class of Sobolev spaces Wm[a,b] , 
p 

which are defined for m E :N 0 , and 1 ~ p < co by 

Wm[a,b) = {~ E L [a,b): ~(i) E L [a,b), i = O, ••• ,m} , 
p p p 

we 

where the derivatives of are calculated in the domain (a,b). 

For any m E :N 0 , w;[a,b] is a Banach space under the norm 

= 

~.m [ m-1 Note that w a,b] S: C [a,b], mE E 
p 

(3.1.5) 

(3.1.6) 
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The main result of the chapter (Theorem 3,9 of Section 3.3) 

will show that, if f E W~[a,b] for some and if k 

is weakly singular (a notion we shall make precise below), then the 

solution y of (3.1.1) may be expanded as a linear combination of 

(known) singular terms plus a smoother (unknown) remainder function. 

We shall refer to expansions of this type as "Singularity Expansions". 

To be more explicit, Theorem3.9 will show that, if 

f E W~(a,b] , for some r E 1'b then for any m E :N 0 , we 

have 

y = f 

m n-1 
IjKt(DKn)j-r K f(r) + I I (a) 

j=r 1=0 A A A 

m m n-1 . 
+ I I L IJK1(D~)i-l k (b) 

i=l j=i 1=0 A j-i 

(3.1.7) 

+ ~ 

m+l where <P E w1 [a, b) 
' 

I = I 
' [ a,b] 

k. i(t) J-
cj .k(t-a) -d. ik(t-b), t E [a,b] , i=l, ••• ,m, j=i, ••• ,m, 

-l. J-

and the constants c. i'dj . and positive integer J- -l. 

identified in terms of known quantities in Section 3.3. 

n will be 

The value 

of n will depend on the strength of the singularity in k • 

The expansion (3.1.7) is written for general and 

with the convention that, when r > m , (3.1.7) (a) is void and when 

m = 0, (3.1.7)(b) is void. 

Note that f E W~[a,b] implies that r' f E w1 [a,b] , for any 

r' < r , and so the dominant singularities in y may often be 
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written in terms of known functions in more than one way. However, 

if we choose r to be the largest possible integer such that 

f E W~[a,b] , then we shall minimise the number of functions in 

(3.1.7) (a), and the singularity expansion (3.1.7) will be in its 

simplest possible form. 

In particular, if r > m , the summation (3.1.7)(a) 

gives no contribution at all and (3.1.7) takes a much simpler form, 

all the singular terms in this case being induced by the kernel k , 

and contained in the summation (3.1.7)(b) • 

On the other hand, if we take the trivial case m = 0 , 

then (3.1.7)(b) gives no contribution at all, and (3.1.7)(a) only 

gives a contribution if r = 0 • 

As an example, consider the case of (3.1.1) with 

[ a,b] = [ 0, 1] , 

k(x) = lxl-~ X E ( -1,1) 

and 

f(t) = t t E ( 0, 1] • e 

In this example, f is infinitely continuously 

differentiable on 

always find r 

[ 0, 1] , and so, for any m E :N0 , 

with r > m , and f E W~[a,b] • 

summation (3.1.7)(a) can thus be neglected in this case. 

we shall show in Section 3.3 that, for this kernel, n = 

we can 

The 

Also, 

2 • 

Hence, for any mE :NO , y has the singularity expansion 

m m 1 
IjK!(DK2)i-1 k + ~ y = f + r r r 

i=1 j=i 1=0 A A j-i 

(3.1.8) 

(3.1.9) 
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I= I(0,1) ' 

k. i{t) J-

for some constants 
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tE(o,11, 

and and 

If we choose m = 0 the summation in {3.1.9) gives no contribution, 

and we merely have 

y == f + cj> ' 

where 1 
cJ> E w

1 
[a,b] • 

The practical value of the expression {3.1.7) clearly hinges on 

whether its terms {which are all obtained as the images of known 

functions under various combinations of the operators K, I and D) 

can be evaluated explicitly. Illustrations of practical methods for 

calculating these singular terms for given k and f are given 

in Section 3.4. In most cases these terms are integrals which, 

although they do not have a closed form, may be expanded explicitly 

in. terms of known singular terms using fairly simple techniques. 

In particular, the singularity expansion {3.1.9) for example 

{3.1.8) will be shown to have the specific form 

{ 
m-1 m-1 

y{t) = et + }. ~ tj{int)i{t~ +tint) 
i=O j=i 

~1~1 ~ } 
+ L L {1-t)j{tn{1-t))i{(l-t) + (1-t)tn{1-t)) 

i=O j=i 

+ 4l{t). ' t E [ O, 1] , {3.1.10) 
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where m+1 cp E w
1 

[0,1) , and {a(t) + b(t) + .•• + z(t)} denotes 

a linear combination of the functions a(t), b(t), ••• , and z(t) • 

In order to complete this programme, the necessary theoretical 

details are first proved in Section 3.2. 

There has been interest in equations of the form (3.1.1) for 

quite some time. For example, in [3~ , an asymptotic expansion for 

the solution of (3.1.4) was obtained. 

Singularity expansions of the type described in this chapter 

were first introduced by Richter [ 49] • Richter's technique, based 

on the smoothing properties of K ' was shown to be valid in the 

particular cases of (3.1.4) and (3.1.3) (~ < a < 1) , given 

sufficient differentiability of f • 

The results given here allow us to obtain singularity 

expansions of arbitrary length for the solution of (3.1.1) When k 

is any weakly singular kernel, and allow f to be (in the worst 

case) merely an function, and so encompass the results 

of Richter as a special case. 

Related regularity results are contained in the recent work 

of Chandler [ 11] , [ 12] , and Schneider [54] • Both these authors 

obtain results about the general smoothness properties of the 

generalisation of (3.1.1) obtained by replacing k(t-s) by 

k(t-s)m(t,s) where k is weakly singular and m smooth. 

The results given here, which lead to singularity expansions, are 

dependent on the explicit difference-type kernel, and extensions to 

more general kernels do not appear to follow easily. Here we present 

much more detailed information for the less general case. 
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Results of the type given here have important numerical 

consequences. Until relatively recently, error analyses for numerical 

methods for solving (3.1.1) have tended to assume that the solution 

is smooth, and hence are somewhat inapplicable to practical situations. 

Knowledge of the smoothness of the solution will enable accurate and 

practical error predictions. It will often be the case that 

convergence rates for existing methods will be considerably slower 

for a non smooth solution, than for a smooth solution. However, 

a judicious modification of existing methods to take account of 

singular behaviour in the solution will spe~~ convergence considerably. 

Explicit knowledge of singularities will obviously be an important 

pre-requisite for the optimal modification of methods. 

In Chapter 4, we shall use the results given to analyse the 

convergence of the Galerkin and iterated Galerkin methods for weakly 

singular equations. We shall also show how to obtain better 

convergence rates by taking into account the (now known) singularity 

of the solution. 

Similar programmes for the product integration method have 

been carried out by Chandler [11], [12] and Schneider [55]. From 

an application point of view, the success of such an approach had 

been demonstrated previously by Noble [43]. 

Finally, we note the work of Sloan [60] and Mayers [40], 

where it is pointed out that misleadingly high convergence rates have 

often been attained for the numerical solution of (3.1.1) by using 

as a test example, a special case in which the solution is contrived 

to be smooth. Now that it is known what the singularities in the 
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solution of (3.1.1) are in general, realistic testing of numerical 

methods in the manner suggested by Sloan should follow. 

3.2. THEORETICAL BASIS 

In this section we develop some theoretical results concerning 

the properties of the integral operator K given by (3.1.2), when 

the kernel k is weakly singular. 

The correct choice of function space setting is crucial to the 

theory, and we shall see that, for the prototype equations (3.1.3) 

and (3.1.4), the usual L 
p 

setting is somewhat inappropriate. This 

is because, when f is sufficiently smooth, the solutions of 

(3.1.3) and (3.1.4) have first derivatives which behave, respectively, 

like (t - a)a-1 and R.n(t - a) near t = a , and have 

equivalent singularities near t = b • Now, when o<a<l, 

the function a-1 (t_- a) certainly belongs to the space L [a,b] 
p 

for any p 

the space 

in the range 

L [a,b] 
p 

for any 

and R.n(t - a) is in 

p in the range 

However, since these functions are also smooth(except at one poin~, 

it is inappropriate to cast them in some L [a,b] , 
p 

since such a 

space also contains many non-smooth functions. A more appropriate 

setting is provided by spaces of functions with fractional derivatives. 

A setting of this nature has been suggested, in slightly different 

ways, in each of [11], [49] and [54], and we adopt here the setting 

suggested by Chandler, [11]. 

We introduce the following notation. 
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For any a > 0 , let a and ao denote numbers such 

that 

l a1 e :No ' 
o < a0 < 1 ' 

l and (3.2.1) 

a = (a] + a
0 

• 

Note that [ a] denotes the largest integer less than a , and noz 

the integer part of a. For hE JR. , and any function 

<I>:JR-+E, let ~h denote the usual forward difference operator: 

~h <j>(t) = <l>(t + h) - <l>(t) • 

Then the Nikol'skii space defined for 

by 

1<1>1 JR.: sup 
a,p, h;'O 

11~~<1> [a] IlL (JR.) 
p ----a 

lhl 
0 

is a Banach space under the norm 

= 

For any interval [a,b] , 
a 

the space N [a,b] is defined by 
p 

11 ~2<1> [a] 11 

~ IILP(a,b]2h <co}' 
= sup a 

h;'O lhl 0 
Na[a,b] ={<l>eL [a,b]: 1<1>1 [ b]: p p a,p, a, 

where, for any 

[a,b] =· {t E[a,b]: t + € E [a,b]} , 
€ 

and is a Banach space under the norm 

ll<~>lla,p,[a,b] = II<~>IIL [a,b) + l<1>1a,p, [a,b] • 
p 

We abbreviate these norms by n n when no confusion a,p 

can occur. 

(3.2.2) 
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Remark. This is the definition of a N [a,b] which is given by p 

Nikol'skii [42, p.l60]. The device (3.2.2) ensures that the norm is 

taken over an interval for which b.2 cl>[a] 
h is well defined. 

Equivalent definitions of Na[a,b] which employ some vari~t of 
p 

(3.2.2) are given in [42]. 

used in [28]. 

One of these equivalent definitions was 

Example. Consider the function ta-l (0 < a < 1) defined for 

t E [ 0, 1] • Then for 0 < h < 1/2 

(since 

n 2 a-1 II 11 a-1 a-1 a-lg 
llb.h (t ) L [ 0 1] = U (t + 2h) - 2(t + h) + t IlL [ 0 1] 

1 , 2h 1 ' 2h 

a-1 t 

0 a.-1 a-ln n a-1 a-1 11 ~ U ( t + 2h) - ( t + h) II L [ 0 1] +u ( t+h) - t U L [ 0 1] 
1'2h 1 '2h 

l-2h 1-2h 
= I ((t + h)a-l - (t + ,2h)a-l)dt+ I (ta-l_ (t+h)a-l)dt 

0 0 

is decreasing) 

l-2h 
= I (ta-l - (t + 2h)a-1)dt 

0 

where C is a constant. This argument can be used to obtain a 

similar result for - ~ ~ h < 0 • 

have [0,1]2h=0, it follows that 

In fact, it can be shown that 

y > a and also [71, p.73] that 

fo~ any y > 1 , 

Since, for lhl > 1/2 we 

ta-l ~ NI[o,l], for any 

1 Jl.ntEN
1
(0,l], but 

this last fact being the motivation 

for the use of the second difference in the definitions of N~[O,l] • 
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We have the following continuous imbeddings [37, p.p.383-384, 

p.p.389-391] 

for mElN,O<E<1, and 1 < p < 00 

and 

(3.2.3) Na. [a, b] c Na [a, b] , 
p q 

for a. > 0 , 1 ~ p < q <oo and 

B a. - (1 - .!.)- > 0 p q 

The first chain of imbeddings demonstrates the fact that the 

Sobolev spaces wm[a,b] are naturally immersed in the continuum 
p 

a 
of Nikol'skii spaces N [a,b], while the second imbedding shows p 

that, given a function in a certain Nikol'skii space, we may trade 

in some of its differentiability to obtain some stronger integrability 

properties. For further details of the properties of Nikol'skii 

spaces, see [11], [37], [42] and [69] • 

We shall use the results of Taibleson [67] concerning certain 

Lipschitz spaces of functions, A(a.,p,q,lRn) , which are defined 

for a.> 0 , oo ~ p ~ 1, oo > q > 1 , and n > 1 • We show 

in Theorem Al that, in fact, 

A(a.,1,oo,lR) (3.2.4) 

We shall make use of relation (3.2.4) in the proof of Theorem 

3.3 below. The proof requires the following lemma. 

Lemma 3.1 Let k E L1 [a-b, b-a], and let 
1 

y E w
1 

[a,b]. Then 

1 Ky E w1 [a,b], and 

(Ky)'(t) = y(a)k(t-a) - y(b)k(t-b) + Ky'(t), for almost all t E [a, b] • 
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Proof A proof is given in Theorem A3 • 

We shall refer to the following assumptions: 

AI. k E N~[a-b, b-a] , for some a. in the range 0 < a. < I • 

A2. The homogeneous version of (3.I.I), 

b 
y(t) = A I k(t-s)y(s)ds 

a 

has no non-trivial solutions in LI[a,b]. 

Assumption AI en~ures that k is "weakly singular", while 

A2 will allow us to invoke the Fredholm Alternative. 

Note. The function k(x) = Jl,nlxl is in and 

hence satisfies AI for all a. in the range 0 < a. < I • 

Theorem 3.3 Let Al be satisfied. Then 

(i) K Nica,bJ + N~+rca,bJ- 0 < y < 1 

(ii) K I a.+y N1[a,b] + NI [a,b], 0 < y < I 

(iii) K y ' a.+I NI[a,b] + NI [a,b] y > I ' 

and the mappings (i), (ii) and (iii) are bounded. 

The proof of Theorem 3.3 will be given below; the key ingredient 

is the observation that Ky is simply the restriction to [a,b] 

of the convolution 

CIO 

k * y (t) = I k (t-s) y {s)ds , t E lR 
' (3.2.5) e e e e -oo 

where Ye equals y on [a, b) and zero elsewhere, and k e 

is the analogous extension of k from [a-b, b-a] to lR . 
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With this observation, the proof is obtained by utilising the results 

of Taibleson [67 II, Lemma 1] on convolution in the space A(a,1,~,lR) 

(i.e. by (3.2.4)). The success of the argument depends 

on the properties of the above extensions of y to and k 

to The following lemma studies the properties of such extensions. 

Lemma 3.2 Let where - oo < u < v < ·oo 

and 0 < y <1:, and define cf>e on lR by 

cf> (t) = cf>(t) ' 
e • 

t E [u,v] , 

and 

t E lR \ [u, v] • 

Then the extension map: cf> + cf> e is a continuous linear operator from 

to 

Proof. It will be sufficient to prove this result for [ u,v] = [ 0,1]. 

For, suppose the result holds for [0' 1] , and let 

where 0 < y < 1 , and [u,v] is any interval. 

define 4> E NI [0, 1] with 

jjiP~y,1, [0,1] ~ C ~<1>lly,1, [u,v] ' 

by 

4>(t) = cf>((v-u)t+u) t E [0,1] , 

and we may extend to 
y 

4> e E N 1 (lR ) , where 

< c~q;~y,1, [0,1] 

cf> E N1 [u,v] ', 
" "' Then we may 

(3.2.6) 

(3.2.7) 

Now "' "'e ' 
the extension of from [u,v] to lR, 

satisfies 

X E lR ' 
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and it follows that cf> e E N r (lR ) , 

and that 

(3.2 .• 8) 

Since the constants C in (3.2.6), (3.2.7) and (3.2.8) 

are independent of cf>, the continuity of the mapping cf> .. cf> e 

then follows. 

To prove the result on [O,l] , let cf> E Ni [O,l) 

for some 0 < y < 1 • Then, for any h > 0 , t{ 4> e will be 

zero outside [-2h, 1] , and so 

co 1 
I ~~~ c1> <t>ldt =I 1~! c1> Ct>ldt • 

-co e -2h e 
(3.2.9) 

For 1/4 ~ h > 0 , (3.2.9) gives 

co 0 1 l-2h 
I l~h2cf> (t)jdt =I l~h2cf> (t)jdt +I l~h2cf> (t)jdt +I IA~cf> (t)ldt. 
-co e -2h e l-2h e 0 11 e 

we have 

By definition of cf>e , and, since cf> E Nr[O,l), 

0 0 
I 1~h2c1> <t>ldt =I I<P <t+2h) - 2cp <t+h> + c1> <t>ldt 

-2h e -2h e e e 

2h 
~ I 

0 

h 
l<P<t>Jdt + 2 J 

0 
lcf>{t)jdt 

(3.2.10) 

< C hy Dq,H 
- II lly,l, [0,1] , (3.2.11) 

where the final inequality follows from [ll,p.72]. Similarly, 

we can show that 

1 
I I ~h2 <P <'t > I d t ~ c h r I <P ~ 1 [o 11 , 
~-2h e y' ' ' 

(3.2.12) 
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and, since ~ E Nr(O,l], we have 

1-2h 2 1-2h 2 y 
f l~h~ (t)ldt = f l~h~(t)ldt ~ h 1~1 1 [0 1] ~ hyl~l 1 [0 1)"(3.2.13) 
0 e 0 y, ' ' y, ' ' 

It follows, on substitution of (3.2.11), (3.2.12) and (3.2.13) into 

(3.2.10), that, for ~ ~ h > 0 , 

ClO 

~ l~<l>~(t) ldt ~ C hy ll<1>~y, 1 ,[0, 1 ] • (3.2.14) 

For 1 ~ h > ~' (3.2.9) gives, 

00 2 2h 2 1 2 
J l~h<l> (t)ldt = f l~h<l> (t)ldt + f l~h~ (t)ldt 
-ClO e -2h e 2h e 

2h 2 1 2 
~I l~h~ <t>ldt +I l~h~ <t>ldt 

-2h e 1-2h e 

(3.2.15) 

where the final inequality is achieved similarly to (3.2.11) and 

(3.2.12). 

For h > 1, (3.2.9) gives 

ClO 1 1 1 
I 1~;<1> <t>ldt ~I 1<1> <t+2h>ldt +2f l<1> <t+h>!dt +I 1~ <t>ldt 
-ClO e -2h e -2h e -2h e 

~ 4 II~IIL1 fO' 1] 

< c h y II<~>IIL1 [0, 1] 

< c hy n~n 
H Hy,1, [0,1] (3.2.16) 

Results similar to (3.2.14), (3.2.15) and (3.2.16) may be 

proved for h < 0 ~ leading to, finally, 

ClO 

~ClO I ~; ~ e < t > I d t ~ c I hI r ~ <1> II r, 1 , £0 , 11 , for all h ~ 0 , 
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from which it follows that 

and hence that 

II<I>IIL1 lo,11 + c ll<l>lly,1, lo,11 

< (1 +C) II<P~y,1,[0,1]' 

giving the required result. 

Proof of Theorem 3.3 

(i) Suppose 0 < y < 1 , and let 
y 

y E N
1 

[a, b) • 

Lemma 3.2 and (3.2.4) we can continuously extend y to 

Using 

and k to ke E N~(JR) = A(or.,1,co,JR) • 

Thus, from [67 II, Lemma 1] and (3.2.4) again, 

E A or.+y ke* y e (or.+y' 1' co, JR.) = N1 (JR.), 

where ke* ye is defined by (3.2.5). 

On restriction of k * y to 
e e 

or.+y [ Ky E N1 a,b] , and [69, p.310] that 

Hence [67 II, Lemma 1] , we have 

and, by the continuity of the extension 

[a, b] , 

y-+y 
e 

11Kyllor.+y,1, [a,b] < C ~YIIy,1, [a,b]' 

it follows that 

where C is independent of y , proving the required result. 
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(ii) By (3.2.3), and (i), the composition 

1 y a.+y ] N1[a,b] N1[a,b]-~N1 [a,b 
Inclusion K 

for any 0 < y < 1 is continuous, and the result follows. 

(iii) It is shown in [11] that 

1[ ] + 0.+1[ J K : w1 a,b N1 a,b 

is continuous. Thus for any y > 1 , it follows from (3.2.3) 

that the composition 

y 1 a.+1 N1[a,b] w1[a,b]---+ N1 [a,b] 
Inclusion K 

is continuous, and the result follows. 

Corollary 3.4 Let Al be satisfied, and let n = [~] + 1 • 

Then the following maps are continuous 

(i) K L
1 
[a, b1 + a. N1 [a,b] 

(ii) Kn p 1 N1[a,b] + w
1

[a,b] 0 < p ~ a. ' 

(iii) DKn p q 0 < q<p~a. N1[a,b] + N1[a,b] 
' 

Proof. A proof of (i) can be found in [11]. 

Note that, by definition of n , see (3.2.1), we have 

(n - 1)a. < 1 ~ na. , 

and let 

0 < p ~ a. • 

Then, Theorem 3.3 and (3.2.3) imply that, for any p' 

1 < p' < min {na. + p, a. + 1} 

in the range 

(3. 2.17) 
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the composition 

p p' 1 
N1[a,b] --+Kn N1 [a,b] w1[a,b] 

Inclusion 
(3.2.18) 

is continuous, and (ii) follows. 

Now, if 0 < q < p ' then q + 1 is in the range (3.2.17), 

and it then follows, by (3.2.18), and using the interpolation theorem 

of Chandler [11, p.74], that the composition 

is continuous, and (iii) follows. 

The next theorem states some results on the compactness of K , 

(i) is a standard result, see [70, p.321], while the proof of (ii) 

follows from the results of [11]. 

Theorem 3.5 Let A1 be satisfied. Then K is compact as 

an operator on either of the spaces 

or 

(ii) 

Corollary 3.6 Let A1 and A2 be satisfied. 

(i) If f E L1 [a,b], then (3.1.1) has a unique solution 

y in L
1 

[a,b] • 

(ii) If 1 
f E w1 (a,b], then (3.1.1) has a unique solution 

1 
y E w1 [a,b], and y' satisfies the integral equation 

y'(t) = f'(t) + Ay(a)k(t-a) - Ay(b)k(t-b) + KAy'(t) 

for almost all t E [a,b] • 
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Proof. The proof of (i) follows immediately from Theorem 3.5 

and the Fredholm Alternative [33, p.497] and (ii) follows similarly, 

with the integral equation satisfied by y' being obtained using 

Lemma 3.1. 

Remarh In L
1 

[a,b] or in wi [a~ b], the nnlqueness of tl1e 

solution y means that any other so1.utio~i must coincide Fi.th y 

except, possibly, on a set of mzasure ;>,Pro. Throughout Section 3.3, 

when an integral equation is shovm to have a 8olution in L
1 

[a,b] or 

wi [a, b], it \Jill be assumed,. without further notification, tluct the 

equation is satisfied for almost all t E la,b]. 

3. 3 THE MAIN RESULT 

In this section we obtain the singularity expansion (3.1.7) 

for the solution of (3.1.1). The proof of the main result, Theorem 

3.9 below, depends on the intermediate Lemmas, 3.7 and 3.8. 

Consider (3.1.1) and suppose that k satisfies A1 and A2. 

The singularity expansion, valid for f E w~ [a,b], for any 

will be obtained by first defining inductively, for any 

a sequence of integral equations 

and an associated sequence of functions The important 

properties of these two sequences in the general case, 

and mE:N 0 , are proved in Lemma 3.7. The proof has rather a lot 

of technical detail, and so to illustrate the method, we consider 

first the particular case r = 2 • 
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We first define (3.3.1) 0 to be the same as (3.1.1), 

denote its solution by Yo 

(3.3.1)0 

and set 

(3.3.2)0 

Then, since 2 1 f E w
1 

[a,b] ~ w1 [a,b] , it follows~ by 

Corollary 3.6, that 
1 

y
0 

E w
1 

[a,b] , and that satisfies 

the integral equation: 

y' = 
0 

where 

Ay0 (a)k(t-a) - Ay0 (b)k(t-b), almost all t E (a,b]. (3.3.2) 1 

Since w1 E N~[a,b] and may be infinite on some subset 

of [a, b] of measure zero, (3.3.1)0 is understood to hold in the 

L
1 

[a,b] sense (see Remark following Corollary 3.6), and so we 

cannot use Corollary 3.6 to obtain any information about Y" 0 • 

However, setting n=[!]+1, defining a new function y1 by 

and substituting for 

equation for 

sequence: 

= 

y' 
0 

in (3.3.1)0 , we obtain an integral 

which we take as the next equation in our 

(3.3.1)1 
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It follows then, by Corollary 3.4, that (3.3.1)1 has inhomog·eneous 

term in wi[a,b] • Thus, by Corollary 3.6, 

satisfies 

and y' 
1 

' (3.3.1)i 

for almost all t E [a,b] • 

Since was obtained by subtracting the singular (i.e. 

1 non-w1 [a,b)) 

from Yi 
for y2 • 

terms away from 

in the same way, and 

Since 2 f E w1 [a,bl, 

' Yo ' our aim now is to define 

obtain an integral equation (3.3.1) 2 

it follows that f" E L 1 (a,b], 

and hence, Yi 1 may contain non-w1 [a,b] terms induced by f" 

' If we first subtract f" from Yi and rewrite (3.3.1)
1 

as 

' (3.3.1)1 

where 

n 
= KAf"(t) + (DKA)w1 (t) + Ay1 (a)k(t-a) - Ay1 (b)k(t-b) , 

almost all t E [a,b] , 

it then follows, from Corollary 3.4, that w2 E Nf[a,b] for 

all q < a. 

Then, setting 

1 thus subtracting the rest of the non-w1 [a,bl terms away from 

' 

(3.3.2)2 

Yi - £", and substituting for Yi - f" in (3.3.1)1 , we obtain 

the equation 

(3.3.1)2 



which has inhomogeneous term in 

1 
y 2 E w1 [a,b], and 

Y.i = w3 + K).y2 ' 

where 

Now by Corollary 3.4, 

and so, defining y3 by 
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1 
w1 [a,b]. 

w3 E Ni [a,b] 

n-1 
l K~ w3 y3 = y' -

2 R,=O 

Thus, by Corollary 3.6, 

for all q < a 

and substituting for in (3.3.1)2 , we obtain, 

which has inhomogeneous term in 

By mimicking the transition from (3.3.1) 2 to (3.3.1) 3 , 

we can continue this process indefinitely. Thus for any m E JN0 

we have the sequences and For 

each j = 0,1, ••• ,m, w. 
J 

will be in Ni[a,b] for all 

q <a and (3.3.1) j will have inhomogeneous term, and hence 

(3.3.1) i 

(3.3.1)3 

solution, in 1 w
1 

[a, b] Moreover, for each j = 1, ••• ,m, yj 

1 will be obtained by subtracting the non-W
1

[a,b] 

away from ' yj-1 • 

components 

In this illustration, the integral equations (3.3.1) 0 and 

both contain explicitly the inhomogeneous term f (or its 

derivative), while the equations (3.3.l)j, for j = 2, ••• ,m do not. 

This is because we have assumed that 2 
f E w

1 
[a,b] and hence we 

"run out" of 1 w1 [a,b] lderivatives of f at the point j = 2 

in the sequence 
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When f E W~ [a, b) , for any r E :N
0 

, an analogous 

process to that described above will define sequences {(3.·3.1)j};=O 

and In this general case, we shall "run out" of 

1 
w1 [a, b] derivatives of f at the point j = r • 

In the particular case r = 0 , we have f E L
1 

[a,b] , 

1 and so (3.1.1) has a non-W1 [a,b] inhomogeneous term, and so we 

cannot simply adopt (3.1.1) as (3.3.1) 0 • Instead, we modify (3.1.1), 

using a method analogous to that used to define (3.3.1) 2 in the 

case r = 2 above, to obtain an equation which has inhomogeneous 

term in 
1 w
1

[a,b], and which we then take to be (3.3.1) 0 • 

To do this, we rewrite (3.1.1) as 

Then we define w0 by 

w = 0 ~f ' 

and set 

Then, substitution for y - f in (3.1.1) yields 

(3.1.1) 

which we take to be (3.3.1) 0 , the first equation in our sequence. 

The rest of the sequence is then defined by mimicking the transition 

from (3.3.1) 2 to (3.3.1) 3 in the case r = 2 above. 

The general result is now given in the following lemma. 

Lemma 3.7. Let A1 and A2 be satisfied, let 

for some r E ::N0 , and set n = [ ! J + 1 • 

f E w~ [a,b], 
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(i} For any mE :N
0 

, define inductively the sequence of 

integral equations {(3.3.l)j}~=O by 

j=0,1, ••• ,m, (3.3.1)j 

where 

~ = 1 , j,r 0 ~ j < r , 

and 

~j = 0 , ,r 

and the sequence of functions {w. }~ 0 
J J= 

is defined by 

for almost all tE [a, b) , and j = o, ... ,m, where 

w_1 = 0 

Y_l = 0 , 

and 0 denotes Kronecker's delta. Then, for j = O,l, ••• ,m, wj 

is well defined in for all q < a , 

solution of (3.3.1)j) exists and is unique in 

(ii} y = y - 0 f -0 O,r 

where y is the solution of (3.1.1), and, 

y = y' - 0 f(j) -
j j-1 j,r 

n-1 
}: K~wj 

R.=O 

and yj 

1 w
1 

[a, b)· • 

j = 1, ••• ,m • 

(the 
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Proof. We prove (i) by induction on j • First, consider the 

case j = 0 . Then, 

0 ' r > 0 ' 
wo = (3.3.2)0 

KAf ' r = 0 
' 

and so in either case (see Corollary 3.4) , 

for all q < a. 

The equation (3.3.1) 0 is then 

r > 0 , 

or ) (3.3.1)0 

r = 0 , 

and so, in either case, by Corollaries 3.4 and 3.6, 

1 and is unique in w1 [a,b] • 

exists 

Now, suppose (i) is true for j - 1, where j E {1, ••• ,m}. 

1 Then, since yj_1 E w1 [a,b], it follows that wj is well-

defined, and by Corollary 3.4, we have wj E N{[a,b] , for all 

q < a Hence, by Corollary 3.4, (3.3.1). 
J 

has inhomogeneous 

term in 
1 w
1 

[a,b] , and thus, by Corollary 3.6, exists 

and is unique in 
1 w
1 

[a, b) • 

The proof of (i) then follows by induction. 

(ii) We first prove (3.3.3) 0 . Since f E t\la,b], for some 

we know, by Corollary 3.6, that the solution y of 

(3.1.1) exists and.is unique in L1 [a,b] (and y is in 

1 w
1 

[a,b] if r > 0) • 
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n-1 
y = y - o0 f - L ~w0 , 

, r R,=O --A 

and substitute for y in (3.1.1} to obtain 

which is equivalent, via (3.3.2) 0 to 

which, since 

(1 - 0 ) = ~ O,r O,r 

is the same as (3.3.1) 0 • Thus, by the existence and uniqueness of 

the solution to (3.3.1) 0 we have Y = y0 and (3.3.3) 0 follows. 

Now, let j E {1, ••• ,m} , and use part (i) of this Lemma 

and Corollary 6, to differentiate (3.3.1). 1 , obtaining, via 
J-

(3.3.2)j ' 

= ~ f(j) 
j-1,r 

If we now set 

(j) n-1 R, 
Y = y' - ~ f - ~ K ,,, • 1 uj f. ,wj J- ,r R,=O A 

and substitute for y' j-1 in (3.3.l}j_ 1 , we obtain, 

n-1 R, n-1 
o f(j) + L K,w. + Y ~ ~ f(j) + wJ. + L KR,+1w + K,Y , 

j , r R,=O A J j -1 , r R-=O A j A 

and thus, 

Y = (~j-1 ,r - oj,r)f(j) + K~wj +KAY • 

(3.3.1)! 1 
J-
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Now, since 

~j-l,r- 0j,r = ~j,r , j = 1, •.• ,m , (3.3.4) 

it follows, by the existence and uniqueness of the solution to 

(3. 3.1) j that and (3.3.3). 
J 

follows, completing the 

proof of Lemma 3.7. 

We now use the sequence to obtain a singularity 

expansion for y • Starting with ym , which we know satisfies 

(3.3.1)m we may "unravel" the singular terms in y 

of applying (3.3.3)j' j = m, m- 1, m- 2 , ••. ,0, 

integrating, to obtain successively, an expression for 

and, finally, y • 

by a process 

and 

The general expression for the p-th step in this unravelling 

process is proved in Lemma 3.8. 

Lemma 3. 8. Suppose the conditions of Lemma 3.7 are satisfied, and, 

for j E {O,l, ••• ,m}, let 

Y = ~ f(m) + <I> 
m m,r m ' 

and 

be the solution of (3.3.l)j •. Then 

p=1, ••• ,m, 

(3.3.5) m 

(3.3.5) m-p 

where I = I [a, b) as defined by (3.1.5), and <1> ewp+
1 

1 [a,b], 
m-p 

for p = 0, l, ••• ,m. 

Proof. We shall prove this result by induction on p • 



58. 

First consider the case p = 0 . By Lemma 3. 7 (i) we know that 

1 
Ym satisfies (3.3.1) ' and that ym E w

1 
(a,b] 

' 
and m 

wm E N£la,b], for all q <a By Corollary 3.4 and Theorem 

3.5, 
n 

K). wm and K).ym are both in 1 w1 [a,b]/ and so by 

(3.3.l)m , 

y = ~ f(m) +<I> 
m m,r m 

where and we have proved (3.3.5) • 
m 

Utilising (3.3.3)m and integrating using I , we obtain 

n-1 
= ( ~ + o ) f (m-1 ) + L IK~ w + <!> 1 ' 

m,r m,r t=O m m-

where 

~ = I~ + constant of integration, "'m-1 "'m 

and so Utilising (3.3.4) , we then complete 

the proof of (3.3.5) 
1 m-

Suppose now that (3.3.5) ( l) is true for some p E {2, ••• ,m}. m- p-

Then, using (3.3.3) ( 1) , m- p- and integrating using 

+ 
n-1 
~ IKtw + ~ 
l ' ( 1) "'m-p ' t=O I\ m- p-

I, we obtain 

(3.3. 6) 

where <I> = I <1> ( !)+constant of integration, and hence m-p m- p-

<1> E wp+
1 

1 [a,b] • 
m-p 
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Using (3.3.4}, and collecting terms on the right band side 

of (3.3.6), we obtain 

p n-1 
ym-p = ~m-p,r f(m-p) + ~ ~ IjK~w . + ~ 

j~1 JI.~O 1\ m-p+J , m-p 
, 

and thus we have proved (3.3.5) • m-p Induction completes the proof 

of (3.3.5) for all p = 0,1, ••• ,m m-p 

Theorem 3. 9. Suppose A1 and A2 are satisfied, let f E W~[a,b] 

for some r E JN0 , ·and set n = [! ]+ 1 • Then, for any mE JN0 

the solution y of (3.1.1) bas the singularity expansion (3.1.7) 

with 

cj-i = >.yj-i(a) ) 

dj i = >.y .. (b) -~ - J-1 } 

i = 1, ••• ,m, 

j = l, ... ,m 

where, for each j E {0,1, ••• ,m} , yj is the solution of (3.3.1)j • 

Proof. Using Lemma ~.8 with p = m , we have 

m n-1 j Jl. 
Yo = ~o f + L L I K>.wj + ~o , 

,r j=1 JI.=O 

. .m+l where ~O E w1 [a, b] 

= f + 

since, for any r E JN0 

and, using (3.3.3) 0 , we obtain 

~0 + 0 = 1 • ,r O,r 

(3.3.7) 
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Now, from (3.3.2) 0 , we have 

0 r > 0 

w = 0 
KAf , r = 0 

' 

and, by induction on the relations (3.3.2)j for j = 1, ••• ,m, 

it can be shown that 

= j (DKn)i-1 k 
i~1 A j-i ' 

j = 1,2, ••• ,r-1 , 

and 

j = r, ••• ,m , 

where 

k. . (t) = Ayj . (a)k(t-a)- Ay. i(b)k(t-b), 
J-l. -J. J- { 

i = l, ... ,j, 

j = 1, ••• ,m. 

Substitution for w. 
J 

in .(3.3.7) then yields 

y = f + 

which, on rearrangement of the order of summation in the last term, 

yields 

+ 
m m n-1 . 
~ ~ ~ IJK1 (DKn)i-1 k + ~ 
t.. t.. t.. A A j-i "' i=l j=i 1=0 

where 4> = q,0 E ~1 [a,b], and 

kj-i (t) = Ayj-i (a)k(t-a) - Ayj-i (b)k(t-b), 

as required. 

, 

i=1, ••• ,m, j=i, ••• ,m, 
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3. 4. APPLICATIONS 

In this section, we shall use (3.1.7) to obtain explicit 

singularity expansions for the solution of the equation 

1 
y(t) f(t) + A. J I t-sla-1 y(s)ds , t E [0,1) , 0 < a < 1 

0 

in the following four cases: 

In Example a is and f is 

1 irrational infinitely continuously differentiable on 

2 rational infinitely continuously ·differentiable on 

3 ~ given by f(t) t tE lo,l1. = e ' 

4 ~ given by f(t) = t-1/3 + (1-t)-1/3, tE 

Physical motivation for these examples can be found in the 

[o, 11 • 

[o, 11 • 

[O, 11 • 

Kirkwood Riseman theory of intrinsic viscosities [34]. (See Example 

1 of Chapter 1.) The results given in these examples depend on the 

technical Lemma A4, proved in the Appendix. 

Recall that the notation {a(t) + b(t) + ... + z(t)} 

denotes some linear combination of the functions a(t), b(t), ••• , 

and z(.t) • 

Example 1. Throughout this example, let m E :JN
0 

, and let 

denote an unknown ~1 [0,11 function. No two instances of ~ 

will necessarily be equal. Since f is infinitely differentiable, 

we may choose r as large as we wish, and (3.1.7) gives 
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where 

I = I [0,1]' 

n = [! J + 1 

and 
t E [0,1], { i=

1
, ••• ,m, 

j=i, ••• ,m. 

Since KA = AK , we can write this, using the notation for 

linear combinations, as 

{ 
m m n-1 • Jl, • 1 1 1 } 

y(t) = f(t) + L L L IJK (DKn) 1
- (ta- + (1-t)a- ) · + ~(t) , 

i=1 j=i .!l.=O 

t E [0,1] • (3.4.1) 

Now, from Lemma A4, 

+ ~(t) 

and 

m~ n } + r I <t.!l.a+j + <1-t>.!l.a+j> 
j=O .!l.=1 

+ ~(t) • 

Thus 

m~ n } r I <t.!l.a+j +<1-t> .!l.a+j > . 
j=O .!l.=l 

+ ~(t) (3.4.2) 
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and, similarly, 

+ terms already in (3.4.2) 

+ <f>{t) • 

Continuing this process, we obtain 

{ 
m-1 m-i-1 n } = L L L (t(in+t)a+j + ( 1-t)(in+t)a+j) + <f>(t) 
i=O j=O 1=1 ' 

and substitution into (3.4.1) yields the singularity expansion for y: 

y(t) = f(t) + { m~1 m-r-1 ~ (t(in+R.)a+j+ (1-t)(in+R.)a+j)}+<t>(t), tE[0,1]' 
i=O j=O t=1 

where <1> E ~1 [0,1]. 

Example 2. Let a = p/q, where p,q are comprime and p < q • 

Following Example 1, y has expansion (3.4.1) ~for any mE :N0 , 

and n = [ !] + 1 • 

Note first that this implies that q ~ np • Now let p be 

the smallest integer such that q ~ np, i.e. 

O<cr~n, and pE::N. l (3.4.3) 

q = n(p-1) + a 

where 

It then follows that p ~ p • 
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It will be convenient to rewrite (3.4.1) with m replaced by 

mp' and with ~ denoting some unknown Wm1p+1 [O, J] function: 

{ 
D!P mp n-l Q. • 1 I 1 I l } 

y(t) = f(t) + i~l j~ i R.~O IjK_ (DKn)l.- (tp p- +~1-t)p q- ) + ~(t), 

t e [o,JJ. (3.4.4) 

Then, as in Example 1, 

p-1 m..P n-i . . L L L IJK1 (DKn) 1 -
1(tp/q-1 + (1-t)p/q-1) 

i=1 j=i R.=O 

= I . I L <t(in+t)plq+j+U-.-t> (l.n+t)plq+J> + ~<t> , { 
p-2 :mP-i-1 n . • } 

i=O j=O R.=l 

= { tplq + ••• + tnplq}{ 1 + ••• + tmp-1} 

+ {t(n+1)plq + ••• + t2nplq}{ 1 + ••• + tmp-2} 

+ ••• 
+ {t((p-2)n+l)plq + ••• + t(p-l)nplq}{ 1 + •.. + tmp-p+1} 

+ {(1-t)plq + ••• +(1-t)nplq}{ 1 + ••• + (1-t)mp-1} 

+ {(1-t)(n+l)p/q + ••• + (1-t) 2np/q}{ 1 + ..• + (1-t)mp-2} 

+ .•• 

+ {(l-t)((p-2)n+1)plq + ••• + (1-t)(p-1)np/q} 

{1 + ••• + (1-t)mp-p+l} 

+ ~(t) • (3.4.5) 

However, by (3.4.3) the integer q (= (p-l)n+a) lies in the 

set {(p-1)n+l, ••• ,pn} , and hence, by Lemma A4, we generate a log 

term in the singularity expansion when the index ((p-l)n + cr)plq 

is attained. To be precise, 
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= {t((p-1)n+1)p/q + ••• + t(q-i)p/q+ tpR.ntH1 +: •• + t(m-1)P} 

+ {tPR.nt}{tp/q + ••• + tpnp/q-p}{1 + ••• + t(m-1)P} 

+ {(1-t)((p-1)n+1)p/q + ••• + (1-t)(q-1)p/q +(1-t)PR.n(1-t)} 

{1 + ••• + (1-t)(m-1)p} 

+ {(1-t)PR.n(1-t)}{(1-t)p/q + ••• + (1-t)pnp/q-p}{1 + ••• + (1-t)(m-1)P} 

+ terms already in (3.4.5) 

+ lf>(t) • (3.4.6) 

Combining (3.4.5) and (3.4.6), and generalising to obtain the 

summation in (3.4.4), we obtain 

y(t) = f(t) 

+ ...... 
~ 

+ •••.• 

+ (t((p-1)n+1)p/q + ••• + tpR.nt)(1 + ••• + t(m-i-l)p)} 

+ lf>(t), 

+ •.••• 

+ •••.• 

+((1-t} ( (p-1)n+1)p/q + ••• +(1-t) PR.n(1-t)) 

(1 + ••• +(1-t) (m-i-1)p))} 

t E [0, 1] , 

where If> E wip+1[0,1]. 

(3.4.7) 
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Example 3. This is the example (3.1.8), given in Section 3.1. 

We merely apply the results of Example 2 with p = 1, q = 2. We have 

n = [2 ] + 1 = 2 , and hence p = 1 and cr = 2 • With these 

values of the indices and with t f(t) = e , for any m E :N0 , 

(3.4.7) becomes 

y(t) t = e 

+ { 
m~1 

L (tint)i(t~ + tint)(1 + ••• + tm-i-1) 
i=O 

+ <f>(t) ' t E [ O, 1) , 

where <f> E wf1 [0,1), which gives us (3.1.10). 

Example 4. Since, in this case, 0 f E L1 [0,1] = w
1 

[0,1], we 

must calculate (3 .1. 7) with r = 0 • Let m E :N0 , then with 

<f> denoting an unknown ~1 [0,1] 

y(t) = t-1/3 + (1-t)-1/3 

' 

function, 

+ { I nil IjKt(DKn)jK(t-1/3 + (1-t)-1/3>} {a) 
j=O t=O 

(3.4.8) 

+ { I r ni1rjKt(DKn)i-1(t-3/4+(1-t)-3/4>} (b) 
i=1 j=i'1=0 

+ <f>(t) ' t E [0, 1] • 

Now with p = 1, q = 4, n = 4, p = 1 and cr = 4 , the 

results of Example 2 may be applied directly to obtain (3.4.8) (b). 

We must now calculate (3.4.8) (a), which equals 
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By Lemma A4, with a = ~ , we have 

m-1 3 • 
K3(t-l/3+ (1-t)-1/3) = {tS/12+(1-t)S/12+ 2 2<t1a+J+(l-t)1a+j)} + ~(t) ' 

j=O 1=1 

I I m-1 4 . 
K4(t-1/3+ (1-t)-1/3) = {t2 3 + ·(1-t)2 3 + 2 2 (tta+J+(1-t)ta+j>}~{t)}, 

j=O 1=1 

so that 

+ {(1-t)-1/12 + (1-t)1/6 + (1-t)S/12 + {l~t)2/3} 

+terms already in (3.4.8)(b) 

+ cJa{t) • 

Similarly 

I IKt(DK4)K(t-1/3+(1-t)~1/3) = {t-1/12+tl/6+t5/12+t2/3}{t} 
t=o 

+ {(1-t)-1/12 + (1-t)l/6 + (1-t)S/12 + (1-t)2/3}{(1-t)} 

+terms already in (3.4.8)(b) 

+ ~(t) l 
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and continuing this process, we obtain 

(3.4.8)(a) = {t-1/12 + t1/6 + t5/12 + t2/3}{1 + t + ••• + tm} 

+ {(1-t)-1/12 + (1-t)l/6 + (1-t)5/12 + (l-t)2/3} 

{ 1 + (1-t) + ••• + (1-t)m} 

+terms already in (3.4.8)(b) 

+ <Ht> • 

Combining this with (3.4.8)(b), obtainable from Example 2, 

we have 

y(t) = t-1/3 + (1-t)-1/3 

+ {t-1/12 + t1/6 + t5/12 + t2/3}{ 1 + ••• + tm} 

+ {(1-t)-1/12 + (1-t)1/6 + (1-t)5/12 + (1-t)2/3}{1 + ... + (1-t)m} 

m-1 
+ L ((1-t)in(1-t))i((1-t) 114 + (l-t) 1/ 2+ (1-t) 3/ 4 + (1-t)~n(1-t)) 

i=O 

+ <f>(t)' t E [0,1] , 

where 
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CPAPTER 4 

GALERKIN UETHODS FOR EQUATIONS WITH SINGULARITIES 

4.1 INTRODUCTION· 

In this chapter we shall discuss the numerical solution of 

equations of the form 

y(t) 
b 

f (t) + A I k(t, s) y(s)ds , 
a 

t E [a,b] , 

where k and f are given functions on [a,b] x [a,b], and 

[a,b] respectively, is a given scalar, and y is the 

solution to be determined. 

Without loss of generality, we may assume that :\ = 1 , 

[a,b] = [0,1], and so in this chapter we simplify the treatment by 

considering only the equation: 

1 
y(t) = f (t) + I k(t, s) y(s)ds, 

0 

We abbreviate (4.1.1) by 

where K 

y = f + Ky 

is the integral operator given by 

1 
Ky(t) = f k(t,s) y(s)ds 

0 

t E [0,1). (4.1.1) 

(4.1.2) 

The Galerkin and iterated Galerkin methods are well-established 

numerical algorithms for the approximate solution of (4.1.1). 

It has been shown by Sloan et. al., [63], [57], [58], that 

the iterated Galerkin method provides, in general, a more accurate 

approximation to y than does the Galerkin method. 
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Accurate quantitative estimates for this improvement in order 

(or "Superconvergence") have been obtained by Chandler, [9], [10], 

[11], for the case when the underlying approximating subspace is a 

space of splines, and when both the kernel, k ' and the inhomogeneous 

term, f, are suitably smooth. 

The aim of this chapter will be to obtain such quantitative 

estimates, again when splines are used as approximating functions, in 

the case when k is of weakly singular convolution type, and also 

when f may have a lqw order of smoothness. 

Our main quantitative order of convergence result is Theorem 

4.8 of Section 4.4. To illustrate the results of this rather general 

theorem, consider the particular equation 

y(t) = 

where 1 > a > 0 , 

1 
J It-sia-l y{s)ds, 
0 

and 2 > a > 1 • 

subspace is the space of splines of order 
t 

uniform mesh over [0' 1] ' and let 

t E [0,1] , (4.1.3) 

Suppose our approximating 

defined on a 

and denote, 

respectively, the Galerkin and iterated Galerkin approximants to y • 

Then, Theorem 4.8 predicts that 

IIY - Y
1

IIO) = o(n~J (4.1.4) 

and 

IIY - Y!
1 lm = o(}~J (4.1.5) 

where 

y min{r, a, a-n 
and 

0 min{r, a} (4.1.6) 

and n+1 is the number of points in the mesh. 
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Much more general error estimates for the numerical solution 

of weakly singular equations are given in Theorem 4.8. However, the 

illustration given here highlights two important points which are also 

true in the general case. 

(i) The order of the improvement obtained by using II 
yn 

I is o(:oJ with 0 given by (4.1.6). yn instead of 

If either f3 is small, then both I and a or yn (ii) 

II yn may converge rather slowly to y, regardless of how large r is. 

The reason for the phenomenon (ii) is of course that, as 

demonstrated in Chapter 3, any weakly singular convolution integral 

equation, such as (4.1.3), will, in general, have a non-smooth 

solution, and the order of approximation of such a solution using 

splines on a uniform (or arbitrary) mesh will, in genera~ be rather 

low. 

This order may be improved, however, if we use a mesh 

which takes account of the singularities in the solution. In 

Section 4.5, we consider equation (4.1.3), and demonstrate how 

to improve convergence by using an appropriate non uniform mesh. 

In particular, we show that with the correct mesh, (4.1.4) 

and (4.1.5) may be improved to (in the particular case r = 1) 

(4.1. 7) 

amd 

(4.1.8) 

For any r ~ 1 , we also show that, provided we use 

a suitable mesh we may obtain the high order convergence estimates 
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in the L
2

[0,1J norm: 

~y - y!~2 = o( 1r} 
n 

(4.1. 9) 

and II 
o( lr) ~y- Yn b = 

n 
(4.1.10) 

The main convergence results are contained in Sections 4.4 

and 4.5. The remainder of the chapter is organised as follows. 

In Section 4.2, we define the Galerkin and iterated Galerkin algorithms 

and give a resume of existing convergence results. In Section 4.3 

we present some necessary theoretical tools which we shall use to 

prove our order of convergence estimates. It is at this point that 

we restrict attention to the case when the kernel k of (4.1.2) 

is of convolution type. In Theorem 4.3 we prove (with the aid of 

the analysis of Chapter 3) two results which describe how the 

smoothness of k and f affects the properties of K and y. 

In Theorem 4.4 we prove some spline approximation properties of 

typical weakly singular functions. Finally, the order of convergence 

estimates contained in Sections 4.4 and 4.5, are illustrated in 

Section 4.6 by some numerical calculations. 

The numerical solution of weakly singular integral equations 

has recently been the subject of much research activity. For example, 

Chandler [11], [12], and Schneider [55] have studied product 

integration using graded meshes to obtain good convergence rates. 

Spence [65] and Lin Qun [3S] have considered the use of extrapolation 

methods to improve the rates of convergence of product integration and 

iterated collocation methods respectively. Anselone and Krabs [3] 

have used a double approximation scheme based on replacing singular· 
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functions by bounded approximations, while Anselone C2J has given a 

theoretical basis for the popular practical technique C52] of 

subtracting out the singularity from the solution. Delves, 

Abd-Elal and Hendry [17] have studied ways of making the Galerkin 

method for weakly singular equations more economical. 

Finally, we note the extensive treatment in Baker's book 

[7, Sections 5.3-5.8], where the performance of most of the standard 

methods, as applied to the numerical solution of weakly singular 

equations is discussed. Many numerical examples are given. 
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4.2 METHODS AND BACKGROUND. 

In this section we introduce the Galerkin and iterated 

Galerkin methods for (4.1.1), and describe some of the recent progress 

which has been made in research on these methods. 

For each n E lN 
' let u denote a finite dimensional n 

subspace of L
2 

[0,1] , and let p denote the orthogonal n 

projection of L
2 

[0,1] onto un • 

Let us assume, for the moment, that K is a compact operator 

on L
2 

[0,1], that 

and that f E L2 [0,1]. 

(I - K)-1 is well defined on L
2 

( 0,1], 

(Conditions sufficient to ensure this 

are formally stated in Section 4.3), and let us assume also that the 

spaces are constructed to have the property that 

as n-+'co 

for every <f> E L2 (0,1] • 

The Galerkin solution of (4.1.1), is then defined 

by the equation 

= P f + P Kyi 
n n n 

and the iterated Galerkin solution, 

natural iteration: 

= 

(4.2.1) 

II 
Yn is obtained by the 

(4.2.2) 

For the details of the practical computation of these approximate 

solutions, see Sloan et. al.[63]. 
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Applying the operator Pn to each side of (4.2.2), and 

comparing with (4.2.1), it follows that 

p II I 
nyn = Yn 

which on substitution into (4.2.2) gives 

= f + KP II ny n (4.2.3) 

A proof of Theorem 4.1 below can be found in the seminal paper of 

Sloan [57]. 

Theorem 4.1 (sloan) 

de£ ined, and 

where E: .... 0 ' n 
as 

For sufficiently large 

< E: 
n 

is well 

Since it is also known [57] , that is also well defined, 

for sufficiently large n ' ,;lnd 

' < (1 + €~) ~y - Pnyh (4.2.4) 

'· 
IIY- Y!b where E:- + 0 ' as n+ClO 

' 
it may be deduced that 

n 

approaches zero with an order of convergence that is asymptotically 

same as that of IIY - Pny~2 while IIY - y!I~2 approaches 

zero more quickly (by a factor of O(en)) than ~Y- Pnyh 

This "improvement by iteration" has particular practical 

II 
significance since the calculation of yn requires roughly the 

I same amount of computation time as the calculation of yn [63]. 

the 



76. 

The obviously interesting mathematical problem, therefore, is: 

What is the order of the improvement in accuracy obtained by using 

II 
y n as an approximation to y rather than ? We shall 

consider this problem for the particular case when is a certain 

space of spline functions, which we now define. 

For any interval [a,b], and any n E JN , let 

denote the mesh (partition) given by 

II a = x0 < x1 < x2 < • • • < X = b • n n 

For r E E and v E lNO ' 
with \) < r ' we shall let 

\)· ] Sr(Jin,[a,b) denote the space of splines on [a,b] which 

order r ' continuity 
\) ' and knots II Thus n 

II 
n 

have 

u E s" (II , [a, b]) r n if v-1 [ 1 u E C a,b , and u is a polynomial 

of degree not greater than r - 1 on each for 

i = 1, •.• ,n • When v = 0 the splines are possibly discontinuous 

at the knot points, bu~ to ensure that they are well 

defined, we assume left continuity at each knot, and right continuity 

at a • We shall abbreviate by 

Throughout the remainder of this chapter and 

will denote the approximations to y defined by (4.2.1) and (4.2.3), 

where, 

for some fixed r E :N and V E :NO , with v < r • 
) 

(4.2.5) 



77. 

We shall give our order of convergence estimates in terms of 

the maximum mesh spacing h ' defined by 

h = max (hi) 
i=l, ••• ,n 

where 

i = l, ... ,n 

Note that, for a unlno~ mesh we have 

h = 
1 
n 

(4.2.6) 

Then the following quantitative estimates have been derived 

by Chandler • 

Theorem 4.2 (Chandler). If k and f are sufficiently smooth 

(for precise requirements see [!O] or [11]) , and if, as n 

varies the meshes II 
n 

satisfy a certain quasiuniformity 

condition (see Section 4.4), then 

~Y - y!~~ = O(hr) 

and (4.2.7) 

II IIg O(h2r) • y - Yn u~ = 

Remarks. (i) The estimates (4.2.7) demonstrate the great improvement 

of over when all our given information is sufficiently 

smooth. The startling fact that converges to y with 

when the best approximation to y from splines of order 

r is generally only is generally referred to as 

superconvergence. Since the estimates (4.2.7) are in the infinity 
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norm, they demonstrate the global nature of the superconvergence, 

and automatically imply estimates of the same order in L [0,1], 
p 

for any 1 < p < 00 However, if weak singularities are present 

' 
in k or f ' the regularity requirements of Theorem 4.2 

will not be satisfied, see, for example [10, p.106], and estimates of 

and are not yet available. Such 

estimates will be obtained in Sectiors4.4 and 4.5 of this thesis. 

(ii) An elegant overview of Superconvergence phenomena, which 

includes the r~sults reviewed above, may be found in Chatelin [13]. 
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4.3 REGULARITY AND APPROXIMATION 

In the first part of this section, we give a result describing 

the properties of the integral operator K ' and the solution y 

of (4.1.1), in the case when the kernel, k, or the inhomogeneous 

term, f ' may be weakly singular. 

First, we introduce the assumptions: 

B1. The kernel k of (4.1.2) has the specific convolution form 

k(t,s) k(t-s) t, s E [0,1] , 

with k E N~[-1,1] for some a > 0 • 

B2. The homogeneous equation 

y(t) 
1 

J k(t-s) y(s)ds 
0 

t E [O,l] , 

has no non trivial solutions in L1 [0,1] 

Remark. While the results of this chapter hold only for pure 

convolution equations with kernels of the type described by B1 and 

B2, the methods used to obtain these results are readily generalised 

to deal with kernels of the form 

k(t,s) = K(t-s) m(t,s) 

where K satisfies B1 and B2 and m i& suitably smooth. 

Theorem 4.3 Suppose B1 and B2 are satisfied. 

(i) If f E C [0,1] , then 

y (I-K)-1 f 

is well defined in C[0,1]. 
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(ii) If f E N~ [0,1], for some a > 1 , 

then 

Y E ~in{a.+1,13}[o,1J. 

Proof. Since N~[-1,1] ~L1 [-1,1], it follows from Theorem 

2.3 that k E M
1 

[0,1], 

c [0, 1] ' 

and hence that K is compact from 

to and hence also from C[0,1] to c [0, 1] • 

The proof of (i) follows by the Fredholm Alternative. To obtain (ii), 

refer to Chapter 3, and note that by (3.2.3), A1 is satisfied with 

[a, b] = [O, 1] • Since B2 implies A2 with [a, b] = [O, 1] , we 

may apply Theorem 3.9. The required result then follows, since 

Theorem 3.9 implies that y(t) is a linear combination of f(t)' 

t 
terms of the form J k(x)dx and 

0 

functions. 

t 
J k(x-l)dx , 
0 

plus smoother 

The spline approximation properties of the space a. 
N [a,b] 

p 

are proved in Theorem 4.4 below. The proof involves the Lp[a,b] 

which is 

defined for arbitrary <P E Lp [a, b] , m E JN0 , h > 0 , and 

1 ~ p ~ w by 

with [a,b]mE" given by (3.2.2). We abbreviate this by wm(<j>,h)p , 

when [a,b] is unambiguous. 

Some important properties of the modulus of smoothness are 

collected in Lemma AS. 
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Recalling the notation of Section 4.2, we shall let n 
n 

denote a family of meshes on [O ,1] , with h denoting the maximum 

mesh space of 

Theorem 4.4 

n 
n 

Let r E JN , v E E 0 

(i) Let Bl be satisfied. 

there exists a spline v ut E S (TI ) , r n 

1 

{ I lk{t-s) - ut{s)!ds < 
0 

be fixed with v < r • 

Then, for each t E [0,1] , 

such that 

ch0 
r + a , 

Ch0R.n(~) r = a 

where o = min{r,a} , and C is independent Qf t and h • 

(ii) Let cp E N~lo,l] n c[nl[o,l] , for some n > 0 , where 

[1)] is given by {3.2.1). Then there exists a spline 

such that 

r + n 

r = n 

where y = min{r,n} , and c is independent of h • 

Proof (i) 

t E [ 0,1] 

1 

It follows from DeVore [18, Theorem 4.1], 
\) 

there exists ut E S (TI ) , such that r n 

I jk{t-s)- ut{s)jds ~ CWr(kt,h) 1 
0 

v E Sv{TI ) 
r n 

that, for 

where C depends only on r , is the function 

kt {s) = k(t-s), s E [ 0,1] • (4.3.1) 
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The required estimates then follow from Lemma A5 (ii) and (i) • 

(ii) It follows from DeVore [18, Theorem 4.1) that 

there exists a spline " vES(TI), r n 

11
<1> - vii < w (<j>,h) Uoo - r oo 

such that 

and the required result follows directly from Lemma AS(i) • 
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4. 4 ORDER OF CONVERGENCE ESTIMATES. 

In this section we derive global order of convergence estimates 

for the Galerkin and iterated Galerkin approximants to the solution 

y of (4.1.1), in the case when the kernel k satisfies B1 and 

B2. The first step in proving the required estimates is given in 

Theorem 4.5, and consists of transforming the original convergence 

theory (Theorem 4.1, and its sequel),from its setting into a 

c [0,1} setting. An analogous global convergence theory for 

equations with smooth kernels and solutions was first given by 

Chandler [1.1}; 

Recall that and are defined by (4. 2 • .1) 

and (4,2.3), where the approximating subspaces u 
n 

are defined 

for fixed by (4.2.5). As indicated in 

Theorem 4.2, we shall assume that, as n varies, the partitions 

IT used in the defintions of the splines, remain quasi uniform 
n 

as n varies, i.e. there ·exists a constant c with- the property 

that 

max (~) 
i=1, ••.• n < c (.4.4.1) 

min l~l 
i•l, •.. , n 

for each partitior.. rr 
n 

where is given by (4.2.6). 

One important consequence of (4.4.1), is that it implies 

that h-+0 as n-+oo where h is the maximum grid 

spacing. Another important consequence of (4.4.1), which is well 

known in the finite element literature [8], C20], is the fact that 

is bounded when considered as an operator on and, 
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in fact, there exists a constant c ' independent of n ' 

that 

Up U < c , 
U nJJgo - n E lN • 

Note that it follows that is also bounded as an operator 

such 

(4.4.2) 

from C[O,l] to with norm also satisfying (4.4.2) 

Then we can prove the following theorem. 

Theorem 4.5 Let Bl, B2 be satisfied, let f E C[0,1], and 

suppose that 

~K - KPnllc [0,1] + 0 ' as n + CX) (4.4.3) 

Then, for sufficiently large are well defined, 

I II ] y E LCX)[0,1], y E C[0,1 , 
n n 

c .lly _ p yD 
20 n UCX) ' (4.4.4) 

and 

' (4.4.5) 

and c independent of n • 

Proof. We consider first and aim to apply the 

Collectively Compact Operator Approximation Theory of Anselone 

[1, Theorem 1.6]. 

Note first that, when proving Theorem 4.3 (i), we showed that 

kEM1 [0,1], and that K is compact on C[0,1]. Since K 

is also compact to C[O,l], it follows that 

is compact on C[0,1]. 
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By virtue of (4.4.3), it follows directly that KP +K 
n 

pointwise on C[O,l], and also, less directly, that the set 

is collectively compact [1, p.S]. We prove this last 

assertion, by showing,using the Ascoli-Arzela Theorem, that the set 

S: = {KP cf> : n E :N 
n 

has compact closure in 

with and 

cf> E C[O,l], ~cp~~ ~ 1} 

do,11 . Firstly, for cp e c [o, 11 , 

we have, using (4.4.2), 

where IIKI~ denotes the norm of K operating £rom L~[O,l] 

to c£0~11 , and thus S is bounded. Secondly, for cp e c[o,l1, 

with llcf>ll~ ~ 1 , n E :N , t T E [0,1] , we have, using (4.4.2) 

and Holder's inequality, 

1 
= I f (k(t-s) - k(T-s))P cf>(s)dsl 

0 n 

as t + T 

since k E M1 [0,l], and hence s is an equicontinuous set in 

C[0,1]. Thus, by the Ascoli-Arzela Theorem, [46, p.82], it follows 

that s has compact closure in C(O,l], and hence that the 

set is collectively compact in C[O,l]. 

Then, since, by Theorem 4.3 (i), (l-K)-l exists on 

C[O,l], it follows that (I-KPn)-l exists on C[O,l] , for 
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sufficiently large n , and is uniformly bounded in n • Using 

(4.2.3), then, it follows that II yn exists for large enough n , 

with 

= (I-KP )-1 f 
n 

, 

and by Theorem 4.3 (i), we have, 

= (I-KP ) - 1 (K-KP )y , 
n n 

from which (4.4.5) follows, on taking the infinity norm. 

(4.4. 6) 

Now return to the existence of which is ensured, 

for sufficiently large n , by the fact that 

p YII = Yni 
nn 

To obtain the bounds (4.4.4), we use (4.4.6) and (4.4.7) to 

write 

II (y-P y) + p (y-y ) 
n n n 

(4.4. 7) 

Then, since K is bounded as an operator from L=[O,l] 

to C[O,l], (I-KP )-l 
n 

is uniformly bounded on C[O,l], 

is uniformly bounded as an.operator from 

we have 

< lly-Pnyll= + C~(K-KPn)yll= 

< lly-Pnylloo + CIIKIIoo lly-Pnyll= 

< clly-Pnyll·= 

C[O,l] 

and P 
n 

(4.4.8) 
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and also, in view of (4.2.1}, we may write 

(I-P K)(y-yi) = y - P Ky- P f n n n n 

= y- p y 
n 

from which it follows that 

lly-Pnylloo ~ III-PnKIIoo lly-y!~oo 

~ <1 + ciiKIIoo> lly-y!llco (4.4.9) 

The result (4.4.4) then follows from (4.4.8) and (4.4.9), and this 

completes the proof. 

It is clear that in order to satisfy (4.4.3}, and to 

estimate the order of the right hand side of (4.4.5), we must 

estimate 

for any 4> E C[0,1]. This is the purpose of the next theorem. 

In fact, it turns out that (4.4.3) is a redundant assumption, 

being automatically satisfied by B1 • 

Theorem 4.6 Let B1 be satisfied. Then, for 4> E C[O,l], 

we have 

l r = a. , 

r f a. ' 

where 

tS = min {r, a.} 
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Proof For t E [O, 1] , n E :N , and ~ E C[0,1], we have, 

using Theorem 4.4 (i) and the duality arguments from the mathematical 

theory of the finite element method [11], 

I<K-KP )~(t)l n 
= 

1 
I f k(t-s)(~(s) - Pn~(s))dsJ 

0 

1 
I f (k(t-s) - ut(s))(~(s)- P ~(s))dsl 

0 n 

and hence one application of Holder's inequality yields, 

from which the required estimate follows via Theorem 4.4 (i) • 

This result leads immediately to the following corollary. 

Corollari 4.7. Let Bl, B2 be satisfied, and let f E c·[o,1]. 

Then, for sufficiently large I and II are well n ' Yn Yn 

defined, (4.4.4) holds, and 

IIY II~ < cS 
r +a - Yn co - Ch ~y - Pny~co ' , 

where cS = min{r,a} • 

Proof. It follows by Theorem 4.6 and (4.4.2) that for ~ E C[0,1], 

D(K-KP )~D < II n llco -

r +a 

r =a 

where cS = min{r,a} • Hence (4.4.3) holds, and the estimates 

(4.4.4) and (4.4.5) follow. The required estimates 



89. 

for then are obtained by applying the results of 

Theorem 4.6 to (4.4.5). 

Remark. It has been shown by Chandler (see Theorem 4.2 above) 

that, if k is sufficiently smooth then converges 

faster to zero than the order of the improvement 

being if splines of order r are used as approximating 

functions. The results obtained here show that, even if k is 

weakly singular, still converges faster than lly-y1
U nlloo 

However, the order of improvement may be drastically reduced, and 

indeed, may not be enhanced by the employment of higher order splines. 

The final theorem of this section estimates the rates of 

convergence of and to y ' given certain smoothness 

properties of f and This is the main theorem of the 

chapter, and the results of Corollary 4.7 are included in it. 

Theorem 4.8 Let 

for some 

and 

B > 1 • 

IIY ---y!lloo = 

IIY - Y!
1

lloo = 

Bl, B2 be satisfied, and let B f E N1 [0,1], 

Then, the conclusions of Corollary 4.7 hold, 

} 
r +a 
r + min{a,B-1} 

' 

l
r + a , 

r = min{a,B-1} 
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IIY - Y!II(X) = O(hy) 

} 
r = or. ., 

IIY - Y!1 ~(X) = O(hy+o.tn(1)) r + min{or.,S-1} h 

IIY - y!~(X) = O(h Y .tn<fi>) 

} 
r = or. , ( 

IIY - Y!1 ~(X) = O(h y+o .tn2 (~)) r = min{or.,(3-l} 

with y = min{r, or., a-n 
and o = min{r,or.} 

Proof. By (3.2.3) , we have 

a J a1 f E N1 [0,1) ~ 1 [0,1) S C [0,1] , 

and thus the conclusions of Corollary 4.7 hold. The required 

estimates a~e obtained by estimating 

Note that, by Theorem 4.3 (ii), and (3.2.3), it follows that 

y E ~in{or.+1,(3}[0,1] ~ wimin{or.+1,(3}][0,1] S C[min{or.,(3-1}][0,1], 

and 

E ~in{or.+1,(3}[0 1] C ~in{or.,(3-1}[0 1] 
y 1 , - (X) ' 

Hence, using (4.4.2), we have, for any 

and thus, by Theorem 4.4 (ii), 
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r + min{a,B-1} 

r = min{a,l3-1} 

with 0 = min{r, a, 6-1} 
' 

and the required estimates follow. 
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4. 5 A GRADED MESH 

The results of Section 4.4 demonstrate that Galerkin methods 

for equations with singularities may sometimes possess rather poor 

rates of convergence. It may be remarked, however, that these poor 

rates arise partly as a result of our (rather naive) approach of 

using splines defined on arbitrary (quasiuniform) meshes, and that 

much better results may be obtained by using meshes specially chosen 

to take account of the singularities in the solution, y • Recently, 

such an approach has been employed by Chandler [12] and Schneider 

[55] to improve the performance of product integration methods for 

weakly singular equations. 

We shall illustrate some methods that may be used to improve 

Galerkin methods, by referring to equation (4.1.3). 

Note that B1 is satisfied by the integral operator of 

(4.1.3). We shall assume throughout that B2 is also satisfied. 

It follows from Theorem 3.9 that the solution y of 

(4.1.3) is of the type {y, r, {0,1}} see Rice [48] for any 

where y = min{a, B-1} • Suppose we consider the 

solution of (4.1.3) using splines from s0 (II ) 
' 

where, for r n 

nEJN , the mesh II n is no longer arbitrary and quasiuniform, but 

is given (see Rice [48]) by 

xi = (!}q i = o, •.. , R. 

= 1 - (n-i} q i = R. + 1 , ••• , n 
n 



where 

and 

R, = n/2 

n-1 
R, = 2 

q = r/y 

93. 

(n even) 

(n odd) 

Note that the knots of this mesh are "bunched up" near the end 

points 0 and 1 (where y behaves badly), and "spread 

out" in the interior of the interval [O,l] (where y is 

well-behaved). 

It is shown by Rice that, for each n E lN, there exists 

a spline ~ E s0
(IT ) 

n r n 
such that 

The mesh IT 
n 

does not, however, satisfy the 

quasiuniformity requirement (4.4.1), and so, with 

the orthogonal projection of onto 

not necessarily have, for general 

n E :N • 

(4.5.1) 

denotitig 

we do 

(4.5. 2) 

However, when r = 1 , we have, for cj> E L (0,1] 
00 

= 

where, for each i=l, ••• ,n is the function on [0,1] 

defined by the relations 
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u1 (t) = 1 t E [O, x11 

} 1 = 1 

u1 (t) = 0 tE (x
1

, 11 

u1(t) = 1 ' t E (xi-1' xi] }if I 
u1 (t) = 0 ' t E [0,1]\ (xi_1 ,xi] 

Hence, 

IIPn cf>~oo < 

< 

= 

sup 
i=1, ••• ,n 

sup 
i=1, ••• ,n 

sup 
i=l, ••• ,n 

I <ct>,ui> I 
I (ui,ui)l 

~uih 

~uili 

xi 

I dt 
xi-1 
xi 
I dt 
xi-1 

~cf>~oo 

and so (4.5.2) is satisfied in this case. 

Thus, using the space S~(ITn) as our approximating 

subspace, the estimates of Corollary 4.7 are true for r = 1 • 

0 Using (4.5.2), we also have, for any ~ E s1 (IT) , n n 

and, using (4.5.1) with r = 1 , and the estimates of Corollary 4.7, 
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we then obtain the improved estimates (4.1.7) and (4.1.8) for 

and 

If we wish to use higher order splines (i.e. r > 2) defined 

on the non-uniform mesh II , 
n 

then (4.5.2) is not known to hold, 

and so we may not use the results of Corollary 4.7 to estimate 

and However, if we are willing to 

accept estimates in the L 2 [0,1] norm, then we may appeal to the 

initial convergence results (Theorem 4.1 and (4.2.4)), to obtain 

the followi~g result. 

Theorem 4.9 Let be the approximate solutions to 

(4.1.3) defined by (4.2.1), (4.2.3), with 

for some where II 
n 

is the graded mesh introduced 

in this section. Then estimates (4.1.9) 
~ 

~ 
and (4.1.10) hold: 

Proof. Note that (4.1.3) is of the form (4.1.1), with 

f E L
2 

(0,1] , and [70, p.321], K compact on L 2 [0,1]. Since 

we have assumed B2 , it follows that (I-K)-1 is well defined 

on L2 [0,1]. Also [ 18] we have 

lei> - Pnc!>h -+ 0 ' as n -+ co , 

for every cl> E L2 [0,1] • Thus, Theorem 4.1 and (4.2.4) hold. 

Now, by (4.5.1), we have, for n E :N , 



= 

< c _!_ 
r 

n 
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and, using this in Theorem 4.1 and (4.2.4), we obtain (4.1.9) and 

(4.1.10), completing the proof of the theorem. 
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4.6 NUMERICAL EXAMPLES. 

In all four examples given below, splines of order 1 (i.e. 

piecewise constant functions) were used as approximating subspaces. 

In Examples 1, 2, and 3 a uniform mesh was used, while in Example 

4 a graded mesh, as discussed in Section 4.5, was used. 

To obtain reliable estimates of the orders of convergence 

for our numerical calculations, we choose to solve equations which 

have known solutions. Thus in each of our examples the inhomogeneous 

term, f, is chosen specially so that y has a particularly 

simple closed form. To obtain theoretical convergence rates, in 

the case of Examples 1, 2 and 3, we use the known properties of y 

to estimate the order of and then we use Corollary 

4. 7 to estimate and In the case of 

Example 4, theoretical convergence rates are given directly by 

(4.1.7) and (4.1.8). Theorem 4.8 is not applicable to these examples, 

since it employs the full singularity analysis for a general f 

given in Chapter 3, and hence is inappropriate when f is specially 

chosen. 

Although the solution in Examples 1 and 2 is smooth, in 

Examples 3 and 4 it is singular, and so these examples do constitute 

a representative sample of the type of problems encountered in 

practice. 

In Tables 1 to 4 the estimated order of convergence, EOC, 

of the quantity en , say, was calculated using the formula 

R.n(en/e2n) 

R.n2 EOC = 
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In all examples we assume that B2 is satisfied. 

Exam12le 1. 

1 
lt-sl~ y(s)ds, y(.t) = f(t> + I t E [O,l) 

' 0 

where f was chosen so that y(t) = t • Note that Bl is 

satisfied with a = ~ • Since the solution is contrived to be 

smooth, 

and so Corollary 4.7 gives 

and 

The results are shown in Table 1. 

Example 2. 

y(.t) 
1 ~ 

= f (t) + I It-s I y(s)ds , t E [O,l] , 
0 

where f was chosen so that y(t) = t • Note that Bl 

is satisfied with a = 3/2 Corollary 4.7 predicts 

~Y - Y!~oo = 0~) 

~Y - Y!1 ~oo = o( 12} 
n 

The results are shown in Table 2. 
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n lly-y! II EOC ~y-y!rll EOC 
CIO (Theory CIO lTheory 

predicts 1.0) predicts 1.5) 

2 0.47 0.32 

1.31 1.54 

4 0.19 0.11 

1.27 1. 78 

8 o. 79(-1) 0.32(-1) 

1.13 1.71 

16 o. 36(-1) 0.98(-2) 

1.08 1.71 

32 0.17(-1) 0.30(-2) 

Table 1. 

n ~y-y!~ EOC lly-y!rl EOC 
CIO (.Theory ~' CIO (Theory 

predicts 1.0 predicts 2.0) 

2 0.26 0.17(-1) 

1.00 1.95 

4 0.13 0.44(-2) 

1.05 2.00 

8 o. 63(-1) 0.11(-2) 

1.02 1.92 

16 0.31(-1) 0.29l-3) 

0.95 2.01 

32 0.16(-1) o. 72(-4) 

Table 2. 



Example 3. 

where f 

y(t) = 

100. 

1 
f(t) +! f lt-sl-~ y(s)ds, 

3 -1 

was chosen so that 

tE[-1,1] 

B1 is 

satisfied with a = 1/2 • This example has been considered by 

several authors, see, for example, Baker [7], Phillips [44], Spence [65] 

and Schneider [55 l. In this case, the solution is not smooth, and 

in fact y E Ni/4[-1,1] ~ N;,/4[-1,1] n c£-1,1] 

4.4 (ii) implies that 

Thus Corollary 4.7 predicts 

0~31/4} ' 
and 

~ 

The results are shown in Table 3. 

Example 4. 

and so Theorem 

We consider the same equation as in Example 3, but this time we 

use a graded mesh as described in Section 4.5. Then, the predictions 

and 

follow from (4.1.7) and (4.1.8). The results are shown in 

Table 4. 
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n lly-y!t) EOC ~y-y!rlloo EOC 
(Theory (Theory 

predicts 0. 7~ predicts 1. 25) 
J 

2 0.75 0.40 

0.35 0.57 

4 0.59 0.27 

0.71 1.17 

8 0.36 0.12 

0.78 1.29 

16 0.21 0.49(-1) 

0.81 1.29 

32 0.12 o. 20(-1) 

Table 3 

n ~y-y!~co EOC h-y!I~oo EOC 
(Theory (Theory; 

predicts 1.0) predicts 1.5) 

2 0.75 0.40 

0.50 0.80 

4 0.53 0.23 

0.92 1.31 

8 0.28 0.93(-1) 

1.00 1.54 

16 0.14 0.32(-1) 

1.11 1.68 

32 0.65(-1) 0.10(-1) 

Table 4 
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CHAPTER 5 

COLLOCATION METHODS FOR TWO-DIMENSIONAL PROBLEMS 

5. 1 THE METHODS. 

In this chapter, we will be concerned, in general, with the 

numerical solution of the equation 

y(t) f(t) + A /_ k(t,s)y(s)ds, 
n 

t E n , 

where is a domain (i.e. an open connected set) which is 

bounded, and n denotes its closure. The functions k and f are.given 

On n X Sl and Sl respectively, is a given scalar, and 

y is the solution to be determined. 

Without loss of generality, we may simplify matters by 

considering the equation 

y(t) = f(t) + J k(t,s)y(s)ds, 
n 

tEO (5.1.1) 

Equations of this form are important in applications (see 

Chapter 6 and [27]) • We abbreviate (5.1.1) in the usual way by 

where 

y = f + Ky 

Ky(t) = f_ k(t,s)y(s)ds, 
n 

t E Sl • 

In order to analyse the numerical methods which will be 

(5.1.2) 

devised for this equation, we introduce the following basic assumptions. 

C1. k is in the class M1 (Sl) 

C2. The homogeneous version of (5.1.1) , 

y(t) = f_ k(t,s)y(s)ds, 
n 

has no non-trivial solutions in L
1 

(Sl) • 

tEO 
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C3. f E C(O) • 

It then follows, by C1 and Theorem 2.1 that K is compact 

as an operator from L=(n) to tun , and hence, also from 

C(Q) to C(Q) . Hence it follows from C2, ~3, and the Fredholm 

alternative, that 

y = (I-K)-l f 

is well de£ ined in C (Q) 

We shall use the methods of collocation and iterated collocation 

to define two different approximations, 

Specifically, we shall seek 

I 
y = N 

in the form 

and to y • 

(5.1.3) 

where is a certain set of piecewise constant basis 

functions defined on Q and the coefficients {a1 , ••. ,~} are 

linear system obtained by demanding the solution set of the N x N 

that 

I I 
yN(tJ.) = f(t.) + KyN(t.) 

J J·. 
j=l, ••• ,N, (5.1.4) 

where { t 1' ... , tN} ~ Q is some predetermined set of collocation 

points. 

We then define II by the natural iteration, YN "' 
II I N 

YN = f + KyN = f + L ai Kui (5.1.5) 
i=l 

The basis set {ul, ••• ,uN} and the collocation 

points {tl, ••• ,tN} are defined as follows. 



104. 

For each N E lN we introduce a mesh (partition) ~ of 

consisting of N open, simply-connected, pairwise-disjoint subsets 

of Q, {Qi: i = 1, ••. ,N} with the property that each Qi contains 

its centroid, and 

Q = 

For i = 1, ••• ,N , we then define to be the function on Q 

which takes the value 

assume that 

where 

1 on 

as 

max 
i=1, ••• ,N 

and we also assume that 

for i = 1, ••• ,N. 

n. ' ]. 
0 

~up lit - t'~co 
t,t EQi 

elsewhere. We 

, 

It may be noticed immediately from (5.1.4), (5.1.5), C3 

the fact that K maps into 

a continuous function which coincides with 

C(Q) , that II 
YN 

at each of the 

(5.1.6) 

and 

is 

collocation points, and hence is a kind of natural continuous inter-

polation for The main theme of this chapter will be to 

compare the numerical performances of and In 

fact we shall show that generally has better convergence 

properties than provided the collocation points are appropriately 

chosen. A summary of the main results which we shall obtain is given at the 

end of Section 5.2. My two-dimensional results given here were first 

reported in [64] where analogous methods for one dimensional equations 

were discussed. 
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5.2 THEORETICAL FRAMEWORK. , 

In order to analyse the convergence of the approximations 

and 
II· 

yN defined in Section 5.1, we need to cast equations. (5.1.4) 

and (5.1.5) (which define our approximations) in some suitable 

operator theoretic setting. With this in mind, we define a projection 

from onto by 

(5.2.1) 

It is easy to show that is bounded as an operator from 

to with the operator norm satisfying 

(5.2.2) 

Then, noting that conditions C1, C2 and C3 ensure 

that f , y and Ky are all in C(n) ' we may rewrite 

(5.1.4) as 

(5.2.3) 

It follows then, from (5.1.5) and (5.2.3), that 

= ' 
(5.2.4) 

and hence, on substitution of this relation into (5.1.5), that 

(5.2.5) 

In order to prove that and exist and converge 

to y we shall use some standard arguments. 

analogous to that used to prove Theorem 4.5. 

Our method is 

.II 
We first consider yN , 

which is defined by equation (5.2.5). Aiming to apply the 

Collectively Compact Operator Approximation Theory of Anselone, we show 

that the hypotheses of [1, Theorem 1.6] are satisfied in the space C(O) • 
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Firstly, K is compact as an operator on c(n) (see 

Section 5.1). Secondly, K is also compact as an operator from 

L (n} 
00 

to C(n) 
' 

and since PN is bounded as an operator from 

C(n) to L (n) 
00 

it follows 

bounded as an operator on c(n) 

Thirdly, for ¢ E c(n) , 

II (K-KPN)¢IIoo = ~K(¢-PN¢) lloo 

< IIKIIooll¢ - P~¢lloo 

that KPN is 

. 
we have, 

< IIKIIco w(¢, jjiiNico> + 0 ' as N + 00 

<;ompact, and hence 

(5.2.6) 

where w is the two-dimensional modul~s of continuity, 

defined [ 68, p.lll] , by 

for 

Thus, 

as 

w(¢,€) = sup_ l¢(t) - ¢(t')l 
t,t 'en 

~t-t' llco ~€ 

€ > 0 ' and ¢ E C(n) • 

N+oo 
' 

in for each 

Fourthly, we show that the set 

(5.2. 7) 

¢ E C(n) • 

has compact closure in c(n) We do this using the Ascoli-Arzela 

theorem [46, p.82]. When ¢ E C(n) with we have, 

using (5.2.2), 

IIKPN¢IIoo ~ IIKIIooiiPN¢~00 

~ ~KIIcoll¢1lco 5 IIKIIoo 
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and it follows that the set s is bounded. Also, for t, T E Sl 

<P E C(Q) ' II<P~()O ~ 1 ' we have, by Holder's inequality and (5.2.2), 

IKPN<f>(t)- KPN<P(T)I = I f_ (k(t,s)- k(T,s)) PN<f>(s)dsl 
Sl 

< llkt - kTh IIPN<P~()O 

< II kt - kT ~ 1 -+ 0 ' as t -+ T 

by_ Cl. Hence the set S is equicontinuous. We may now use the Ascoli-

Arzela theorem to conclude that S has compact closure in C(Sl) • 

Since (I-K) - 1 is bounded on C(Sl) , it now follows 

[1, Theorem 1.6] that, for sufficiently large N , the operators 

-1 -(I-KPN) exist on C(Sl) , and are uniformly bounded in N • 

C(Q} ' 

Hence 

Returning to (5.2.5), it follows that 

for sufficiently large N , 

II 
y = 

N 
-1 

(I- KPN) f • 

and 

II 
y - y 

N 
= 

-1 -1 [(I - K) - (I - KP ) ]f 
N 

= 

and thus 

with C independent of N • 

exists in 

Now, let us return to The existence of I 
YN ' for 

large enough N, is guaranteed by (5.2.4). It may also be shown, 

using an argument analogous to that used to prove (4.4.4),that 

' 
and independent of N • Since y E C(Q) , 
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we have, cf. (5.2.6), 

and thus we have proved the following theorem. 

Theorem 5.1 Let C1, C2 and C3 be satisfied. Then, for 

sufficiently large N, I exists in Lco(S'l) 
II exists in YN ' YN 

C(n), I II to and YN ' YN converge y ' 

and 

Our task in the remainder of this chapter is to use Theorem 

5.1 to analyse the rates of convergence of and 

to y • In Section 5.3 we analyse the case when the kernel k ' 

the inhomogeneous term f ' and the solution y are suitably 

smooth. In such case we obtain the estimates 

(5.2.8) 

and 

(5.2.9) 

the latter result being dependent on the correct choice of 

collocation points These estimates are proved in 

Theorem 5.3. 

It is often (indeed usually) the case that the properties of k 

and f are known, but that the properties of y are unknown. In 

Theorem 5.4 we give conditions on k and f which ensure that y has 

the smoothness properties needed for (5.2.8) and (5.2.9) to hold. 
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The analysis of Section 5.3 uses Taylor's series methods, 

and hence requires that both k and y be fairly smooth. 

If k is weakly singular then not all the conditions of Theorem 

5.3 are satisfied. The analogues of (5.2.8) and (5.2.9) 

for the weakly singular case are proved in Section 5.5, using 

approximation theoretic arguments which are more sensitive to the 

regularity of both k and y than the Taylor's series methods. 

We restrict ourselves to the case when n is a rectangle and 

k has a weak singularity along t = s • 

The main result of Section 5.5 is Theorem 5.15. As an 

illustration of the kind of information contained in Theorem 5.15, 

consider the prototype equations, 

y(t) = f (t) + fd J1
1 t-s I a-1y(s)ds, t E [ 0, 1]x [ O,d] , 

0 0 

with 0 < a < 1 , and 

where 

y(t) = f(t) + fd f1
inlt-sly(s)ds, 

0 0 
t E [ 0,1]x [ O,d], 

lxl denotes the length of any vector 2-x E lR , 

(5.2.10) 

(5. 2.11) 

and 

f is twice continuously differentiable on [ 0, 1] x [ O,d] • Theorem 

5.15 then predicts that, for these prototype equations, 

and 

where, in the case of equation (5.2.10), a is any number satisfying 

0 < a < a and, in the case of equation (5.2.11), a is any 

number satisfying O<a<1. Here lL 
-~('t") 

is a family of 

rectangular meshes on Q = [0,1] x [O,d], which depend on a parameter 
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in such a way that, as 1' + 0 , N('t') + oo and, as 1' + 0 , 

the subsets of n given by ~(1') shrink in size in a suitably 

uniform manner. The precise way that N('t') depends on will 

be explained in Section 5.5. 

One of the crucial ingredients of the proof of Theorem 5.15 

is an accurate characterisation of the regularity of the solution to 

(5.1.1), in the case when n is a rectangle and when k has a 

weak singularity along t = s The required regularity theory 

is given in Section 5.4. 
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5.3 EQUATIONS WITHOUT SINGULARITIES 

Let Q c ]R2 be the domain introduced in Section 5.1. 

In the remainder of this chapter, we shall make use of the Banach spaces 

and Lip {3 (Q) 

where m E :N 
0 

, and A unified definition of 

these spaces may be given as follows. 

Let D be any domain in 

be the space of all functions 

property that 

y 
ax n 

n 

<I> E C(D) , 

E C(D) 

Then we let 

which have the 

for all multiindices y satisfying jyj ~ m • (We use here 

the standard notation for multiindices, see [37, p.l9] .) Also, 

we let denote the space of all functions 

which have the property that 

for all 

sup I<!>Ct+h) - <l>{t)l < c1~1{3 
t€D 

t+h€D 

with C independent of 

<I> E C(D) ,~ 

h 0 Both 

and become Banach spaces when equipped with an 

appropriate norm, [37, p.25], but the precise definition of the 

norm will not be required for what follows. We shall also refer 

to the Sobolev space W~ (Q) the space of all functions 

such that and 
()th -af-E L2{S'l) • This is also a 

2 

Banach space under an appropriate norm [37, p.264] • 
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When we define t to be any point in n then, without 

further explanation, we shall assume that t has coordinates 

We shall consider the orders of convergence of and 

when the collocation points i = 1, ••• ,N} are chosen 

so that is the centroid of for each i. = 1, ••• ,N 

Using elementary calculus, it can be shown that, in this 

1 
= 

and (5.3.1) 

i = 1, ••• ,N , 

and Ai denotes the area of Oi • 

The choice of points (5.3.1) is crucial to the following 

analysis, the main motivation for this choice coming from the 

following lemma. 

Lemma 5.2. Let with , 

and let the collocation points be chosen according 

to (5.3.1). Then, for i = 1, ••• ,N , 

with C independent of i and N , and 

I f_ (y(s) - PNy(s))dsl ~ c~~~! 
Q 

, 

with C independent of N • 
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Remark. This lemma shows that the function y - P y although 
N ' 

only O(~TIN~~) in the supremum norm, has an integral which converges 

with order ~~11! This is the central fact which allows us 

to prove increased rates of convergence for in Theorem 5.3. 

Proof of Lemma 5.2 

For i = 1, ••• ,N , we have, using the two dimensional 

Taylor's theorem, 

I ( E.L E.L ) I (ay E.L ) + n (sl-til) Cltl (~i,s)- atl (ti) ds+ n (s2-ti2) Clt2 (~i,s)- ()t2(ti) ds 
i i 

where ~i,s denotes some point on the segment joining t 1 

and s • 

By choice of collocation points (5.3.1), the first two 

(5.3. 2) 

=terms of (5.3.2) vanish, and, by the hypotheses of the lemma, the~ 

integrands of the remaining terms are uniformly 0(~~~!> • Thus 

with C independent of i and N , as required. 

Since, by (5.2.1) , 

I_ (y(s) - ~Ny(s))ds = 
n 

N 
L I (y(s) - y(ti))ds 

i=l ni 

(5.3.3) 

the second part of the lemma follows by summation of (5.3.3) over i • 
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Theorem 5.3 Let C1 , C2 and C3 be satisfied. 

(i) If 1-
y E C (Sl) , then (5.2.8) holds. 

(ii) and 

the collocation points are chosen according to (5.3.1), then . 

(5.2.8) and (5.2.9) hold. 

Proof. (i) Since y E c1 (n) , it follows simply from Taylor's 

theorem, that' for "t' t' E n ' with II t-t' II co ~ ·~~co , we have 

!y(t)- y(t'>l S c~~~co , 

with C independent of t and t' • Since 

with w defined by (5.2.7), estimate (5.2.8) now follows via 

Theorem 5.1. 

(ii) Clearly (5.2.8) holds by the reasoning of part (i). To 

prove (5.2.9), we estimate ~Ky - KPNY~co , and then apply Theorem 

5.1. Note first that, for t E Sl , 

IKy(t) - KPNy(t)l = I f_ k(t,s)(y(s) - PNy(s))dsl 
n 

using (5.2.1). 

N 
= I L J k(t,s)(y(s) - y(t1))dsl , 

i=1 ni 
(5.3.4) 
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Then, since k E Lip1 (.Oxn} 

N 
L f k(t,s) (y(s) - y(ti))dsl 

i=l oi 

we have 

< llklloo I IJ<y(s)-y(t.))dsl + r ( Jlk(t,s)-k(t,t.) lly(s)-y(t.)lds) 
i=l 0 1 i=l 0 1 1 

i i 

with C independent of N and t , where the final estimate 

is obtained by Lemma 5.2, and the fact that, since 

and 1-y E C (0) , 

with C independent of N , t and s • 

The estimate (5.2.9) then follows via Theorem 5.1, after we 

have used (5.3.4) and (5.3.5) to show that 

(5.3.5) 

As remarked in Section 5.2, generally the properties of y are 

unknown, while the properties of k and f are known. Therefore 

the results given here will be a lot more relevant practically if we can 

present conditions on k and f which ensure that the regularity 

requirements of Theorem 5.3 are satisfied. Such is the purpose of·the 

following theorem. 
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Theorem 5.4 and let C2 be 

satisfied. Then 
2-y E C (n), and, provided the collocation points 

are chosen according to (5.3.1), the estimates (5.2.8) and (5.2.9) 

hold. 

Proof. It follows from Theorems 2.3, and 2.1, that k satisfies 

C1, and thus, by C2, y exists in C(n) • 

Now, letting n2 be any differential operator of order two 

with respect to the multivariable and using Lemma A2 , 

we have 

(5.3.6) 

Since n2k(t, s) E C (nxn) = C (S~xfi'>. , it follows from Theorems 2.3 

and 2.1 that the integral on the right hand side of (5.3.6) is continuous 

in t • Hence, since f E c2 
(n} , it follows from (5.3.6) that 

2 -DyE C(n) , and thus 2-y E C (n) • 

The estimates (5.2.8) and (5.2.9) then follow via Theorem 

5.3. 
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5.4 REGULARITY RESULTS FOR WEAKLY SINGULAR EQUATIONS 

We will be concerned in this section, with the equation (5.1.1), 

in the case when 0 is a rectangle in and k has a weak 

singularity along the diagonal t = s 0 Without loss of generality, 

we assume that n = [0,1] x [O,d], for some d > 0 . 

To clarify notation, when x is a scalar, lxl will 

denote the absolute value of x When x = (x
1 
,x

2
) E lR 

2 
, lxl 

will denote the length of X ' 
2 2 ~ 

(x
1 

+ x
2

) • For the rectangle 

n = [0,1J x [O,dJ, we let n* = {t-s: t,s Ef,U = [-1,1] x [-d,d] , 

and we define 

= su~ lxl 
xe:O 

From now on we shall study integral equations of the form 

(5.1.1) which satisfy C1' , C2, and C3' , where C1' 

are new assumptions on k and 

with 

and 

C1' 

a-1 
B(x)x , 

where B E c1[0, In* I] 
C3' f E c2

(0) 

f given as follows. 

for some 0 < a < 1 , 

0 < a < 1 , 

and C3' 

A kernel k which satisfies C1' is said to be weakly 

singular along the diagonal t = s • 
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It is easy to show, using the properties of B ' and 

Lemma A6, that the function 

X + l/JCX. (jxl) 

for all and it follows by Theorem 2.3, 

that, if k satisfies Cl' , then k E M2(n) . Hence 

and so Cl' implies C1 • Since C3' trivially 

implies C3, it follows that any results which are true under C1, 

C2 and C3 , are also true under C1', C2 and C3' • 

In the next theorem we list the important properties of the 

integral operator K (given by (5.1.2)) when the kernel k is 

weakly singular. 

Theorem 5.5 Let k satisfy C1' • Then the operator K bas 

the following properties. 

(i) K L2 <m +em> is compact. 

(ii) K C(n) + C(n) is compact. 

' (iii) K maps L2(n) into wicm 
(iv) K maps C(n) into Lip! (n) 

Proof. The proof of (i) follows from Theorem 2.1 (since k E M2(n)), 

and (ii) follows immediately. Part (iii) follows from some results of 

Mikhlin (see the recent paper of Pitlciiranta [45, Lemma 1]) • 

To prove (iv), we appeal to the results of Kantorovich and 

Akilov [33, p. 363]. Denoting the gradient with respect to the multi-

variable t by vt , we have, for 0 < a. < 1 ' 
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and thus 

vt 1/J <I t-sl) I = 11/J~ <It-s I) I a 

< Clt-sla-2 (5.4.1) -
with c independent of t and s using ~1' . 

Thus, using Lemma A6, and (5.4.1), it follows that, for 

0 < a < 1 , 

f_lvt~a<lt-sl)lds < c f_ It-s la-2ds -n n 

< c f-* lsla!.-2 

n 
ds < c < co ' (5.4.2) 

with c independent of t • 

Since, using Cl' , we also have, for 0 < a < 1 , 

11/J <I t-s D I 
Jn a lt-sl ds 

where o =a if O<a< 1, 

and is any number, satisfying 0 < 0 < 1 ' if a = 1 , it 

follows by the reasoning used to obtain (5.4.2), that for all 0 <a< 1 , 

< C<co 

with C independent of t • 

The required result (iv) then follows from [33, p.363, Theorem 4], 

and on recalling that C(n) C L (0) • 
- co 

In order to motivate the next theorem, which investigates the 

properties of certain integral operators which are related to K , 

recall the methods of Chapter 3, where we analysed one dimensional weakly 

singular equations of the form (3.1.1). Our technique hinged on the 
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fact that, provided y is sufficiently regular, we may differentiate 

the integral Ky given by(3.1. 2) to obtain ( cf. Lemma 3.1): 

b b 
Ky'(t) = :t I k(t-s)y(s)ds = y(a)k(t-a)-y(b)k(t-b)+ I k(t-s)y'(s)ds • 

a a 

Consider the two dimensional equation (5.1.1), with operator of the 

form given by (5.1.2), and C1': 

d 1 
Ky(t) =I_ wa<lt-sl)y(s)ds = I I Wa<1Ctl,t2)- (sl,s2)1)y(s1,s2)ds1ds2. 

Sl 0 0 

A technique analogous to that used in Lemma 3.1 may be employed. Suppose 

k -at E L2 (Sl) • Then we may obtain, formally, 
1 

= 

(5.4.3) 

We show in Theorem 5.7 that formula (5.4.3) is valid. But 

first, Theorem 5.6 investigates the properties of a class of integral 

operators which arise in such formulas for the differentiation 

of Ky • 
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For z =<a1,z2) E Q , define the integral operators 

s y(t) 
zl 

1 
Tz

2
y(t) = f

0 
l/Ja. (I (t1 , t 2) - (sl' z2) I )y(sl' z2)ds1 , t E (l 

The operators S , T arise naturally in the differentiation of 
zl z2 

the two dimensional weakly singular integrals, Ky • For example, 

the formula (5.4.3) can be written much more concisely as 

Concerning the properties of we have the 

following theorem. 

Theorem 5.6 Let z = (z
1

, z2) be any point in Q • 

(i) s 
z ' 1 

(ii) s 
z ' 1 

(iii) If 

T are compact on 
z2 

T map C(O) into 
z2 

y E C(S'l) with k 
at1 

+ T ~ (t) , 
z2 a~l 

C(O) 

LipB{S'l) , for any 0 < (3 < a. 

E C(S'l) then a -
' atl Tz2yEL2(S'l) 

for all t 2 E [ O,d] , and almost all t 1 E [ 0,1] • 

(iv) If y E C(S'l) then _a_ s y E L
2

<m 
at2 zl 

and 

and 
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for all t
1 

E [ 0,1], and almost all t 2 E [ O,d) 

Proof (i) We prove the result for 

T is analogous. 
z2 

First, write 

s y(t) 
z1 

and note that 

where 

and 

, 

only; 

Since Q1 maps C (n) continuously into C (n) , 

the proof for 

the proof will 

follow, provided we can show that Q2 is a compact operator, on C(Q) 

To prove the compactness of Q2 , we show that its kernel is in 

and use Theorem 2.1. Note that Theorem 2.3 (ii) is not 

applicable to this case, so instead we must argue from first principles. 

We first abbreviate the quantity 

any t,s E Q by 

Then, for and a+ 1 we have by C1' , and 

Lemma A7 , 
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with C independent of t , and a similar argument holds 

if a = 1 • 

Also, for t,t' E 0 , a f 1 , we have 

where C is independent of t and t' , and 0 < S < a < 1 , 

and the final inequality is obtained using Lemmas A7 and A8. Also, 

since, by 1 * Cl ' ' B E c [ 0' jn I] ' "' a simple application of the~two 
t 

dimensional Taylor's theorem shows that 

with C independent of t, t' , we have 

(5.4.5) 

with 0 < 8 < a < 1 • An analogous result may be proved if a = 1 • 

It follows from (5.4.4) and (5.4.5) that the kernel of Q2 

is in M1 (0) , and the required result follows. 
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(ii) Again we prove this result for s 
zl 

only ; the proof 

is analogous. The proof is simple, for, letting y E C(O) , 

and using the same abbreviations as in (i) we obtain, analogously to 

(5.4.5), that for t, t +hE 0 

Is y(t+h) - s y(t>l 
z1 z1 

= 

, 

with a any number satisfying 0 < a < a ~ 1 ' and C 

independent of t and h. This completes the proof. 

The proofs of (iii) and (iv) follow simply from Theorem A3. 

For example, letting 

xE[-1,1] , 

<j>(x) x E [ 0,1) 

then it is easy to show that K E L1[-1,1] , and since, by (i), 

Tz y exists for all (t1,t2) E 0 , Theorem A3 may be applied to 
2 

obtain the formula for given in (iii) • The fact that 

follows from (i) and Lemma A6. 

The result (iv) may be proved similarly. 

The properties of the operators Sz and T 
1 z2 

proved in 

Theorem 5.6 now enable us to prove the following theorem, which is the 

natural generalisation to two variables of Lemma 3.1. 
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Theorem 5. 7 Let k satisfy Cl' , and let y E C(Q) • 

(i) 

(ii) 

Proof. 

If then 

a: Ky = SOy - Sly + K :ty 
1 1 

If .lx_ E L
2 

(Q) , at2 
then 

a av 
- Ky = TOy - T1y + K ~t 
3t2 0 1 

We prove (i) only, (ii) is proved similarly. Fix 

t
2 

E [ O,d] , and let 

Then, by Theorem 5.6(iii) we have, for all s
2 

E [ O,d] , and almost 

all t 
1 

E [ 0, 1) , 

(5.4.6) 

Now, by Theorem A2(using the methods of Rudin [50, Chapter 7] 

to verify the required measurability conditions), it follows that 

(5.4.7) 

and the required result follows on substitution of (5.4.6) into 

(5.4. 7). 
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Recall the notation used in Chapter 3: The expression 

{a(t) + b(t) + ••• + z(t)} is used to denote some linear combination 

of the functions a(t), b(t), ••• , _ and z(t) • 

We are now ready to state and prove the ~in resu1t of this 

section. 

Theorem 5.8 Let Cl' , C2 and C3' be satisfied. Then, 

if y is the solution to (5.1.1), 

(i) y E c1(0) 

(ii) 3y E Lipa(O) and ~ E Lipa(n) 
~tl dt2 

, 

where a is any number in the range 0 < a < a 

a2 
(iii) 1.. E L2(n) with 

dtldt2 

a2 
at~~t2 (t) = { Wa<l (tl,t:z>'> + Wa<l (tl't2) - (O,d) I> 

+ wa<1Ct1,t2>- (l,o)l> + wa<l<t1,t2>- (l,d)j)} 

+ <l>(t) ' for almost all tEO , 

where <I> E c(O) • 

Proof. it follows from C2 , 

Theorem 5.5 (ii), and the Fredholm alternative, that (5.1.1) has 

a unique solution y E C(n) • Thus, Theorem 5.5 (iii) 

and by 

is in 

C3' , 

1-
W2(n) ' 

it follows that.the right hand side of (5.1.1) 
l-and hence y E w2 (n) • 

We may then use Theorem 5.7 (i) to differentiate (5~1.1), 

obtaining 

A =-a£ +Sy Sy+K.1L 
~ a o - 1 ~t.. o·t1 t 1 o-1 

(5.4.8) 
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By Theorem 5.5(i), and by Theorem 5.6 (i) 

Hence, by C3' , the right-hand 

side of (5.4.8) is in C(Sl) , and thus .1y_ E C(Sl) It may at
1 

be proved similarly that and we have proved (i) • 

It follows from Theorems 5.5 (iv) and 5.6 (ii), and since 

f E c2 (Sl) that the right hand side of (5.4.8) is in Lip6cm 
1.z_ E L · (0) at ~Pa 

1 
o < a < a. and hence for any satisfying 

ay -It may be shown analogously that ~ E Lip(3(0) , 
2 

for O<S<a. 

for 0 < e < a. and hence (ii) follows. 

To prove (iii), note again that and so, by 

Theorem 5.5 (iii) K .1y_ E w1 (S'l) 
at 2 ' 

and also, by Theorem 5.6 (iv), 

_a a soy e L2 en> 
t2 

and 

1 

_a a s
1
y e L

2 
em 

t2 
Since 

the right hand side of (5.4.8) has a partial derivative with respect 
a2 

to t 2 which is in L2(0) Hence at ~t E L2(SJ) , and we 
2 1 

may use Theorems 5.6 (iv) and 5.7 (ii) to differentiate (5.4.8) 

with respect to t 2 , to obtain: 



= 
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2 

128. 

By Theorems 5.5 (i) and 5.6 (i), and since f E c2 (G) , 

it follows that the last six terms on the right hand side of (5.4.9) 

are in C(Q) , and the result (iii) follows. This completes the 

proof of Theorem 5.8. 

In this section we have investigated the regularity properties of 

the solution to a weakly singular two dimensional integral equation. 

It is clear from Theorem 5.8, that, in the case that Cl ' , C2 and C3 ' 

are satisfied and G = [0,1] x [O,d], the conditions of Theorem 5.3 (i) 

are satisfied, but the conditions of Theorem 5.3 (ii) are not satisfied, 

either by y or k • The analogue of (5.2.9) for the weakly singular 

case will be proved in Theorem 5.15 using the regularity results of 

this section. 
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5.5 CONVERGENCE RESULTS FOR WEAKLY SINGULAR EQUATIONS. 

In this section, we analyse the convergence of the numerical 

approximations to y defined in Section 5.1, in the case when the 

kernel of the integral equation (5.1.1) is weakly singular, and when 

n =[0,1] X [O,d]. 

Since the piecewise constant functions introduced in Section 5.1 

are really just two dimensional splines (of order 1 or, equivalently, 

of degree 0) , it is reasonable to expect that a tight analysis of 

these numerical methods will require some two-dimensional spline 

approximation theory. Appealing to Munteanu and Schumaker [41] 

for such a theory, we must first define a certain class of rectangular 

meshes on n • 

Definition 5. 9 For each T E (0,1], let there exist integers 

p(T), q(T) , and meshes 

and 

with the property that, for some constants 

i = 1,2, T E (0,1], 

where 

/11 (T) = min (x. (T) - xj_1 (T)) ' j=1, ••• ,p(T) J 

/11 (T) = max (xj (T) - xj_1 (T)) 
j=1, ••• ,p(T) 

/12(T) min (yR,(T)- Yt_1 (T)) , 
i=1, ••• ,q(T) 
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and 

In addition, suppose that, for 

{xj(2T) : j = O, ••• ,p{2T)} ~ {xj(T) j O, ••• ,p(T)}, 

and 

{y R, (21") R, = 0, ••• ,q(2T)} ~ {yR,(T) : R, = 0, •.•• ,q(T)} 

Then, with N(T) = p(T)q(T), we have, for each T E (0,11, 

a mesh TIN(T) on S1 , given by 

~(_T) = {(xj_1 (T), xj(T)) x (yJl,_1 (T), yR,(T)): j=1, ••• ,p(T);R,=1, ••• ,q(T)l. 

We call sucn a family of meshes {TIN(T) : T E (0,1}} an M.S.Family 

of meshes on n . 

We shall refer to the mesh n N(T) as being made up of the 

subsets Qi (T) (or Qi when T is understood), for 

i = 1, ••• ,N(T) , where, for definiteness, we adopt the indexatton 

convention 

Q(R.-l)p(T)+j (T) = (xj_1 (T), Xj (T)) X {y R,-1 (T), y R, (T)) 

for j = 1, ••• ,p(T), and R, = l, ••• ,q(T). 

Remarks 5 • .10. Let {~(T) T E (0,1}} be an M.S. family of meshes 

on n • 

(1) For each 1 = 1, ••• ,N(T) , the collocation point t
1 

, 

defined by (5.3.1) then turns out to be the centre of the rectangle 

(i1) It is clear from the definition of TIN(T) , that 

N(T) + co as T + 0 , 
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and 

so that 

as T -+ 0 • 

(iii) Four examples of M.S. families of meshes are given in ~11. 

A particularly simple example is the case where, for 

is chosen to be the integer which satisfies 

and q(T) 

is given by 

and 

is given by 

! +! > p(T) > ! - ! 
T 2 - T 2 

is set equal to p(T) • 

, 

Then 

x. (T) = jT , 
J 

j = o, ... ,p(T) - 1 , 

Xp(T) (T) = 1 , 

1 = o, ... ,q(T) - 1 

Yq(T) (T) = d • 

T E (0,1), p(T) 

, 

'(iv) k practically ~portant subfamily of the family given in 

Remark 5.10 (iii) -is 

{~(n-1) : n = 1,2, ••• } 

In this case p(n-1) = q(n-1) = n , 

obtained simply by dividing G into 

of dimensions 1 
n 

by d 
n 

and the mesh ~(n-1) is just 
-1 2 

N(n ) = n subrectangles, each 
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From now on we shall let {~('r) : T E (0,1)} denote some 

fixed family of M.S. meshes on 0 • We shall let denote 

the projection, analogous to (5.2.1), onto the space spanned by the 

set of piecewise constant functions defined on the mesh ITN(T) , 

using the collocation points discussed in Remark 5.10 (i).Then, for any 

T E (0,1), PN(T) is a bounded operator from c(n) to 

with operator norm satisfying 

T E (0,1] • (5.5.1) 

We define, for the two dimensional spline space 

r-1 -
sr (~(-r) , 0) , by 

r-1 [ ] r-1 [ ] where ~1 Esr (ITp(-r)' 0,1 ), ~2 Esr (ITq(-r)' O,d) 

and r-1 [ s (IT ( ) , 0, 1] ) r p T 
and r-1 [ ] S (IT ( )' 0,1 ) r q T 

are the one dimensional spline spaces defined in Section 4.2. 

We describe some important approximation theoretic properties 

of this two dimensional spline space in the next two lemmas. 

Lennna 5.11 Let Wa be defined as in Cl'. Then, for each t e n , 

there exists a spline such that 

with C independent of t and T • 
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Proof. The proof follows from Munteanu and Schumaker [41, Lemma 5.5], 

where it is shown that there exists such that 

f lw Clt-sl> - u t(s)!ds n a. a., 

< [ T f 11/J (jt-sj)lds + sup f 11/J <lt-s-hj)- 1Pa.<lt-sl>ld;J,,(.5.5.2) 
n a. o~llhll~-r nh a. J 

with C independent of t and T, and where for e: E lR~ , 

Now, for tEn , we have, using C1' , 

0 < a. < 1, 

a. = 1 ' 

with cl, c2 independent of t • 

Also, arguing as in Theorem 5.6(i), we may show that, for 

h E lR
2 , 0 < a. < 1 , 

f_' 11/Ja. Cl t-s-hl) - 1/Ja. <I t-sl) Ids 
nh 

~ c( Sl!P IB<It1-h1, t2-h2,sl,s2 I>- B(ltl,t2,sl,s21>1 J 
S€~ 

(5.5.3) 

(5.5.4) 

where C is independent of t and h • It then follows, using 

Lemma A9 and the fact that BE c1 
[0, ln*j], that for hE lR2, 0 < a. < 1, 

(5.5.5) 
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with C independent of t and h , and an identical bound 

may be proved when a = 1 • 

Combination of (5.5.2), (5.5.4) and (5.5.5) and noting that 

lhl < 1:2 ~h~~ , yields 

1 I~ <lt-sl) - u (s)lds < C T , n a a, t -

with C independent of t and T, and the result then follows 

from Remark 5.10(ii) • 

Remark 5.12 Note that, by the triangle inequality, we have, from 

Lemma 5.11, 

< c 

for some C which is independent of t and T , where the final 

inequality follows from (5.5.4), and the observation that 

T E (0,1) • 

Lemma 5.13 Let C1', C2 and C3' be satisfied, and let y be 

1 -
the solution of (5.1.1). Then there exists a spline ~ E s2 (~(T)'Q) 
such that 

with C independent of T. 

Proof. Note that, by Theorem 5.8, kk -and i:lt ' i:lt ELipa (Q) , 
1 2 

for any a in the range 0 < a < a . It follows from Munteanu and 

1 -
Schumaker [ 41, Lemma 5. 5] , that there exists ~ E s2 (~ (T) ,Q) such that 

IIY - ~~~~ ~ C[ T
2

jjYIIoo + w2 (y,T)] , (5.5.6) 
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with C independent of T , is the two dimensional 

modulus of continuity given by 

s~ IY(t + 2h) - 2y(t +h)+ y(t)l , 
tEn2h 

is defined by (5.5.3). 

Now, it follows easily from the two-dimensional Taylor's theorem, 

and the known properties of y ' that 

(5.5.1) 

with C independent of T, and the required result follows on 

substitution of (5.5.7) into (5.5.6) and using Remark 5.10(ii) • 

The next lemma highlights an important property of the choice 

of collocation points given in (5.3.1) and Remark 5.10(i) • 

Lemma 5.14 Let Then 

i = 1, ••• ,N(T) • 

Remark. This result demonstrates the special role played by the 

points (5.3.1), and one consequence of it is the fact that the two 

dimensional approximate integration rule 

f_ <jl(s)ds = 
Q 

turns out to be exact for functions in i.e. for functions 

which reduce to bilinear functions almost everywhere on each of the subsets 

Qi • In other words, this approximate integration rule is the two 

dimensional analogue of the product mid-point rule. 
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Proof of Lemma 5.14. Note that, for all s E ni , and thus, for 

and ~2 are linear. Note also that, by Remark 5.10(i), ti is 

the mid point of ni • Thus, to prove this lemma, it would be 

sufficient to show that 

where a1 , b1 , a2 , b2 . are constants, and 

Now, 

d 1 
+ a1b2 I I (s1- t 1)ds1ds2 0 0 

d 1 
+ a2b1 I I (s2- t'!2) ds1 ds2 , 

0 0 

and 
d 1 

I I 
0 0 

since 1 
t1 = 2 ' and, similarly, 

Also, 

d 1 d 
I I (s1 s 2- t 1 t 2)ds1ds2 =I ( !s2 - t 1 t 2}ds2 0 0 0 

1 2 = 4 d - dt1t2 = 0 , 

(5.5.8) 

(5.5.9) 

(5.5.10) 

(5.5.11) 

and the required result follows on combination of (5.5.9), (5.5.10) 

and (5.5.11) with (5.5.8). 
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Let denote the approximations to y defined 

by the collocation and iterated collocation methods respectively, 

using the M.S. family of meshes {ITN(T) : T E (0,1]} • Note that, 

in view of Remark 5.10(ii), Theorem 5.1 holds with N replaced by 

N(T) , provided that the phrase "N sufficiently large" is replaced 

by the phrase "T sufficiently small" • This fact will be used in 

the proof of the following theorem, which is the main result of this 

section. 

Theorem 5.15 Let t1', C2 and C3' be satisfied. Then 

(i) 

and 

(ii) 

for any in the range 0 < B <a 

Proof. By definition of the projection PN(T) , it follows that 

sup 
t,t 'E n 

llt-t' 11 00 <U~(T) 000 

~ 
ly(t) - y(t')l 

1-and since it was proved in Theorem 5.8 that y E C (Q) , an easy 

application of Taylor's theorem yields 

(5.5.12) 

with C independent of T , and the result (i) follows from 

Theorem 5.1. 

To obtain (ii), recall Lemma 5.11, and write, for t e n , 
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Ky(t) - KPN(T)y{t) 

= f_ (l/J (It-s I> - u t(s) f{y(s) - PN( )y(s))ds 
0 a a, T 

say • 

Now, using Holder's inequality, we have for t E 0 , 

and it follows from Lemma 5.11, and (5.5.12), that 

, 

with C independent of t and T • 

Also, since ua,t E S~(ITN(T)' 0) 

' 
we have, for some 

c1 , ••• ,cn which are constant with respect to s , 

N(T) 
r 2 (t) = L ci f_ (y(s)- PN(T)y(s))ds 

i=l ni 

= NfT) c f_ (I- PN(T))(y- ~){s)ds , 
i=1 i oi 

~ 

where ~ is any function in using Lemma 5.14. 

(5.5.13) 

(5.5.14) 

Thus, making use again of Holder's inequality, we have, for t E 0 , 
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= I f_ u (.s) (.I - PN( ) ) (.y - ~) (s)ds I n a,t x 

< f lu (s)lds ~(I- PN(T))(y- ~>I~ n a,t 

with C independent of t and T , where we have used (5.5.1), 

and Remark 5.12. Thus, by Lemma 5.13 , 

(5.5.15) 

with C independent of t and T, and a any number such 

that 0 < a < a • 

Combining (5.5.14) and (5.5.15) with (5.5.13), we obtain 

with C independent of T, and (ii) then follows from Theorem 

5.1. 
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CHAPTER 6 

NUMERICAL SOLUTION OF A CURRENT DISTRIBUTION PROBLEM· 

In this chapter we discuss the numerical solution of a two 

dimensional integral equation which describes the distribution of 

sinusoidally varying current in an infinitely long conducting bar of 

rectangular cross section. In such a conductor, the alternating 

current induces a magnetic field, which in turn sets up eddy currents, 

causing the current to be displaced towards the surface of the 

conductor. In the case of a conductor with a circular cross section, 

an analytic solution to the problem is known [ 56], but in the case 

of a rectangular cross section the problem must be formulated as 

an integral equation, and solved numerically. The numerical solutions 

obtained are of interest to electrical engineers [16], [51]. 

The physics of this problem is discussed in [56] and [27, 

Section 4], where it is shown that, for a conductor with rectangular 

cross-section of length a and breadth b , the current 

distribution y may be found by solving the integral equation 

(6.1) 

over the scaled rectangle 
2 

[0,1] x [O,b/a] ~ R , and retrieving 

the solution y over [O,a] x [O,b] using the relation 

In (6.1), the parameter 

2 
a ugw 

211' A = 

is given by 

(6.2) 
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where g is the conductivity of the material which the bar is made 

of, is the permeability of free space, and w is the angular 

frequency of the alternating current. In all the examples given 

below, we consider a copper bar, which has conductivity given by 

g 

and we set 

p = 4~ X 10-7 , 

and 

W = 60 X 2~ 

these quantities being given in RMKS units. 

Remark. We point out a misprint in [27, p.99] where the value 

of w given should read 60 X 2~ 
' 

instead of 60. 

As explained in [27], c0 is a constant which may be chosen 

arbitrarily, and may be considered to be a scaling factor which 

determines the total amount of current flowing in the conductor. To 

understand this point more clearly, note that if we modify (6.1) 

by replacing by then the solution to the equation 

thus obtained is merely twice the solution of (6.1). 

Let us suppose that, for given we have a mesh 

{Oi : i = 1, ••• ,N} of 0: = [O,tl x [O,b/~ as described in 

Section 5.1, and let denote, by "I and "II the approximations us YN YN 
A 

to the solution y of (6.1), defined by (5.1.4) and (5.1.5) 

respectively. The approximate solutions I and II of the YN YN 

unsealed current distribution problem are then retrieved using (6.2). 

We describe below the numerical results obtained for three different 
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cases of this problem, all using rectangular meshes, with the collocation 

points chosen as the mid points of the rectangular subdivisions. In 

Examples 1 and 2 the scaling factor 

so that 

f 
b/a 

0 

or, equivalently, 

b a I 
f f yN(t)dt = ab , 
0 0 

in (6.1) will be chosen 

(6.3) 

i.e. the tota~ current flowing, according to the first approximation 

is equal to the cross-sectional area of the conductor. In 

Example 3, the value of is kept constant as the meshes vary. (The 

actual choice of will be given below.) It is necessary to keep 

c
0 

constant if we wish to compare our numerical results with the 

theoretical predictions of Section 5.5, since the theory assumes that 

the inhomogeneous term does not change as the mesh varies. 

In order to determine the coefficients in the system of linear 

equations which arises from (5.1.4), and in order to compute the 

solution at an arbitrary point, it is necessary to calculate the 

integrals 

i = l, ••• ,N 

at an arbitrary point Fortunately these integrals 

are sufficiently simple (in the case of the rectangular meshes we 

describe below) to be calculated analytically. We remark however, 

that, in the case of a mesh with a more complicated geometry, or in 
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the case of a less simple kernel, these integrals may have to be 

calculated by quadrature, a technique that would introduce more errors 

into our numerical scheme. 

Example 1. We choose a rectangular bar with length a = 0.1, and 

breadth b = 0.005 (dimensions in meters), and we solve the problem 

using three different meshes 

(a) 4 equal partitions lengthwise and 1 breadthwise. 

(b) 8 equal partitions lengthwise and 1 breadthwise. 

(c) 16 equal partitions lengthwise and 1 breadthwise. 

These meshes are illustrated in Figure 1. In Tables 5 and 6 we give 

the results of the numerical solution of this problem. In Table 5 

we give the approximation to the physical 

current flowing, while in Table 6 we give II 
arg(yN ) (defined in 

radians in the range - 1T < e < 1T), the approximation to 

arg(y) the phase angle of the current. 

The results are given at a number of points along the line 

drawn lengthwise through the centre of the cross-section (the results 

along any line across the width varied only on the third significant 

figure). We mark with an asterisk the values of I 
III II yN , arg(y N) 

at the collocation points. Note that Tables 5 and 6 also include the 

values of and I arg(yN) , since is constant over 

each of the mesh subdivisions, and equal to at each of the 

collocation points. 

The results are given for the top half of the cross section 

only. The results for the bottom half will be the same by symmetry. 
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The values of and for the 20 X 1 

case are given tn [27]. The 20 x 1 case is also solved by 

Silvester [56] , using a different method. 
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0.0025 
"'\ 
-A. 

0.0025 

\ 
r-J-.... 

0.0025 

\ 
~ 

( ( I 

I ( I 
I 
I 

I I 

I I 
I I 
I I 

I I 
I I 
I I 

I I 

0.05 0.05 
I 
I 0.05 I 

I 

I I 
I I 
I r 
I I 
I I 
I I 
I I 
I I 
I I 

\ I 
I 

I 
I 

(a) (b) (c) 

4 x 1 case 8 x 1 case 16 x 1 case 

I h II. n eac case yN is calculated at points along the dotted line 

Figure 1. 
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Values Of IYINII f 0 1 0 005 b or • x • ar 

Distance 

Distance 

along 

length 

0.0 

0.003125 

0.00625 

0.009375 

0.0125 

0.015625 

0.01875 

0.021875 

0.025 

0.02815 

0.03125 

0.034375 

0.0375 

0.040625 

0.04375 

0.046875 

0.05 

0.0025 

1.24 

* 1.09 

1.00 

* 0.931 

0.918 

(a) 

4xl case 

0.0025 

1.26 

* 1.17 

1.10 

* 1.04 

0.987 

* 0.949 

0.924 

* 0.907 

0.903 

(b) 

8x1 case 

* denotes the value at a collocation points. 

Table 5. 

0.0025 

1.27 

* 1.22 

1.18 

* 1.13 

1.10 

* 1.06 

1.03 

* 1.01 

0.985, .. 
* 0.965 

0.947 

* 0.933 

0.921 

* 0.912 

0.906 

* 0.902 

0.901 

(c) 

16X1 case 



Values of II 
arg(yN ) 

Distance 

Distance 

along 

length 

o.o 

0.003125 

0.00625 

0.009375 

0.0125 

0.015625 

0.01875 

0.021875 

0.025 

0.02815 

0.03125 

0.034375 

0.0375 

0.040625 

0.04375 

0.046875 

0.05 

0.0025 

0.527 

* 0.134 

-0.0583 

* -0.156 

-0.194 

(a) 

4x1 case 

147. 

for 0.1 x 0.005 bar 

0.0025 

0.486 

* 0.254 

0.109 

0.00419* 

-0.0745 

* -0.131 

-0.171 

* -0.193 

-0.202 

(b) 

8x1 case 

* denotes the value at a collocation point. 

Table 6. 

0.0025 

0.473 

* 0.342 

0.245 

* 0.167 

0.102 

* 0.0462 

-0.00194 

* -0.0435 

-0.079:4 

* -0.110 

-0.136 

* -0.157 

-0.175 

-0.188* 

-0.197 

* -0.203 

-0.205 

(c) 

16x1 case 
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Example 2. We choose a square bar with length a = 0.1, 

and breadth b = 0.1 (dimensions in meters), and we solve the problem 

using three different meshes 

(a) 4 equal divisions lengthwise, and 8 equal divisions breathwise. 

(b) 6 equal divisions lengthwise, and 8 equal divisions breadthwise. 

(c) 8 equal divisions lengthwise, and 8 equal divisions breadthwise. 

The numerical results are given in Tables7(a), 7(b) and 7(c). 

ln this example we confine ourselves to displaying 

evaluated at a fixed grid of 36 points equally spaced within the square 

[ 0,0.05) X [0,0.05) • Since the bar has a square cross-section, 

it is easy to see, by symmetry, that fy~II will have the same 

values as those given here at the corresponding points of the other 

three squares; [0,0.05) X [0.05, 0.1), [0.05,0.1) X [0,0.05) , and 

[0.05, 0.1) X [0.05,0.1) 

This problem was solved using the Galerkin and iterated 

Galerkin methods by Dewar [19], where the same meshes as in (a), (b) 

and (c) above were used. On comparison of the present results with 

those of [19], it turns out that the collocation methods converge 

a little faster at interior points of the cross section and a little 

slower at points on the edge of the cross section, than do the Galerkin 

methods. 
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Distance 
along 

ength 
0.00 0.01 0.02 0.03 0.04 0.05 Distance 

along 
breadth 

0.00 7.65 5.09 3.79 3.16 2.85 2.75 

0.01 5.24 2.93 2.46 1.68 1.19 1.04 

0.02 4.05 1.68 1.67 1.03 0.61 0.52 

0.03 3.63 1.19 1.15 0.64 0.42 0.46 

0.04 3.51 1.11 0.90 0.41 0.31 0.42 

0.05 3.48 1.11 0.83 0.33 0.27 0.40 

Values of IY~I I for 0.1 x 0.1 bar 

4 divisions lengthwise, 8 divisions breadthwise. 

Table 7(a). 

Distance 
along 
length 

0.00 0.01 0.02 0.03 0.04 0.05 
Distance 

along 
breadth 

0.00 7.22 4.87 3.63 3.01 2.83 2.79 

0.01 4.87 3.07 2.08 1.43 1.19 1.13 

0.02 3.61 1.93 1.29 0.84 0.54 0.44 

0.03 3.11 1.35 0.81 0.54 0.31 0.24 

0.04 2.95 1.16 0.56 0.35 0.21 0.22 

0.05 2.91 1.13 0.50 0.27 0.19 0.22 

Values of I y~II for 0.1 x 0.1 bar. 

6 divisions lengthwise, 8 divisions breadthwise. 

Table 7(b) 
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Distance 

along 

length 

Distance 

along 0.00 0.01 0.02 0.03 0.04 0.05 

breadth 

0.00 7.10 4.81 3.54 3.00 2.82 2.78 

0.01 4.81 3.09 1.98 1.39 1.18; 1.14 

0.02 3.54 1.98 1.23 0.77 0.52 0.45 

0.03 3.00 1.39 o. 77 0.47 0.29 0.22 

0.04 2.82 1.18 0.52 0.29 0.19 0.18 

0.05 2.78 1.14 0.45 0.22 0.18 0.18 

Values Of IYN
11 j f 0 1 X 0 1 b or • • ar. 

8 divisions lengthwise, 8 divisions breadthwise. 

Table 7(c). 
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Example 3. In this example we choose a bar with length a = 0.1, 

and breadth b = 0.05. We solve (6.1) by the collocation and iterated 

collocation methods, using the family of meshes 

{~cn-l) : n = 2, 3, 4, 5, 6, 7, 8} over [0~1] x [O,b/a] , 

which were described in Remark 5.10 (iv). That is, for each n = 2,3, ••• ,8 , 

and were defined by (5.1.4) and (5.1.5) using the 

mesh obtained by dividing [0,1] x [O,b/a] into 2 
n subrectangles, 

each of dimension 1/n by b/an • The solutions and 

over [O,a] x [O,b] were then retrieved using (6.2). In 

this example c0 was kept constant as the meshes varied, and in fact 

was chosen so that "I 
YN(5-1) satisfied (6. 3). We shall display here 

only our results for II 
YN(n-l) for n = 2, 4, 6 and 8 and we 

use them to obtain experimental rates of convergence of our approximate 

solutions, for comparison with the theoretical estimates of Theorem 5.15(ii). 

In Table 8 we give the values of at the four points 

(0.0, 0.0), (0.05, 0.0), (0.0, 0.025) and (0.05, 0.025) of the 

0.1 X 0.05 cross section, where the coordinates denote, respectively, 

the distance along the length and breadth of the cross section. 

According to Theorem 5.15 (ii), 

= 

= (6.4) 

(since we have a uniform rectangular mesh), where is any number 

satisfying o < B < 1 • 
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To estimate the experimental rate of convergence, we conjecture 

that 

where the c(t) 

t E [O, a) X [ 0, b) , 

computed values of 

1 
c(t) >: 

n 

are complex constants which depend on the point 

and A > 0 is to be determined. Using the 

(6.5) 

for n = 2,4,6 and (6.5) we obtain 

three equations in the unknowns y(t), c(t) and A • Eliminating 

y(t) and c(t), we obtain a non-linear equation in A which we 

solve using the secant method. A second approximation to is 

obtained by the same procedure, using, this time, the numerical values 

of for n = 4, 6, 8. The approximate values of A obtained 

in these two approximations are displayed in Table 9. The values of A 

obtained by the first approximation are rather erratic in comparison 

to (6.4). This is possibly because the asymptotic convergence rate 

proposed in (6.5) only holds true for sufficiently large values of n • 

The values of obtained by the second approximation conform more 

satisfactorily to the prediction (6.4), at least in the cases of the points 

(0.0, 0.0), (0.05, 0.0), and (0.0, 0.025) • The exceptionally high 

value of A at (0.05, 0.025) may be seen as evidence that the global 

prediction (6.4), although probably sharp on the edges of the domain 

(where the solution is singular), is likely to be pessimistic at points in 

the interior of the domain (where the solution is smooth). For each of 

the four points t, the second approximation to A (given in Table 9) 

was used along with the values of and 

the constants c(t) in (6. 5). The value of c(t) was then used to 

estimate the maximum absolute error in The results are given 

in Table 10. 
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II II at II at II at n YN(n-1) at YN(n-1) YN(n-1) YN(n-1) 
(0 .o' 0.0) (0.05, 0.0) (0.0, 0.025) (0.05, 0.025) 

2 1. 270+5. 8571 0.9466+1.0621 1.140+3.9311 0. 7277-2.1861 

4 1.900+4.4211 1.026+1.244i 1.399+2.347i -0.2349-0.4783i 

6 2.188+4.0551 1.166+1.17li 1.680+1.840i -0.1187-0.35801 

! 8 2.327+3.929i 1. 211+1.134i 1.841+1.647i -0.09286-0.3467i i 

Table 8. 

At point At point At point At point 
(0.0, 0.0) (0.05,0.0) (0.0, 0.025) (0.05, 0.025) 

1st approx. to ). 

using 
II II II 1.3 (~ 0.0) 0.9 3.3 YN(2-1)' YN(4-1)' YN(6-1) 

2nd approx. to ). 

using 

II II II 1.6 1.9 1.4 4.0 YN(4-1)' YN(6-1)' YN(8-1) 

Table 9. 

At point At point At point At point 
(0. 0,0.0) (0.05, 0.0) (0.0, 0.025) (0.05, 0.025) 

Estimated 
error 

in II 0.32 0.080 0.12 0.013 YN(8-1) 

Table 10. 
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APPENDIX 

In this appendix we present the proofs of same of the more 

technical results which are used in the main body of the thesis. 

Within each theorem the equations will be numbered consecutively 

starting from (1). 

The first theorem proves the connection between the Lipschitz 

spaces of Taibleson [67], and the Nikol'skii space 

introduced in Chapter 3. This theorem pinpoints one connection 

between the Applied Analysis school of Besov-Nikol'skii et. al., in 

the U.S.S.R, and the Harmonic Analysis literature which was developed 

contemporaneously in the West. For a unified treatment of the results 

of these two schools see, respectively, Nikol'skii [42], and 

Stein [66]. 

Theorem Al. Let n A(a,p,q,lR ) be the Lipschitz space of 

Taibleson [671, p.421], and let N~(lR) be the Niko1'skii space 

defined in Section 3.2. Then 

N~(lR) A(a,l,co,JR) 

for all Cl > 0 • 

Proof. We prove the more general result 

A(a,p,q,lR) = Ba, p' q(lR) 
' 1 < p,q ::: co , 

where Ba,p, q(lR) is the Besov space defined by Kufner et. al. 

[37, p.388]. The required result then follows since [37, p.389] 

(1) 
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To prove (1), let a> 0 , 1 ~ p ~ ~ , 1 ~ q ~ ~, and a 

be split into the sum of [a] and according to (3.2.1). 

Now, by [671, Theorem 10, p.444], it follows that 

<!> E A(a,p,q,lR.) if and only if cp E Lp (JR) , and 
[a] 

<1> E A(a0 ,p,q,_JR) , 

and thus by [671, Theorem 3, p.421], since 0 < a0 ~ 1 < 2 , 

it follows that <I> E A(a,p,q,JR) if and only if 4> E Lp (lR ) and 

u (x,y~l < ~ , 
yy pq 

"'[a] where u is the Poisson Integral of ~ and we have adopted 

the mixed norm notation [671, p.411] • 

Since 0 < a0 ~ 1 < 2 it follows [671, Theorem 4, p.4211 

that <1> E A(a,p,q,JR) if and only if <I> E L (JR) , 
p 

and 

Now, using the definition of mixed norms [671, p.411], we have 

and 

-a.o 2 [ 1 -ao 2 i 1 
lllhl !J. <I> a (x-h>ll = ess sup lllhl A- <1> a (x-h)R 

h pc:o he:lR u n Hp ' 
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ess sup 
he:lR 

sup 
h+o 

It follows from (2), (3) and (4) and using the definition of 

given by Kufner et. al., [37, pp.388-389], that 

cf> E A(a.,p,q, lR) if and only if and the 

proof is complete. 

The next two theorems consider some important properties of 

distributional derivatives. The first, Theorem A2, answers the 

(4) 

question: If the integrand of some integral depends on a parameter, 

when may we differentiate under the integral sign to obtain the 

derivative of the integral? The second, Theorem A3, examines the 

distributional derivatives of convolution integrals over finite 

intervals. 

Theorem A2. Suppose g is a Lebesgue measurable function of 

2.& .(t:,s) E (?,b) x (c,d)x at is Lebesgue measurable on (a, b) x (c,d), 

and the iterated integrals, 

exist. 

b d 
J J g(t,s) dsdt, 
a c 

Then, for almost all 

d 
dt 

d r g{t,s)ds = 
c 

and 
b d a 

f f a~ (t,s)dsdt 
a c 

t E (a,b) 

f
d ag at (t,s)ds 
c 
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Proof. By definition of distributional derivatives [24, p.142] 

we have, for all s E (c,d) , 1 
<1> E C (a,b), <I> having compact support, 

b b () 
f <l>'(t) g(t,s)dt =-J <l>(t) a~ (t,s)dt 
a a 

Thus, using Fubini's Theorem and (1), we have, for 1 cf> E C (a,b) , 

with cf> having compact support, 

b d 
f <l>'(t) f g(t,s)dsdt 
a c 

d b. 
= f f cf>'(t) g(t,s)dtds 

c a 

d b 
= - f f <!>(t) ~~ (t,s)dtds 

c a 

= -
b d ()g 

f cf>(t) f at (t,s)dsdt 
a c 

and the result follows. 

(1) 

Theorem A3. For any interval [a, b] , let K E L1(a-b, b-a) , 
~ 

and let 1 cf> E w
1 

[a,b]~. 
"' 

Then 

b b 
d: {I K(t-s)cf>(s)ds} = cf>(a)K(t-a)- cf>(b)K(t-b) +I K(t-s)cf>'(s)ds 

a a 

for almost all t E [ a, b) • 

Proof. Since 1 w
1
[a,b], we may integrate by parts to obtain 

Ib K(t-s)cf>(s)ds = [ { - It-s K(x) }cf>(s)]b + Ib {ft-sK(x)dx} cf>(s)ds 
a a-b a a a-b 

Hence, 

d b 
dt { f K(t-s)cf>(s)ds} = cf>(a)K(t-a)- cf>(b)K(t-b) 

a 
b t-s 

I { I K(x)dx} cf>'(s)ds , 
a a-b 

(1) 
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for almost all t E [a, b] , and the final result follows on using 

Theorem A2. (The measurability conditions required may be verified, 

for example,using the methods of [30, p.396] .) 

·rn the following lemma we prove some technica1 results concerning 

the integral operators from the examples of Section 3.4. The method 

follows Richter [49]. 

Lemma A4. Let K be defined by 

1 
Ky(t) = f lt-sln-1 y(s)ds, 

0 
t E [ 0,11, 0 < a < 1 , 

and let m E JN 0 • Then 

(i) For y > 0 , y + a ~ :N , i E JN
0 

, we have 

K(ty-1 (1nt)i+ (1-t)Y-1(1n(1-t))i)= { r (tn+y-1(1nt)j+(l-t)a+y-1(1n(1-t))j)} 
j=O 

. ..m+1 where ~ E w1 [0,1] • 

(ii) For y > 0 , y + n E :N , i E JN 
0 

, we have 

K(ty-1 (1nt)i + (1-t)y-1(1n(1-t))i)= {ii
1

<ta+y-1 (1nt)j+(1-t)a+y-1(1n(1-t))j} 
j=O 

m-1 
+ { L (tn+j + (1-t)a+j)} + <l>(t) , 

j=O 

where <1> E ~1 [0,1]. 
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Proof. We have for y > 0 , i E :N0 , 

K(t y-1 (Jl.nt) i) 

= 
a-1 y-1 i (s-t) s (Jl.ns) ds 

= say. 

Now, using the transformation s = ut , we obtain 

Now, let 1 > c5 > 0 • If t E [ c5, 1] , then 

y-1 i 
s (Jl,ns) 

00 

2 a. (1-s)j
j=O J ' 

for some scalars with uniform convergence for 

and thus we may integrate term by term to obtain: 

oo 1 a 1 j 
I 2(t) = 2 a. f (s-t) - (1-s) ds 

j=O J t 

= I a. ( J
0

1 
(1-u)a-1 uj du) (1-t)a+j 

j=O J 

where we have used the substitution 

(1-t)u = 1 - s 

Thus, for t E [ o, 1] , m E :N O , 

m-1 oo 
2 b (1-t)a+j + (1-t)m+a 2 b. (1-t)j 

j=O j j=O J+m 

sE[t,1~~ 

(1) 

(2) 
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for some scalars bi , with the convention that the first term is 

void if m = 0 , and so 

= 

where ~1 E ~+1[o,1] 

Now, if t E [ 0, 1-o] , then 

a.-1 
00 

= s 

for some scalars and convergence is uniform provided s > t • 

Thus, for e > 0 , we have 

<1+e)t a.-1 -i i 1 a.-1 -1 i 
= I (s-.t) s y (R.!_ls) ds + I (s-t) s y (R.ns) ds 

t (1+e)t 

with 

I
1 a.+y-2-j i s (R.ns) ds 

(1+e)t 

Now, since, for j f a. + y - 1 , we have, 

{sa.+y-1-j((nns)i + +en ) + 1)} N • • • ;NUS 

and for j = a. +y - 1 , we have 

I a.+y-2-j i s (R.ns) ds 

thus, with a. + y Ef lN , it follows that 

(3) 

t4) 

(5) 
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m+1 1 where ~2 E w1 (0,1-o , 

and with a. + y E :N , it follows that 

1 i+1 
J (s-t)a.-1 SY-1(tns)ids = { r ta.+y-1(1nt)j} + ~2(t), 

(1+€)t j=O 
(6) 

where ~2 E w~1 [0,1-o] 

Also, using the change of variable s = ut , we obtain 

0.-1 Y-1 i a.+ -1 +E a.-1 -1 i Jl+€)t - t . 
(s-t) s <ins) ds = t y (u-1) u y (inll'ff,nt) du 

t 1 

(7) 

Combining (4), (5), (6) and (7), we obtain 

, 

or 

i+1 
I 2(t) = { ~- ta.+y-1(tnt)j} + ~2 (t) , 

j=O 
a.+y EN , 

where, in either case, ~2 is a generic ~1[0,1-o] function, 

and it follows from (3), that 

m-1 i 
I 2(t) = { l: (1-t) a.+j} + { }: ta.+y-1(tnt)j} + ~(t), a.+y Ef N' 

j=O j=O 

or 

m-1 i+1 
I 2(t) = { l: (1-t) a.+j} + { L ta+y-1(tnt)j}+ ~(t), a.+y E :N' 

j=O j=O 

where in either case ~ is a generic w~1[ 0,11 function, 
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and it follows using (1) and (2), that 

or 

K(tY- 1 (1nt)~= { m~1 
(1-t)a+j} + { ir

1 
ta+y-1(1nt)j} + '(t), a+ y E ::N 

j=O j=O 

where ' E W~1[ O, 1] 

Analogous results may be proved for K({1-t)y-l(1n(1-t))i) , 

and the required result follows. 

In the next lemma we investigate the properties of the m-th 

order L [a,b] modulus of smoothness, introduced in Section 4.3. p 

These results are used in the proof of Theorem 4.4. 

Lemma AS. Let r E ::N 

(i) For n > 0 and 1 ~ p ~ ~ , let 

(l<p<~)' 

or·· 

<P E N~[ a,b] n c[ n] [ a,b] (p = ~) 

Then, for 0 < h ~ 1 , 1 ~ p ~ ~ , we have 

w {<fl,h) < c by ' 
r P - r + n 

y 1 w (<fl,h) < c h 1n(h) , r = n 
r P 

where y = min(r,n) • 

, 

, 
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(ii) Let k satisfy B1 (Section 4.3), and define kt 

by (4.3.1). Then, for 0 < h < 1 , we have 

Proof. Throughout this proof C will denote a generic constant, 

which is independent of h • Unless otherwise stated p will 

lie in the range 

To obtain (i) let 0 < h ~ 1 ' and consider three cases. 

CASE I: n < r • Since cf> E N~( a,b) , it follows directly 

from Nikol'skii [42, p.l59) ' that 

w (cf>,h) < c hn 
r P 

CASE II: n> r • In this case~t follows, from (3.2.3), that 

and hence [32, Proposition 2.2) , 

(~ h) < •hr n~(r)up wr '~"' p ' U'~' D 

CASE III: n = r • In this case we can infer, via (3.2.1) and 

(3.2.3), that cf> E wlpnl[a,b], with 

[ nl = n - 1 = r - 1 (1) 

and hence [32, Proposition 2.2], there obtain~ 

wr(cf>,h)P < h[n] w (cf>[n] h) 
- 1 ' p 

(2) 

Now, it follows from (1) and the hypotheses of the lemma, that 

(l~p<co) 
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and 

cp[ n] E N~[ a,b] n d a, b) (p = co) ' 

and thus [ 42, p .159] 

w c~[n] h) < c h 
2 'I' ' p - 1 ~ p ~·co • 

Then [ 32, Proposition 5 • 2] , we may extend cp[ n] to a function 

Tcfl[n] such that 

and 

with 

and 

Tcfl( n] E L (lR ) 
p 

., 

Tcfl[ nJ E C(B) 

T_q,ln1 = q,l n1 

(l~p<co)' 

(p = co) 

on [ a,b] 
' 

(3) 

w (TJ nl h) < crh211J 111 II + w c~[ nl h) 1 (1 < < co ) 
2_ 'I' ' Lp (JR) - L 'I' p 2 'I' ' Pj - p , 

where the modulus of smoothness of Tcfl[n] is defined on the whole 

of JR in the usual way [ 32] • Thus we have, using (3), 

w (T) n] h) < c h 
2 'I' ' p - , 

from which it follows [68, p.107, 110], that 

(4) 

Now, since 

< w (TJ n1 h) 
- 1 'I' ' p ' 

(5) 
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it follows from (2), (4), and (5), that 

w (~,h) < hn 1n h1 
r P -

The required result (ii) then follows on collection of the 

results of the three cases I, II and III above. 

To prove (ii), note that 

sul? II !:J. rk jl [ ] 
0 <le:l~h e: t 'Ll 0,1 re: 

= max {o sup II l:J.:kt I~ [O 1] } 
-h <e:<O 1 ' re: · 

Consider the case 0 < e < h • Then 

=· I 
0 

t r 
= I I (-l)r-1 

t-1+re: 1=0 

1 I (-l)r-1 < f 
-1+re: 1=0 

1-re: I (-l)r-1 (~)k(t-s-1E),ds 
1=0 

(~k(u-1e:) I du 

(~k(u-1e: ) ldu , since t E ( 0,1] 

and similarly it may be shown that for -h < E < 0 , 

ll!:J.r k n 
II E tDL1[0,1] re: ' 

and the required result follows from (6), (7) and (8). 

In the next four lemmas, we investigate the integrability 

(6) 

(8) 

properties of some weakly singular functions defined over two-dimensional 

regions. These results are used extensively in Sections 5.4 and 5.5. 
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for o > 0 , 
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Let D be any compact subset of 

f lslo-2 ds < oo 

D 

and for i = 1,2, 

lR 2 • Then, 

Proof. Since D is compact, it must be closed and bounded. 

R be a disc, centred on the origin, with radius say, 

large enough to ensure that Then,transforming to polar 

coordinates, we have, 

< I lsl 0-
2 

ds = 2~ 
R 

~0 
= I r

o-1 
2~ dr < oo 

0 

ro 
f r

o-2 

0 

The second part of the lemma is proved similarly. 

rdr 

Let 

In Lemmas A7 to A9 we make use of the abbreviations introduced 

in Theorem 5.6. 

Lemma A7. For all t, z E 0 , and 0 < a < 1 , we have 

(i) 

(ii) 

(iii) 

and 

(iv) 
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with c1, c2, c3 and c4 independent of t and z • 

Proof. We give the proof of (i) only. The proofs of (ii), 

(iii) and (iv) are similar. 

We have, for all t,z E Q , 

< Jd It la-ld < Jd lxla-ldx < oo 2-s2 s2 -
0 -d 

and the result follows. 

Lemma AS. Let t, t', z E 0. 

Then, 

(i) , 

for any f3 satisfying o < f3 < a < 1 

d 
c2 lt-t'la (ii) f l~nlt 1 ,t2 ,z 1 ,s2 1 - ~nlti,ti,z 1 ,s2 1 lds2 

< -0 

for any f3 satisfying 0<{3<1, 

(iii) 
' 

for any f3 satisfying 0 < a < a < 1 

and 

1 
c4lt-t'la (iv) J l~nltl,t2,sl,z21 - ~nlti,t2,s 1 ,z2 llds 1 < -0 

for any a satisfying 0 < f3 < 1 , 

where cl' c2, c3 and c4 are independent of t,t' and z • 
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Proof. We give the proof of (i) only; (ii), (iii) and (iv) 

are proved in a similar way. The method used here follows Kantovovich and 

Akilov [ 33, p.363, Theorem 4] • 

We divide [ O,d] into two regions, [ O,d] 1 , and [ o,d] 2 

as follows. 

Then, noting that, for s2 E [ O,d] 1 , we have 

, 

it follows that 

, (1) 

id d 0 < 0 < a. ith C independent of t,t' prov e .., , w and 

z , where the final inequality follows from Lemma A7 • 
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Also, 

Now, for s 2 E(O,d] 2 , A in the straight line joining t and 

t' , we have, 

> l<t1,t2)- (z 1,s2>1 - l<t1,t2) - (A1,A2>1 

> l<t1,t2) - (z1 ,s2>1 - lt-t'l 

> ~ l<tl,t2)- (z1,s2>1 

and so it follows that 

, 

and raising this to the power of 1-6 , and substituting into 

(2), we have 

~ clt-t'la-I 
t f I la-B-1 f A1,A2,z

1
,s2 ds2 jdAI 

t' [O,dJ2 

< clt-t'la-1 t 
clt-t'la f jdAj = 

t' 

(2) 

(3) 
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The result then follows from (1) and (3) 

Lemma A9. Let 0 = ( 0 , 1) X ( 0 , d) , t't f E n 0 < ~ < 1 
~' ' ~ . 

Then 

(i) 

and 

with c
1 

c2 independent of t and t' • 

Proof. Aga1n we confine ourselves to proving (i). 

The proof follows similar lines to Lemma AS • Divide 0 into two 

regions, 

(0) 1 = {s E 0 : lt-sl < 2lt-t' ll ' 
(0)2 = 

Then, 

= /_ I t 1 , t 2 ,s.1 ,s2 1a-21 t 1 , t 2 ,s1 ,s21 ds + /_ I ti, tz,sl's2 Ja-21 ti, tz,sl's2 1 ';is 
(O) 1 (0) 1 

< clt-t' I (l) 

with C independent of t and t' , using the definition of 

(0)
1 

and Lemma A6 to obtain the final inequality. 
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Also (similarly to Lemma AS), 

= 

t 
= c I 

t' 

t 
< c I ldAI = clt-t'l 
- t' 

where we have utilised Lemma A6 again, and the required result 

follows from (1) and (2). 

(2) 
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