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ABSTRACT

This thesis tackles some problems encountered in the numerical
solution of Fredholm integral equations of the second kind. We are
concerned specifically with the applicability and numerical performance
of algorithms for these equations, and are guided by the existence

of the following problems.

(i) Theoretically, the applicability of many algorithms
often depends on certain highly abstract assumptions being satisfied.

These assumptions are often difficult to verify in practice.

(i1) Error analyses for certain algorithms have tended to
assume that the given information and the solution are smooth, and
hence predict a higher order of convergence than that obtained in

practice (where there are usually singularities present).

In Chapter 2 we develop practical methods for deciding whether a

given integral operator is compact as an operator between certain

spaces of functions. This solves a problem of type (i), since
compactness is an abstract assumption used in the analysis of many
algorithms for integral equatioms. In Chapter 3 we look at a class

of weakly singular convolution type equations (typical of many that
arise in practice), and answer the question: What kind of singularities
arise in the solutions to such equations? In Chapter 4, the results

of Chapter 3 are used to give a realistic error analysis (i.e. one
which takes account of the singularities in kernel and solution ) for
Galerkin type methods for the class of equations introduced in Chapter 3,
hence solving a problem of type (ii) for that class. The results of
Chapters 3 and 4 concern only one dimensional integral equations. An

analysis of collocation methods for two dimensional equations is given
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in Chapter 5. Convergence rates are obtained for the cases of equations
with both smooth kernels and weakly singular kernels. The analysis

in the latter case depends on a characterisation of the properties

of the solution to a typical two dimensional weakly singular equation.
This characterisation is also given in Chapter 5. The methods

proposed in Chapter 5 are illustrated in Chapter 6 by the numerical

solution of a two dimensional equation arising in electrical engineering.



vii.
NOTATION

Throughout this thesis, N will denote the set of natural
numbers and No = NU{0}. C will denote a generic constant which
will be allowed to wvary from instance to instance. In proofs we shall
mention the variables which C 1is independent of only when it is
necessary to do so. The distributional derivative of a function
¢ will be denoted by D¢ or o' . If ¢ depends on more
than one variable, we shall write Dt¢ for the distributional
derivative of ¢ with respect to the variable t . The notation
for higher order derivatives is explained on p.lll. Unless otherwise
stated £ will be a domain (i.e. an open connected set) which is

bounded in R™® R and € will denote its closure.

In each of Chapters 1, 2, and 6 the equations are numbered
consecutively within that chapter, so that, for example, they run
from (2.1) to (2.21) in Chapter 2. In Chapters 3, 4, and 5 the
equations are numbered consecutively within each section, so thaE, for

example, the equation numbered (5.2.3) is the third equation in

Section 2 of Chapter 5.

Function Spaces and Classes
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CHAPTER 1.

INTRODUCTION

This thesis tackles some problems encountered in the numerical
solution of Fredholm integral equations of the second kind. All the
integral equations which we shall consider here will be of the general

form
y(t) = £(t) + A.[_ k(t,s) y(s)ds , t€Q, 1.1)
Q

where Q SIGP (n=1o0r 2) is a domain (i.e. an open connected

set) which is bounded, and §  denotes its closure. The kernel k ,

and the inhomogeneous term f, will be given functions on X Q

and § respectively, A will be a given scalar, and our task will

be to determine, by numerical approximation, the unknown solution vy .

We abbreviate (1.1), using operator notation, by

ans

y = £ 4+ XKy}, (1.2)

where K is the integral operator given by

Ky(t) = [ k(t,s) y(s)ds , t€Q. (1.3)
Q

The main body of the work in this thesis is split into five
chapters - Chapters 2 to 6 inclusive. Chapters 2 and 3 consist of
some new developments in the theoretical analysis of (1.1). In
Chapters 4 and 5 we then use .this theoretical analysis to construct
and analyse the convergence of variousnumerical methods for solving
(1.1). In Chapter 6, we illustrate the uses of our theoretical and
numerical analysis with the numerical solution of an equation of the

form (1.1) which arises in electrical engineering. At the end of

the thesis there is an Appendix, in which we give the proofs of some
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of the more technical results appearing in Chapters 2 to 6. The

review [27] is submitted as supporting work.

Both the theoretical analysis of Chapters 2 and 3, and the
numerical analysis of Chapters 4 and 5, will te applicable to a wide
class of integral equations which arise in practice. In order to
demonstrate our practical motivation, let us first look briefly at a
few examples of integral equations of the form (1.1) which arise in

applications.

Example 1 [34]. The equation

b
y&) = £(&) + A [ |e-s|*! y(s)ds, t €la,bl , (1.4)
a

where £ is a function on [a,bl, and A is a scalar, is the
Kirkwood-Riseman equation, which arises in certain problems of polymer

physics.

Example 2 [27] . The two dimensional integral equation

y(tst,) = Co + X I?z‘ In(](t),t))=(s58,)) Dy(s;8,)ds ds,, (£,t,) €, (1.5)

where § is a simply~-connected closed plane region, C0 and A

are scalars, and [(xl,xz)l = /xi + xg , for (xl,xz) eEq,

arises in the mathematical formulation of the problem of determining

the skin effect produced when an altermating current flows in a conducting

bar of cross section Q .

Example 3 [4] . Atkinson considers the Dirichlet problem

€D

bu(r) - (D) u@x) = O , :

u(r)

tH

f(f) ’ r€r ,

-~
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where D is a plane region with boundary ' , D and T satisfy
suitable topological and regularity requirements, and P(rz) >0,
where rzt = x2 + y2 R for each r = (x,y) €D . Atkinson shows
that this problem may be solved by a technique involving the numerical

solution of

A

() = - :,1; £(t) —:,l-r- | ®(t,s) u(s)ds, 0 <t<A<o (1.6)
0
with
k(t,s) = kl(t,s) 1n|£(t) - E(S)I + kz(t,s)

where kl is continuous, k2 is bounded and continuous except
for s=t, and the parametrisation r(t) is chosen so that,
as t runs from O to A, r(t) travels around the

boundary I’ of D.

The three equations (1.4), (1.5) and (1.6) are all of the
form (1.1). In each case the kernel function contains at least one
term which has a "weakly singular" factor, i.e., as is the case in
(1.4) and (1.5), a factor of the form ¥(|t-s]) , or, as is the
case in (1.6), a factor of the form w(lr(t) - r(s)l) R where,
in all three cases, ¢ 1is a scalar-valued function which has an
infinite singularity at the origin, but is integrable over any finite
interval containing the origin. Such "weakly singular" kernels are

a common feature of many cases of (l1.1) which occur in applications.

We shall be concerned with the numerical solution of (1.1), and
we shall be especially interested in practical integral equations of
the type given in the three examples above. All of the numerical

methods which we shall consider can be grouped under the general
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heading of profection methods. Before we define these methods, we

usually make the assumption that (1.1), or equivalently (1.2),
has a unique solution y , 1in some Banach space B(—ﬁ) . say,

of functions defined on .

Then, for n € N, we seek an approximation Y:.'l to y

of the form

Here {ul,...,un} - B(R) is a set of linearly independent basis
functions, which are chosen for their suitability in approximating
the unknown solution 1y . To find the scalar coefficients

{al,...,an} , we demand that
y- = Pyl = P_(f + ARyD) (1.7)
n’n n n’ ? y

where Pn is a projection (i.e. a linear idempotent operator)

from B(—ﬁ) onto Un: = span{ul,uz,...,un} . The equation (]::5.7)
holds in the n-dimensim;al vector space Un ’ and hence is equivalent
toan n Xn linear system with solution set {al,...,an} .

This system may te solved on a computer.

Once y;[l has been found, we may also define another
I
approximation to y , which we denote by ¥y nI ’ via the

"natural iteration" :

II I

When P, is an orthogonal projection, yi and yI]iI

are usually called the Galerkin and iterated Galerkin solutions



respectively. When Pn is an interpolatory projection, yi

and yII

n are usually called the collocation and iterated collocation

solutions respectively.

General theories for projection methods are well documented,
and, in particular, the existence and rate of convergence of the first
approximation, yi » has been extensively studied [5], {71, [25],
(311, [35], [44], [59]. More recently, in the work of Sloan [63],
[57], [58] and [641, and Chandler [9], [10] and [11], a theory

for the second approximation, in, has also been developed.

The main thrust of the work of this thesis will be towards
developing analyses of the error committed when projection methods
are used to solve practical integral equations of the type described

in Examples 1, 2 and 3.

Most error analyses for projection methods assume that the
integral operator K , given by (1.3), is compact on the Banach
space B(Q) . Compactness is a property which, if possessed by
K, ensures that K has some "nice" properties. For example,
if K 1is compact on B(Q) R then the Fredholm altermative
[33, p.497] allows us to make deductions concerning the existence,
uniqueness, and properties of the solution y of (1.1). Moreover,
compactness features crucially in the proofs of the convergence of
any of the projection methods described above. However, compactness
is an abstract mathematical concept which is often very difficult for
the practical person to verify. Chapter 2 is devoted to the develop-
ment of sufficient .and also (in some cases) necessary conditions for

K to be compact as an operator from a certain Banach space to another.
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These conditions are designed to be simple enough as to be easily
verified practically and are particularly easy to apply to the

operators of the type contained in equations (1.4),(1.5) and (1.6).

Until relatively recently, error analyses of projection
methods for the solution of (1.1), although often allowing k to
be weakly singular, have tended to assume that y 1is smooth. In
practice, y is rarely smooth, and the assumption of a smooth y
has led to the prediction of theoretical orders of convergence that
are generally higher than those achieved when weakly singular equations
are solved in practice. The key to obtaining error analyses that
are accurate for the weakly singular case lies in the careful
characterisation of the true nature of the solution in such a case,
This characterisation is obtained for a class of weakly singular

equations in Chapter 3.

Then, in Chapter 4, we consider the numerical solution of the
class of equations analysed in Chapter 3. Using the analysis giyen
there, we derive order df convergence estimates for Galerkin and
iterated Galerkin methods, which take into account the natural
singularities which will be contained in the solution vy . The
numerical methods of Chapter 4 use a space of spline functions as

their underlying approximating subspace.

The results of Chapters 3 and 4 are valid only for one
dimensional integral equations defined over finite intervals. In
Chapter 5 we consider the case when (1.1) is defined over a closed
region Q R of two dimensional space. For this case, very little

information is known about the convergence of projection methods,

even when the kernel and solution are smooth.



In the first two sections of Chapter 5 we introduce and prove
the basic convergence properties of a class of collocation and
iterated collocation methods for the solution of the two dimensional
version of (1.1). This time, the underlying approximating space,
which we denote by U , is a certain space of piecewise constant
functions (i.e. splines of degree 0) defined on . (The use
of N instead of n here is merely a notational device to

distinguish between one and two dimensional analyses.)

In Section 5.3, order of convergence estimates for these
collocation methods are obtained for the case when the kernel and
solution are smooth. Section 5.5 is devoted to proving the
analogues of the results of Section 5.3 for a class of two dimensional
weakly singular equations. The analysis depends, as in the one
dimensional case, on an accurate characterisation of the smoothness
properties of the solution to a typical two dimensional weakly

singular equation. These properties are proved in Section 5.4.

In Chapter 6, we use the methods introduced in Chapter 5 to
solve the equation (1.5) numerically. The numerical results obtained
are used to check the accuracy of the order of convergence estimates

derived in Chapter 5.

Each of the chapters 2, 3, and 4 have an introduction in which
the leading literature on the problem to be considered is surveyed,
and the main results to be proved in that particular chapter are
stated. In Chapter 5 this function is performed by the first two
sections. It is worth pointing out at this stage, however, that one

of the main themes of the thesis, namely the characterisation of weakly
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singular behaviour in integral equations, and the construction of
numerical methods which are best geared to cope with that behaviour,
was also being investigated by several other authors while this work
was progressing. The most notable of these authors are Chandler [11],
[12] (see also Acknowledgements) and Schmeider [531,[541, [55]. A
complete survey of the recent explosion of work on weakly singular

equations is contained at relevant points in Chapters 3 and 4.

The applications review [27] is included as supporting work for
this thesis. As well as describing the physical theory behind
equation (1.5), it also describes an important class of second kind
Fredholm integral equations which arise in applications-namely those
which are reformulations of boundary value problems for differential
equations. Although such equations are usually not strxictly of the
form (1.1), they do have some of the characteristics of the equations
discussed in this thesis - e.g. they have weakly singular kernels.
Since [27] was written, work has progressed on the numerical solution
of boundary value problems using integral equation methods on a number
of fronts. Specifically, we mention the recent paper of Atkinson [6]
and the continuing interest in the Boundary Integral Method e.g.

151, [23]. A very useful review of integral equation methods for
boundary value problems which came to hand after [27] was written,

is contained in [14].
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CHAPTER 2,
THE COMPACTNESS OF INTEGRAL OPERATORS

INTRODUCTION

In this chapter we consider the linear integral operator K ,

defined by

Ky(t) = %k(t,s)y(s)ds . (2.1)

where § is a bounded domain in & , ! denotes its closure, and
k and y are real-valued or complex—valued functions defined on

QxQ and -9 respectively. Defining, for each t €Q , the

function k ¢ as

kt(s) = k(t,s) , s€Q ,

we can rewrite (1) more concisely as

Ky(t) = f_kt(s)y(s)ds .
[y}

We shall assume throughout the chapter that y and k for each

t H]

t€EQ, are Lebesgue measurable functions, so that (1) is well defined.

IA

®

We introduce the space Lp(ﬁ) , defined for 1< p
to be the space of all scalar valued measurable functions on Q  with

the property that

P 1/p
"¢Hp= = {f_]qb(s)] ds} <o l1<p<e ,
Q
"¢“m : = ess sup [¢C8)] < = p=® .
sef)

We note that Lp(_ﬁ-) is a Banach space under the norm “‘“P . Ve also

introduce C(R) , the space of scalar—valued functions, which are bounded
and uniformly continuous on . C(ﬁ) is a Banach space under the norm

||¢||m = sup [cb(s)l .
sefd
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Every function in C(®) wmay be uniquely extended to all of & ,
and we shall henceforth consider functions in C(ﬁ) to be defined

on § via this extension.

We shall refer to K as the integral operator induced by the
kernel k , and consider it as an operator from L () o C(D) s

or as an operator from c(® to C(®) R where 1<qg<» .,

We recall that a linear operator K 1is compact (or completely
continuous) if it is bounded, and if the image under K of any bounded

set has compact closure.

We will be concerned with the development of sufficient
conditions for the integral operator induced by k to be a compact
operator from Lq(ﬁ) to C(2) . Of course, if k does induce
such a compact operator for some q in the range 1< q<o™ ,

)

then for all «r in q<r<ee™, it follows from the inclusions

c@ CL.@ CL @

(which are valid because §! is compact), that k also induces
a compact operator from Lr(ﬁ) to C(R) , and from C(Q) to

C(ﬁb . The latter is often the most important case for applications.

This work is motivated by both abstract and practical

considerations.

The abstract study of compact operators has long been an
important part of functional analysis, these operators being in a sense
the natural extension of linear transformations in a finite-dimensional
space. Similarly, the well developed spectral theory for compact
operators can be seen as an elegant generalisation of the classical

eigenvalue theory for matrices.
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On the other hand, practical applications of this chapter arise
both within and outside the present thesis. In both Chapter 4,
and, more particularly, in Chapter 5, where we consider the solution of
equations of the form

y = f+ My , (2.2)

the compactness of K plays a vital role in the convergence theory
of numerical methods. In addition, the work of this chapter has
already found applications in a broader context, for the compactness
of K is found to be equivalent to two conditions on the kernel k
(see Theorem 2.1), and these conditions are an important ingredient in
the theory of a much wider range of numerical methods for (2.2) than those

considered in this thesis, see [60]1, [61], and [62].

From either the theoretieal or practical viewpoint, it is clear
that the easy recognition of compact operators is a useful goal, and

the purpose of this chapter is to make that recognition easier.

A convenient starting point is a necessary and sufficient condition
for compactness, contained in Theorem 2.1 below. The theorem is based
on results attributed to Radon [47]. (For a summary of Radon's results,
see [70, pp.90-91].) Related results are also given by Krasnosel'skii

et. al. [36].

Throughout this chapter, we use Jf as an abbreviation for the

integral

[ f(s)ds .
Q

Two numbers p,q which satisfy 1<p<o® and 1/p+1l/q=1
(implying that q also lies in the range 1< q <®) will be
referred to as confugate indices. In this definition we use the

convention

8l

=0 R

and this convention will also be used elsewhere in the thesis without

further comment.
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THEOREM 2.1 A NECESSARY AND SUFFICIENT CONDITION FOR COMPACTNESS.

Let p,q Dbe any pair of conjugate indices, 1<p<o>o Then
the integral operator K given by (1) is compact as an operator
from Lr(ﬁ) to C(Q) for all r in the range ¢ <r<w

if and only if k satisfies

sup e I < (2.3)
tefd P

and

]

s - e_
lim “kt kTﬂp 0, forall TEQ. (2.4)

©T

The theorem is proved in Section 2.1,

The two conditions in this theorem occupy a central place
in the work of this thesis. It is therefore convenient to introduce

the following definition.

DEFINITION. A kernel function k which satisfies both (2.3)

and (2.4) will be said to belong to the class M?(ﬁ) .

For the particular case p=1, Theorem 2.1 asserts that

the two conditions

sup [_ lk(t,s)|ds < =
Q

teQ

and
lim [ |k(t,s) - k(t,s)|ds =0 , TEQ,
t>rr Q

are necessary and sufficient for K to be a compact operator from
Lw(ﬁ) to C(Q) , and hence are sufficient for K to be a

compact operator from C(R) to C(Q) . These conditions, or similar
ones, are often cited in papers on the numerical solution of integral

equations (for examplé (441, [5, p.25]).
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It may be noticed, however, that verification of the conditions
(2.3) and (2.4) of Theorem 2.1 (and especially of the latter) is not
necessarily a trivial task, even if p =1, It is true that many
of the commonly occurring kernels are of so~called potential type
(see for example [36, p.l44]), for which the compactness question has
been well studied. However, more complicated kernels may present

problems. Consider, for example, the kernel given by
k(t,s) = cos(ts) |t - s|™% fa|t + 8] (1 - )77, (2.5)

with Q =[-1,1] C&, _In this case the verification of (2.3), for
appropriate values of p , is straightforward, but the direct

verification of (2.4) involves much tedious analysis.

The problem is further complicated if the underlying space is
of more than one dimension. Consider, for example, the difficulty

of analysing the two-dimensional analogue of (2.5),

k(t,s) = cos(tes) lt - s|™% 2allt + s] (1 - Is1®H) ™2 (2.6)

— 3
where t,s €QC &2 s t°s is the inner product of 't and s ,
1

and |-] denotes, say, the Euclidean norm in & .

It is clear from these examples that the practical value of
Theorem 2.1 depends on the development of useable tests for determining
when (2.3) and (2.4) are satisfied, i.e. for determining values of p

for which k € Mpfﬁ) .

The first such test, expressed in Theorem 2.2 below, is based on
the recognition that the kernels occurring in practice often consist,
as in (2.5) and (2.6) above, of the product of a finite number of more
or less simple factors. (They may also, of course, consist of a sum
of such products. However, the handling of sums is in practice trivial,

since the sum of two compact operators is compact.)
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The purpose of the theorem is to show that if k 1is a product

i i=1,...,m, and if each factor ki satisfies

the conditions (2.3) and (2.4) of Theorem 2.1, with p replaced by

of factors k

pi s then k itself also satisfies the conditions for a certain

value of p .

THEOREM 2.2 KERNEL FUNCTIONS OF PRODUCT TYPE.

Let k(t,s) = kP (t,s) kD (e,8)...k™(t,s), where kP € M @
i

1<i<m, with 1< 1 <w, and let the numbers Pys»e«sPy

B R e N YT
pl pz Pm P -

Then k € Mb(ﬁ) .

This theorem is proved in Section 2.2,

To make use of Theorem 2.2, one should be able to determine,

g
for each factor ki in the kernel, the values of Py for which

k'i € MP ® . Two special cases of importance are dealt with in
i

Theorem 2.3. Between them, they appear to cover the great majority

of cases likely to be encountered in practice.

The first part of Theorem 2.3 deals with the case of continuous

kernels, for which the result is especially simple.

THEOREM 2.3(i) CONTINUOUS KERNELS.

If k is continuouson R x§ , then k€ Mb(ﬁb for all »p

in the range 1<p<w .

(Note that it is not necessary to specify a norm on the space XZ?,
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because all norms on a finite-dimensional space are equivalent.)

The second part of Theorem 2.3 is designed to handle kernels
(or factors within a kernel) of the difference form k(t,s) = Y(s-t),
or other similar forms such as Y(s+t), or even just YP(s) .
More generally, we consider k(t,s) = P(s-g(t)) where g is
a continuous function from § to & . The set £* in the
theorem is simply the set of all values of the argument of Yy as s

and t range over § .

THEOREM 2.3(ii) DIFFERENCE-TYPE KERNELS.

Let the kernel function k be given by

k(t,s) = Y(s-g(t)), s,t€Q ,

. . = n
where g is a continuous function from to & . Moreover,

let ¢ € Lp(-S_Z-*) ~ for some p in the range 1< p <> , vhere

Q* = {s - g(t) : s,t €EQ} . Then k€ Mp(ﬁ) .

EXAMPLE. 1f Q=[-1,11 CR, and k(t,s) = |t - s|‘1/°‘

with l<a<eo | then the theorem can be applied with g(t) = t,

IIJ(x)=|x|'1/°l and Q¥ =[-2,21 . Since wELp(ﬁ*) if

l1<p<a , it follows that k€ Mp(ﬁ) for all p in the range

Theorems 2.3(i) and 2.3(ii) are proved in Section 2.3.

Taken together, Theorems 2.2 and 2.3 give a method for
determining, in most cases, whether a given kernel function satisfies
(2.3) and (2.4). 1If it does, then Theorem 2.1 gives a range of values

of r for which K is compact from Lr(ﬁ) to c(® .
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A bonus from Theorem 2.1 is that, since (2.3) and (2.4) are
both necessary and sufficient, their necessity can be used, in principle
and often also in practice, to determine the range of values of r for
which K is not compact. However, the remaining theorems, 2,2
and 2.3 express merely sufficient conditions, and so cannot be used to

prove non-compactness.

The following three sections are devoted to the proofs of the
theorems stated above. In the final section, Section 2.4, we discuss

an example to illustrate the way the results can be used in practice.

2.1, A NECESSARY AND SUFFICIENT CONDITION FOR COMPACTNESS.

The main result of this section is the proof of Theorem 2.1,
which is stated in the Introduction to the chapter. The proof follows
easily from three results, Theorems R1-R3 below, which are attributed

to Radon (as described in the Introduction).

THEOREM R1. Let p,q be conjugate indices, 1<p<e™, and let
K Dbe the integral operator defined by (2.1). Then K operates

from Lq(ﬁ) to C(Q) if and only if

(1) sup “k |l <= ,
tefd t'p
and

(ii) for all measurable subsets D of f and for any

TEQ, we have

lim [ k. (s)ds = / k. (s)ds .
t>T D D

PROOF. Suppose K operates from Lq(ﬁ) to C() , with

Ky(t) = [ k. (s)y(s)ds = J ky, vE Lq('s'i) R
Q
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for some q in the range 1< q < . We first prove (ii).

Suppose D is a measurable subset of Q . and let Xp denote

the characteristic function on §! of the set D . Now Xp € Lq(—ﬁ) s
since f is compact and hence has finite measure, and it follows
from the assumption that K ¥, €Ec(® . Since

K xD(t) = I{kt(s)ds R

(ii) then follows.

To prove (i), we.first observe from the assumption that kty
is integrable for all t€Q and all y€ Lq(ﬁ) , from which it
follows that kty € Ll(ﬁ) . Hence we can assert that kt € Lp(ﬁ) -
for 1< q<o a proof is indicated in [30, p.232, (15.14) ()] ,
and for q=1 in[30, p.348]. TFor q=o the result follows

easily by considering Kz , where 2z 1is the function on

which is identically 1 .,

ng

Now for each t €Q define <I>t on Lq(ﬁ) by

t
e (y) = fkty . 2.7)

It is clear from Holder's inequality that <I>t is a continuous

linear functional on Lq(ﬁ) ’ and that

ol < Il .

We now demonstrate, using standard methods, that in fact

le | = Mx 0, - (2.8)

Consider first p in the range 1 <p <« ., If “kt“p =0,

then (2.8) follows trivially. If “kt“p >0, let
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y = Iktlp-l -s_g-ﬁ(kt)/”kt”g/q , where sgn(w) is zero if w is

zero and is w/ !wl if w 1is non-zero. It then follows that
yEL,® ,llyll, =1, and
o, = Il

from which (2.8) follows. For p =®, either Il kt'“oo =0, in
which case (2.8) is trivially satisfied, or "kt“w >0 . In the
latter case, let € >0 and E= {se Q: Ikt(s)l >”kt”°° -} .
It is clear that 0 < u(g) < u@ < o , where for any measurable
set A, the measure u(A) is given by

u@) = f Xy -
If we define y by

y = o Xz sen (k)

w® e e

then it follows that ”y"1 =1, and that
1
I@t(Y)I = -ﬁ-(-E—)- IE lkt(s)lds 2 ”kt” 0 - € .
Since this is true for arbitrary € >0 , (2.8) is satisfied.

Now since K operates into C(ﬁ) and since  is

compact, it follows that, for all vy € Lq(ﬁ) .

sup | ()| < N
tell t vy’

where Ny is a positive number which may depend on vy . It follows
by the principle of uniform boundedness [50, p.103], applied to the
Banach space Lq(ﬁ) , that

sup ||<I>tﬂ <o ,
tefd

Then, on using (2.8), (i) follows.
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Conversely, let conditions (i) and (ii) hold. TFirst we consider
P in the range 1<p<>, so that q 1lies in the range
1<q<e ., Let y€ Lq(fz-) », and let € >0 . Since the simple
(step) functions are dense in Lq(ﬁ) , there exists a simple function

g such that

Iy - gllq <e . (2.9)

Now fix T din Q. From the triangle inequality and

Holder's inequality it follows that for all t€Q
IRy (£) - Ky(T)]| < |Ky(t) - Rg(t)| + |Rg(t) - Rg(T)| + [Rg(T) - Ky(T)|

< / |kt(Y'g)| + |Rg(t) - Kg()| + | lk’t(g-y)l
< Iy Iy-gl | + ke®) - ke + [ ] Tevl (2.10)

Now since g - 1is a simple function, it follows from (ii) that there
exists & > 0 such that, for all t€Q satisfying |t -71| <6,

we have

|Rg(t) - Rg(D)| < ,
and hence from (2.9) and (2.10),

|Ry(£) - Ry(t)| < (2 sup [k 1 _+ D)e
- teQ tp

This implies, with the aid of (i), that Ky € C(®) as required.

For the case p=1, refer to [ 21, p.291} . From this source

it follows that if k satisfies conditions (i) and (ii), then kt

converges weakly (in the sense of Dunford and Schwartz [ 21, p.67]
to k‘r in Ll(ﬁ) as t-+T , forall TEQ . Hence by
the known results on the representation of linear functionals on

L, (2 [50, p.136], it then follows that, for all y € L (@) and

for all T€EQ,
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lim fky==fky .
T t !

Thus, since Ky(t) = f kty s 1t follows that Ky € c@® . This

completes the proof of Theorem Rl.

THEOREM R2. Let K ©be the integral operator defimed by (2.1),
and let q 1lie in the range 1<q<>™, If K operates

from Lq(-fz-) to () , then K 1is bounded.

PROOF. The proof follows immediately from Theorem R1l, with the aid

of Holder's inequality. Let y € Lq(ﬁ) with ”y"q <1,

and consider the uniform norm of Ky din C(R) . Then

”Ky" sup I f_ kt(S) y(s) dsl

tefd Q

IA

sup |lk [|_llyll < supllx || <N
teQq TP AT g tP ’

where N is some positive number independent of y . So K 1is

bounded with |[|K|| < N .

THEOREM R3. Let p,q Dbe conjugate indices, 1<p<e>,
and let K ©be the integral operator defined by (2.1). Suppose K
operates from Lq(ﬁ) to C®) . Then K is compact if and only
if,

lim [k, ~ k[ =0, for all TE€Q .

t>T P

PROOF. Suppose K is compact as an operator from Lq(ﬁ) to

c(R) for some ¢q in the range 1 < q <« . Then conditions (i) and

(ii) of Theorem Rl hold for the kernel k .
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For t€Q, 1let <I>t denote the linear functiomal on
quﬁ) defined by (2.7). Then by an argument similar to that used in
proving (2.8), it follows that for all ¢t,TE€QR , @t - (P,[ is also

a linear functional on Lq(ﬁ) R and satisfies
fe, ~ o] =[x, - kTﬂp . (2.11)

But we also have, by definition,

le, - o) =sup | [ (, -%x)y]l = swp [ky(D) - Ky(D] , (2.12)

€B €B
7% Y%

where Bq denotes the closed unit ball in Lq(ﬁ) .

Since K is compact, the Ascoli-Arzela theorem [21, p.266]

implies that the set K Bq must be equicontinuous, hence it follows
from (2.12) that

1im Jo,_ -3 f =0 for all T E€Q .
t*? “ t T“ ’ or a

Hence, using (2.11), it follows that

1im “kt—k,tnp=0 s for all T E€Q
T

>

as required.

Conversely, suppose

Um k- k], =0 forall TER .
T

This implies that the mapping t - kt which, by Theorem Rl, maps Q
into Lp(ﬁ) s is continuous. Hence, since t > kt is a continuous
mapping from a compact metric space to another metric space, it follows

(see, for example [21, p.24]) that this mapping is also umiformly

continuous.
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To prove that K 1is compact, we must show that the closure
of KBq is compact as a subset of C(ﬁ) . We do this by showing
that KBq is bounded and equicontinuous, and evoking the Ascoli-Arzela
theorem, It follows easily from Holder's inequality that, for all

t, TEQ and all yEBq, we have

Ky (t) - Ry(T)] < "kt - kT“p . (2.13)

Now fix € >0 ., The uniform continuity of the mapping

t > kt then implies the existence of & > 0 with the property that

“kt - k‘t“p <€,

for all t, T in § satisfying |t - TI <8 . Thus it follows

from (13) that

lky(t) - xy(m)l <€, (2.14)

for all t, T in  satisfying ‘|t -1 <686 , andall y€ Bq .

Hence KBq is an equicontinuous subset of c® . Also, Theorem
R2 implies that K  isybounded, so KBq is also a bounded set.
The Ascoli-Arzela theorem then implies that the closure of KBq is

compact, and this completes the proof of the compactness of K .

We now prove the main result of this section.

PROOF OF THEOREM 2.1. Suppose K 1is compact as an operator from
Lr(ﬁ) to C(Q) for all r in the ramge ¢ <r<ew ., Then,

using the specific case of r =q , we have, by Theorem Rl

18::1;5 "kt“p <=

and, by Theorem R3,
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lim k-] =0, for all TEN.
P
k satisfies conditions (2.3) and (2.4).

Conversely, suppose k € Mp(ﬁ) H that is, k satisfies

(2.3) and (2.4). Let D Dbe any measurable subset of £ , and

let

TEQR . Then

U]’)kt(s)ds - {) k _(s)ds| < {) [k (s) - K _(s)[ds < %[kt(s)-k_l_(s)[ds

<feg - kel @@YE20 as ear o,

since k € Mp(_ﬁ) .

Then we deduce from Theorems Rl and R2 that K is a bounded

operator from Lq(ﬁ) to C() , and in turn, from Theorem R3,

that

If

K is compact as an operator from Lq(ﬁ) to c@ .

r is any number in the range q <r <>, it then follows

trivially, as discussed in the Introduction, that K is compact

as an operator from Lr(ﬁ) to c@®@) . Thus the proof of Theorem

2.1 is complete.

2.2 KERNEL FUNCTIONS OF PRODUCT TYPE.

The main result of this section is Theorem 2.2, which is stated

in the Introduction. The proof follows easily once some preliminary

results have been established. We will require the following simple

consequence of the HOlder inequality, stated without proof.

PROPOSITION. Suppose p, Pys Py satisfy

1_<_p5co,15p1<oo,15p25w, and 1/p1+1/p2=1/p. (2.15)
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Moreover, suppose X 1is any measure space and let f € Lp x) ,
1
g€L (X)) . Them fg€L (X) and
P, P

el < 12l bel,,

Then we have the

Lemma Suppose k(t,s) = k(l)(t,s) k(z)(t,s) , for all
(t,s) €EQ xQ, and let p, Py Py be numbers satisfying (2.15),

such that k(l) € Mp ) and k(z) € Mp o . Then it follows
1 . 2

that k € Mp(ﬁ) .

Proof. Suppose the hypotheses are satisfied, and let ¢t € Q.

Then

(1 (2
P, = TP 62

tA

(1) (2)
D N ] I

which implies

A
8

sup “kt“p

tef

(1)
k
tet I llp1

(2)
sup (k < ’
tefd “ t HPZ
and therefore (2.3) is established.

Next, let t, TEQ , and consider

= h(D (2 (1 . (2)
Ilkt-k‘[‘"p - “kt ke "= kT ke “p

- D @ D@ L (O,@ @)

t T t T P

IA

(1) . (2)_, (2) (1) (1, (2
“kt (kt “kp )“p + “(kt =k )k'r “p
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(1) (2) (2) (1) (1) (2)
f “kt Ilpl “kt - k'[‘ “pz + "kt - k"[ “pl “k"[ “pz

-+ 0, as t>T1T .

Thus (2.4) is satisfied and k € Mp(ﬁ) .

PROOF OF THEOREM 2.2. The theorem follows easily from the Lemma
by induction on m , where m 1is the number of factors in the

product.

2.3 TWO IMPORTANT SPECIAL CASES.

This section is devoted to the procf of Theorems 2.3 (i)
and (2.3) (ii), stated in the Introduction. The first is the simpler
result and is already known [22, p.657], but a proof is included for

completeness.

PROOF OF THEOREM 2.3(1) . Since  is compact, & X is compact
and k , since it is continuous on § X § s must also be bounded
there. Thus, by a trivial argument, we have, for any p 1in the
range 1<pg=> ,

k <
sup Ix.l,

Also, the function (t,s) - k(t,s) is continuous, and hence
uniformly continuous on ax0 with the uniform topology. Thus,
choosing e>0, we can finda § >0 such that

|x(t,s) - k(1,8)| < ,

for all s€Q, andall ¢t,TEQR satisfying

lt -1] <6 .
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It follows easily from this that, for any p in the range

1 S P f ©

ggukt-ktup = 0 , for all TEQ,

and the theorem is proved.

%
PROOF OF THEOREM 2.3(ii) Let “ “p denote the p norm in the

space Lp(ﬁ*) . and for all t €8 1let lpt(s) P(s - g(t)) .

It then follows that

“kt“p

]
===
<
t
—
-]

IA

]|1b]|:<oo, forall t€9q,

where the first inequality is achieved merely by extending the domain

of integration from § to R* . Thus (2.3) follows.

To prove (2.4), let € >0 be given. Since 1< p<®

and since Y € Lp(ﬁ*) , it follows [50, p.71] that there exists
F € C(@*) such that

v - Fll: <e/3. (2.16)

For all t€9Q let Ft(s) = F(s - g(t)) . Then, fixing TEQ ,
we can write, for all t€Q ,
Hkt - k‘l’“p = Hwt - w’[ﬂp

=||lbt—Ft+Ft—FT+FT-¢THp

IA

fv, - Ft“p + |7, - F,t“p + fr. - Tﬂp . (21D
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Now, for any t € we have

1/p
19 - 7l = {1 19Ge - () - ¥Ga - 502> |Pas)

A

1/p
{ f?z_*lw(x) - F(x)lpdx}

“w-F“; <el3, (2.18)

by (2.16) .

Also, o* is compact, since it is the image of the compact

set §£ X under the continuous mapping (s,t) > s - g(t) ,

and it follows that F , being continuous on §F , must also be

uniformly continuous there. Hence we can find § > 0 such that

|F(s - g(t)) - (s - g()] < e/3@ P, (2.19)
for all s €Q and all t €Q satisfying

lg(t) - g(n)] < 8 .

By the continuity of g we can find &' >0 such that (2.19)

holds for all s€§ and all t €0 satisfying

[t - 1] <6".
Thus, if |t -t| <8 , we have

1/p
|7, - FT"p = { [ﬁ |F(s - g(t)) - F(s - g(T))lpds}

_ 1/p
< (/3@ /P { [ ds} = €/3 . (2.20)
Q

Using (2.18) and (2.20) in (2.17), it follows that

“kt - kr“p <e/3+¢e/3+€/3=¢,
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for all t€Q satisfying

It-Tl<6' .

Since € was chosen arbitrarily, (2.4) follows, and the theorem

is proved.

2.4 A PRACTICAL ILLUSTRATION.

We now show how to apply Theorems 2.1 - 2.3 to find a range’
of values of p for which the induced operator of the kernmel

function

k(t,s) = cos(ts) |t ~ sl_l'; tnlt +s] (1 - sz)-';5

is compact as an operator from Lp(-f_i) to C(R), where

s_i =[—]-’]-] SB'

We adopt the following notation:

P (e, = costre) ,

kP (e,0) = |t—s|_l‘ ,
kK (e,8) = 2 lt +s] ,
e, = a-86H" .

Our first step is to investigate the ranges of p for which
each of the above functions is in Mp(ﬁ) . To do this we use the

following easily verified facts:

Let 0<b <o , Then,

(F1)  If P = x /¢

then ¢y € Lp{O,b] for all p in the range 1 <p<a .

on the interval (0,b), where 1< g <o

t4
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(F2) If ¥(x) =2%n |x| on the interval (0,b) , then

p € Lp[O,b] for all p in the range 1< p< .

Now, with the aid of these facts, we apply the results of
Theorem 2.3.
(1) k(l) is continuous on & % & and thus, by Theorem 2.3(i),

D e Mp(ﬁ) s forall p in the range 1< p<<>.,

@ kP(t,) =¥(s-g(0)) vhere gt) =t and Y = |x7F,
and employing (F1) and Theorem 2.3(ii) we can infer that K(z) € Mp(g)

for all p in the range 1< p< 4 .

@ (e,s) =¥(s - g(t))  where g(t) = -t and V(x) = in x| .
Using (F2) and Theorem 2.3 (ii), it follows that k(3) € Mp(ﬁ)

for 1< p<=> .,

(4) k(4) (t,8) = P(s - g(t)) where g(t) =0 and Px) = (l—xz)_;i .
It is easy to verify that ¢ € Lp(ﬁ*) for p in the range
1<p<2, which in turn implies that k(4) € Mp(ﬁ) for p in

1<p<2. (Note that in this case { = ﬁ*.)

The next step is to collect results (1), (2), (3) and (4)

above, and use Theorem 2.2 to infer that k&€ Mp(ﬁ) where P is

any number strictly less than the number P given by

+ =+

8lr
N

|
8|~

+
£ -

1 _
P

]
»lw
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So k€ Mp(ﬁ) for any p in the range

4
1 <p <'§ .

The final step is to employ Theorem 2.1 to, assert (because

the conjugate index of 4/3 is 4) that K is compact from erﬁ)

to C(Q) (and hence also from C() to c(@) , where r is

any number in the range

h<r<w (2.21)

In this particular example we can also use Theorem 2.1
directly to show that K is not compact from Lr(ﬁ) to c@®
if r is any number outside the range (2.21). To see this, let

t=1 and consider

1 x 2 4
k[P = Jecos(s)(1 - 8)™ ™~ 2n(1 + 8)(1 - &%) 7| p ds
1lp 2
- cos(s) n(1 + s) P ds
o lat- 934+ 912

which is clearly infinite if p > 4/3 . So k€& Mb(ﬁ) if

P>4/3, and Theorem 2.1 implies that K is not compact from

chﬁ) to C(R) for any r outside the range (2.21).
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CHAPTER 3

SINGULARITY EXPANSIONS FOR THE SOLUTIONS

OF WEAKLY SINGULAR EQUATIONS

3.1 INTRODUCTION

In this chapter we will be concerned with integral equations

of the form

b
y(t) = £(t) + A ja k(t-s)y(s)ds, t €[a,b], (3.1.1)

where -~ < a<b<w, and A€EL . The kernel, k, and the
inhomogeneous term, f are given real or complex-valued functions
on [a-b, b~al] and [a,b]l Trespectively, and y 1is the solution

to be determined.

Throughout the chapter, we shall abbreviate (3.1.1) by

where KX = )K, and K denotes the linear integral operator
given by:

b
Ky(t) = [ k(t-s)y(s)ds , t €[a,b] . (3.1.2)
a

It is obvious that, if a solution y of (3.1.1) exists
(and conditions sufficient to ensure this will be assumed), then
y will inherit its properties from the given information k, £,
and A . However, the more intimate connections between the given

information and the induced solution are not yet fully understood.

It is the aim of this chapter to investigate these connections,

with emphasis, in particular, on the case when k is weakly singular.
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This case is exemplified by the prototype equations,

b
g(t) = £(t) + A [ |t-s]* L y(s)ds , tE€lapl, 0<a<1, (3.1.3)
a
and
b
y(t) = £(t) + A [ 2n|t-s| y(s)ds, t €[a,b] . (3.1.4)
a

Equations of this form often arise in practical applications.
For examples, see [27], [54], [55], and the references given

there.

Before we can state the main results of the chapter, some

explanation of notation is necessary.

For any interval [a,bl , and any ¢ € L,la,b] , we

define the indefinite integral
t
H%M¢u)= £¢&Mx, t €[a,b] , (3.1.5)

and abbreviate this by I$(t) when the interval [a,bl

is unambiguous.

We introduce the class of Sobolev spaces nga,b] R
which are defined for m € N 0° and 1< p<ew by

> a,bl = {¢ Lp[a,b]: ¢ Lp[a,b], i=0,...,m}, (3.1.6)
where the derivatives of ¢ are calculated in the domain (a,b).
For any m € N 0°

m
(1)

¢ = ) fo] .
ol = 1L

Note that WI;[a,b] - o1 [a,b], mnEN .

W: [a,b] is a Banach space under the norm
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The main result of the chapter (Theorem 3,9 of Section 3.3)
will show that, if f € W;[a,b] for some r € N,, andif &k
is weakly singular (a notion we shall make precise below), then the
solution y of (3.1.1) may be expanded as a linear combination of

(known) singular terms plus a smoother (unknown) remainder function.

We shall refer to expansions of this type as "Singularity Expansions”.

To be more explicit, Theorem3.9 will show that, if

f € W’i‘[a,b] , for some r € N , then forany m EN_., we

0
have
y=f 1
4
m n-1 .
) IjKi(DK;)J-r Klf(r) (a)
j=r =0
b (3.1.7)
73 nil et o 1 « (b)
+
i=1 j=1 2=0  * R -1
+ ¢ )

w1 ~
where ¢EW1 [a,b] , I_I[a,b] s

k, 4(8) = e, ;k(t-a) - d;_gk(t-b), t €la,bl , i=1,...,m, j=i,...,m,

3

and the constants and positive integer n will be

cj_ i’d §-i
identified in terms of known quantities in Section 3.3. The value

of n will depend on the strength of the singularity in k .

The expansion (3.1.7) is written for general r € 1\10 R and m€ NO s
with the convention that, when ¥ > m , (3.1.7) (a) is void and when

m=0, (3.1.7)(b) is void.

*
Note that £ € Wi[a,b] implies that f € W{ [a,b]l , for any

r'<r, and so the dominant singularities in y may often be
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written in terms of known functions in more than one way. However,
if we choose r to be the largest possible integer such that

f € Wllr [a,b] , then we shall minimise the number of functions in
(3.1.7) (a), and the singularity expansion (3.1.7) will be in its

simplest possible form.

In particular, if r > m, the summation (3.1.7)(a)
gives no contribution at all and (3.1.7) takes a much simpler form,
all the singular terms in this case being induced by the kernel k ,

and contained in the summation (3.1.7)(b) .

On the other hand, if we take the trivial case m=0,
then (3.1.7)(b) gives no contribution at all, and (3.1.7)(a) only

gives a contribution if r =0 .

As an example, consider the case of (3.1.1) with

[a,b] =[0,1] , )
k) = |x| 72 x € [-1,1]
’ i’ (3.1.8)
and
() = e, t €lo,1] .
In this example, f is infinitely continuously
differentiable on [0,1], and so, for any m € Ny, we can
always find r with r>m, and £ € W’{[a,b] . The
summation (3.1.7)(a) can thus be neglected in this case. Also,
we shall show in Section 3.3 that, for this kernel, n=2,
Hence, for any m € No » ¥ has the singularity expansion
Bom ol e 24-1
y=£f+] 1 ] TIRI(DK)) kg 4 (3.1.9)

i=1 j=1i 2=0
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where
I=T0,11 °
_ -3 e\ e
ky g(®) =c, 67 -d (A1) %, ¢ fo,1] ,
for some constants c, = and d and

3-1 31

o € WTH [a,b] .

If we choose m=20 the summation in (3.1.9) gives no coantribution,

and we merely have

y=£f+¢,

where ¢ € Wi[a,b] .

The practical value of the expression (3.1.7) clearly hinges on
whether its terms (which are all obtained as the images of known
functions under various combinations of the operators K, I and D)
can be evaluated explicitly. Illustrations of practical methods for
calculating these singular terms for given k and f are given
in Section 3.4. In most cases these terms are integrals which,
although they do not have a closed form, may be expanded explicitly

in terms of known singular terms using fairly simple techniques.

In particular, the singularity expansion (3.1.9) for example

(3.1.8) will be shown to have the specific form

m~1 m-1
y(t) = et + { D) 1::](2111:)1(1:!'5 + tint)
i=0 j=1i
m—-1 m-1 j i ;i
+ I ) -l @n(-t)) T ((1-e) A (1-t)2,n(1-t))}
i=0 j=i

+ ¢(v)., t€lo,1], (3.1.10)
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where ¢ EEWT+1[0,1] , and {a(t) + b(t) +...+ z(t)} denotes

a linear combination of the functions a(t), b(t),..., and z(t) .

In order to complete this programme, the necessary theoretical

details are first proved in Section 3.2.

There has been interest in equations of the form (3.1.1) for
quite some time. For example, in [39] , an asymptotic expansion for

the solution of (3.1.4) was obtained.

Singularity expansions of the type described in this chapter
were first introduced by Richter [ 49] . Richter's technique, based
on the smoothing properties of K , was shown to be valid in the
particular cases of (3.1.4) and (3.1.3) G<a<l, given

sufficient differentiability of £ .

The results given here allow us to obtain singularity
expansions of arbitrary length for the solution of (3.1.1) when k
is any weakly singular kernel, and allow f to be (in the worst
case) merely an L1[a,b] function, and so encompass the results

of Richter as a special case.

Related regularity results are contained in the recent work
of Chandler [11], [12], and Schneider [54]. Both these authors
obtain results about the general smoothness properties of the
generalisation of (3.1.1) obtained by replacing k(t-s) by
k(t-s)m(t,s) where k is weakly singular and m smooth.
The results given here, which lead to singularity expansioms, are
dependent on the explicit difference-type kernel, and extemsions to
more general kernels do not appear to follow easily. Here we present

much more detailed information for the less general case.
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Results of the type given here have important numerical
consequences. Until relatively recently, error analyses for numerical
methods for solving (3.1.1) have tended to assume that the solution
is smooth, and hence are somewhat inapplicable to practical situations.
Knowledge of the smoothness of the solution will enable accurate and
practical error predictions. It will often be the case that
convergence rates for existing methods will be considerably slower
for a non smooth solution, than for a smooth solution. However,

a judicious modification of existing methods to take account of
singular behaviour in the solution will speed convergence considerably.
Explicit knowledge of singularities will obviously be an important

pre-requisite for the optimal modification of methods.

In Chapter 4, we shall use the results given to analyse the
convergence of the Galerkin and iterated Galerkin methods for weakly
singular equationms. We shall also show how to obtain better
convergence rates by taking into account the (now known) singularity

of the solution.

Similar programmes for the product integration method have
been carried out by Chandler [11], [12] and Schneider [55]. From
an application point of view, the success of such an approach had

been demonstrated previously by Noble [43].

Finally, we note the work of Sloan [60] and Mayers [40],
where it is pointed out that misleadingly high convergence rates have
often been attained for the numerical solution of (3.1.1) by using
as a test example, a special case in which the solution is contriveq

to be smooth. Now that it is known what the singularities in the
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solution of (3.1.1) are in general, realistic testing of numerical

methods in the manner suggested by Sloan should follow.

3.2. THEORETICAL BASIS

In this section we develop some theoretical results concerning
the properties of the integral operator K given by (3.1.2), when

the kernel k is weakly singular.

The correct choice of function space setting is crucial to the
theory, and we shall see that, for the prototype equations (3.1.3)
and (3.1.4), the usual Lp setting is somewhat inappropriate. This
is because, when £ is sufficiently smooth, the solutions of
(3.1.3) and (3.1.4) have first derivatives which behave, respectively,
like (t - a)m“1 and n(t - a) near t=a, and have
equivalent singularities near t =D . Now, when O <o <1,
the function (t - a)m_1 certainly belongs to the space Lp[a,b]

for any p in the range 1 < p < T%E », and 2n(t - a) is in

the space Lp[a,b] for any p in the range 1< p <> ,

However, since these functions are also smooth(except at one point),

it is inappropriate to cast them in some Lp[a,bl s since such a
space also contains many non-smooth functions. A more appropriate
setting is provided by spaces of functions with fractional derivatives.
A setting of this nature has been suggested, in slightly different
ways, in each of [11], [49] and [54], and we adopt here the setting

suggested by Chandler, [11].

We introduce the following notation.
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For any o > 0, let a and % denote numbers such

that

[a]ENO, 0<a <1,

and (3.2.1)

a= [a + Gy

Note that [a] denotes the largest integer less than o , and not

the integer part of 0. For h€R, and any function

$ : R+, let Ah denote the usual forward difference operator:

A, #(t) = ¢(t + h) - o(t) .

Then the Nikol'skii space Ng(]R) » defined for 1 <p <>,

by
[o]
. jare “LP(JR)
Np(]R) = {q) ELp(lR) : |¢|a,p,]R= lsl;.zg T < oo} s
|n]
is a Banach space under the norm
1
[to,om = 1ok o * 1l 5,2

a
For any interval [a,b]l, the space N_[a,b] is defined by

[a]
Np[a’b] = {¢ ELp[a,b]: |¢|0L,p,[a,b]: = ]E:‘;;lg ——'_a‘a—’ < m} N
|n]
where, for any € €R ,
[a,b], = {t €la,b]l: t + € € [a,b]} , (3.2.2)

and is a Banach space under the norm
Il¢||oc,p,[a,b] - “¢“LP[a,b] * |¢|OL,P,[3,b] '

We abbreviate these norms by 1 when no confusion

’
can occur.
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Remark. This is the definition of Ng[a,b] which is given by
Nikol'skii [42, p.160]. The device (3.2.2) ensures that the norm is

Lol 4o well definmed.

taken over an interval for which Aﬁ ¢
Equivalent definitions of Ng[a,b] which employ some variant of
(3.2.2) are given in [42]. One of these equivalent definitions was

used in [28].

Example. Consider the function tcl'"1 (0D<a<1l defined for
t €[0,1]. Then for 0 <h < 1/2

2, 0~-1 o-1 o-1 -1
A (e ) = [ (t + 2h) - 2(t + h) + t
124 “1.1[0,1]2h l HL1[0,1] oh

o~1

Jee + 2m* - e+ 7Y (eI ¢

IA

+
L1[0,1] 2hﬂ nLIIO,I]

2h

1-2h 1-2h
e+ o e+ haer [ @78
0 0

- ) Hae

(since %1 s decreasing)

1-2h
= @ e+ 2m* Yae
0

1-sh
0

< ®,

é [t - (¢ + 203

where C is a constant. This argument can be used to obtain a
similar result for ~-% <h <0 . Since, for In] > 172 we

have [0,1], =@, it follows that & le N°1‘[o,1] .

In fact, it can be shown that tcl-1 & N{[O,l], for any

Y>¢6 , andalso [71, p.73] that fnt € Ni[O,l], but

nt & ﬁ{[o,l] for any <y > 1, this last fact being the motivation

for the use of the second difference in the definitions of N?[O,l] .
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We have the following continuous imbeddings [37, p.p.383-384,

p-p.389-3911

€ m — N
N’;“ la,0] €W} la,bl CN7la,b] SN Cla,bl, b
for meEN ,0<€e<1, and 1< p<>,
and
la,p] € NPla,bl, [ (3.2.3)
P - q
for >0, 1<p<qs>, and
1 1
B =0 - |- - - > 0 .
(P q J

The first chain of imbeddings demonstrates the fact that the
Sobolev spaces W?[a,b] are naturally immersed in the continuum
of Nikol'skii spaces Nz[a,b], while the second imbedding shows
that, given a function in a certain Nikol'skii space, we may trade
in some of its differentiability to obtain some stronger integrability
properties. For further details of the properties of Nikol'skii

spaces, see [11]1, [37], [42] and [691 .

We shall use the results of Taibleson [67] concerning certain
Lipschitz spaces of functions, A(a,p,q,nf') ’ which are defined
for >0, ©>p>1, ®>q>1, and n>1. We show

in Theorem Al that, in fact,

N°l‘(m) = ACa,1,o,R) (3.2.4)

We shall make use of relation (3.2.4) in the proof of Theorem

3.3 below. The proof requires the following lemma.

Lemma 3.1 Let k€ Ll{a—b, b-al], and let yE€E Wi[a,b]. Then

Ky € Wi[a,b], and

Ky)'(t) = y(a)k(t-a) - y(b)k(t-b) + Ky'(t), £for almost all t € [a,b].
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Proof A proof is given in Theorem A3 .
We shall refer to the following assumptions:

Al. k ESNi‘[a-b, b-al , for some O in the range 0<a<1l1l.
A2, The homogeneous version of (3.1.1),
b
y) = A [ k(t-s)y(s)ds ,
a

has no non-trivial solutions in Ll[a,b].

Assumption Al engsures that k is "weakly singular", while

A2 will allow us to invoke the Fredholm Alternative.

Note. The function k(x) = lnlxl is in Ni[a-b, b-al, and

hence satisfies Al for all 0o in the range O0<a <1,

Theorem 3.3 Let Al be satisfied. Then
(1) K : NI[a,b] > N‘l’H'Y[a,b']. 0<y<1,
(ii) K : Ni[a,b] > Ni‘”[a,b], 0<y<1,
o+l

(iii) K : N}’[a,b]‘-» N [a,b] , y>1,

1

and the mappings (i), (ii) and (iii) are bounded.

The proof of Theorem 3.3 will be given below; the key ingredient
is the observation that Ky is simply the restriction to [a,b]

of the convolution

ke* ye(t) = Lo ke(t-s) ye(s)ds R t€ER , (3.2.5)

where Ve equals y on [a,bl] and zero elsewhere, and ke

is the analogous extension of k from [a~b, b~a] to R .
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With this observation, the proof is obtained by utilising the results
of Taibleson [67 II, Lemma 11 on convolution in the space A(a,l,®,R)
(i.e. N‘I(]R), by (3.2.4)). The success of the argument depends

on the properties of the above extensions of y to Ye and k

to ke . The following lemma studies the properties of such extensions.

Lemma 3.2 Let ¢ € N{[u,v] R where —-®< u<v<'eo ,

and 0 < vy <1, and define ¢e on R by

¢e(t) ¢(t) s t € [u’V] s
and

o, t € R\ [u,v] .

6, (&)

Then the extension map: ¢ ~ (be is a continuous linear operator from

Y Y
Nl[u,v] to Nl(]R) .

Proof. It will be sufficient to prove this result for [u,v] =[0,1].
For, suppose the result holds for [0,1], and let ¢ € N{ [u,v],
where 0<y<1, and [u,v] is any interval. Then we may

v
define & € N}’ [0,1] with

bt 0,1 5 Py, ot @20
by

o(ty) = ¢((v-u)ttu) , t € [0,1],
and we may extend @ to <I>e e NI Rr), where

I2ly, 1,2 < clely,1, 00,0 - (3.2.7)

Now ¢, » the extension of ¢ from [u,v] to R ,
satisfies

9. (x) = 8 [1‘-1‘-‘-] . xXER ,

v=-u
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and it follows that ¢_ € NJ(R) ,

and that

<

||¢e " Y,1,R C"q’e“y,Lm . (3.2.8)

Since the constants € in (3.2.6), (3.2.7) and (3.2.8)

are independent of ¢, the continuity of the mapping ¢ > ¢e

then follows.

To prove the result on lo,1], let ¢ € NI[O,I]
2

for some O0<yY<1. Then, forany h>0, Ah ¢e will be
zero outside [-2n, 11 , and so
o 2 1 2
_{» |8} ¢ (0> [ae = £2h |ay ¢ () . (3.2.9)

For 1/4>h >0, (3.2.9) gives

© o, 1, 1-2h
[ 180 () |ae = £h |8,0,(8) |at +1f2h|Ah¢e(t)|dt + ﬁ) |ae (o) fde .

(3.2.10)
By definition of ¢e , and, since ¢ € NI[O,I],
we have
0, 0
_£h|Ah¢e(t)|dt =_[ |¢e(t+2h) - 2 _(t+h) + ¢e(t)|dt
2h h
<[ loteylat +2 [ o]t
() 0
Y
< cn Py o0, (3.2.11)

where the final inequality follows from [11,p.72]. Similarly,

we can show that

1
2, Y
l.thIAh<1>e(t)|d1; <cn ol ) 0.y (3.2.12)
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and, since ¢ € N‘I [0,1], we have

1-2h 1-2h

2 - 2 Y Y
.L |80 (€) |de = {) | o) |de < |¢IY,1,[0,13 <h ﬂ¢ﬂy,1,[o,1j'(3'2'13)

It follows, on substitution of (3.2.11), (3.2.12) and (3.2.13) into

(3.2.10), that, for % >h >0,

f lAﬁ¢g(t)ldt <cn' lely 1.r0,17 - (3.2.14)

-0

For 1>h>1%, (3.2.9) gives,

|2 gt = 2y (oylae + [ (a2 (0)]a
[ Ihgeae = [ a0 (0)]ae + [ [0 (6)|de

=00

ek olac + [ (a2 o]
< Ao (t)|dt + A ¢ _(t){dt
- -2hl nbe 1-2n B'e
Y
<Ch “¢“Y,1,E0,11 , (3.2.15)

where the final inequality is achieved similarly to (3.2.11) and

(3.2.12).

For h>1, (3.2.9) gives

-}

1 1 1
I |A§¢e(t)|dt < | |6, (t+2n) |dt +2[2 |6, (e+h) [de + f2 [6,(t)|ae
~2h ~2h

—o -2h

IA

“ ol 0,11

¢ nY ||¢||Ll [0,1]

Chn' H¢"y,1,[o,1] (3.2.16)

1A

IA

Results similar to (3.2.14), (3.2.15) and (3.2.16) may be

proved for h < 0, leading to, finally,

o
2 Y
_‘[wIAh¢e(t)ldt S C Ihl “¢“.Y’1’ [0’1] > for all h # 0 ’
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from which it follows that

Iq)eIY’l,]Ri ¢ "¢“Y91’[0’1] ’

and hence that

1A

“¢e“y,1,]R "¢e"Ll(]R) +C “¢ny,l,[0,l]

= 1l 10,11 * € ¥ly,1, 10,11

IA

@+ Polyy, 0,1

giving the required result.

Proof of Theorem 3.3

(i) Suppose 0<Y<1, andlet yE ﬁI[a,b] . Using

Lemma 3.2 and (3.2.4) we can continuously extend y to

yo ENI(R) = A(Y,1,%R) , and k to k, € N[(R) = A(2,1,=,R) .
Thus, from [ 67 II, Lemma 1] and (3.2.4) again,

© = oY
k * y, € Moy, 1, =, B) = N"V(R),

where ke* Yo is defined by (3.2.5).

On restriction of ke* ¥y, to [a,b], it follows that

Ry € ¥V [a,b] , and [69, p.310] that
1
*
"Ky"a+v,l,[a,b] < "ke ye“a+y,1,]R
Hence [67 II, Lemma 1], we have

“Ky“a-l-'y,l, [a,b] € "ke“a,l,m“ye"y,l,m >

and, by the continuity of the extension y - Yo °

“Kylla'l"y,l, [a,b] 5 c "y“Ysla [a,b] ’

where C is independent of y , proving the required result.
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(1i1) By (3.2.3), and (i), the composition

1

Ny

[a,b] ——— NI[a,b] —_— N?*Y[a,b]
Inclusion K

for any 0<yY<1 is continuous, and the result follows.

(iii) It is shown in [11] that

K : Wi[a,b] + N ,bl

o+1
1 La
is continuous. Thus for any Yy > 1, it follows from (3.2.3)

that the composition

Na,bl— Wrla,b] —> 8 a,b]
1 . 1 1
Inclusion K

is continuous, and the result follows.

Corollary 3.4 Let Al be satisfied, and let n = [—6]-"-]+ 1.
Then the following maps are continuous
(1) K : Llai~> Nla,bl,
) K : Wapl-wlabl, O0<pca,
(111) DK" :  Nb[a,b] > Nj[a,b] , 0<q<p<a .

Proof. A proof of (i) can be found in [11].

Note that, by definition of n , see (3.2.1), we have

(n-1)a<1<na,
and let

0<p<oa.

Then, Theorem 3.3 and (3.2.3) imply that, for any p' in the range

1< p' < min {na + p, a + 1} (3.2.17)
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the composition

1 ]
NCa,b] —> NP [a,b] ———— Wila,b] (3.2.18)
K? Inclusion

is continuous, and (ii) follows.

Now, if 0 < q<7p, then q+ 1 is in the range (3.2.17),
and it then follows, by (3.2.18), and using the interpolation theorem

of Chandler [11, p.74], that the composition

NPra,b] —s N9 a2, b] —8%(a,b]
1 Kp 1 D 1

is continuous, and (iii) follows.

The next theorem states some results on the compactness of K,
(i) is a standard result, see [70, p.321], while the proof of (ii)

follows from the results of [11].

Theorem 3.5 Let Al be satisfied. Then K 1is compact as

an operator on either of the spaces

(1) Ll[a,b],
or

(11) W}_[a,b] )

Corollary 3.6 Let Al and A2 be satisfied.

(1) 1If f € Ll[a,b], then (3.1.1) has a unique solution

y in Ll[a,b] .
(ii) 1f f € Wi[a,b], then (3.1.1) has a unique solution

1
y € Wlla,b], and y' satisfies the integral equation

y'(t) = £7(¢) + Ay(a)k(t-a) - Ay(b)k(t-b) + K,y'(¢) ,

for almost all t € [a,b] .
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Proof. The proof of (i) follows immediately from Theorem 3.5
and the Fredholm Alternative [33, p.497] and (ii) follows similarly,

with the integral equation satisfied by y' being obtained using

Lemma 3.1.

Remark. In Llia,b] or in Wi{agb}s the unigueness of the
solution y means that any other solution must coincide with y
except, possibly, on a set of measure zfro. Throughout Section 3.3,
when an integral equation is shown tc have a solution in Ll[a,b] or
Wi[a,bl, it will be assumed, without further notificatiomn, that the

equation is satisfied for almost all t € {a,b].

3.3 THE MAIN RESULT

In this section we obtain the singularity expansion (3.1.7)
for the solution of (3.1.1). The proof of the main result, Theorem

3.9 below, depends on the intermediate Lemmas, 3.7 and 3.8.

Consider (3.1.1) and suppose that k satisfies Al and A2,
The singularity expansion, valid for £ € Wi[a,b], for any

r€N will be obtained by first defining inductively, for any

0 1

m € N, » 2 sequence of integral equations {(3.3.1)j}m

j=o0 *
and an associated sequence of functions {wj}?=0 . The important
properties of these two sequences in the general case, r € ]NO

and m € lio R are proved in Lemma 3.7. The proof has rather a lot

of technical detail, and so to illustrate the method, we consider

first the particular case r =2 .
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We first define (3.3.1)0 to be the same as (3.1.1),

denote its solution by Yo

Yo £+ Ko » (3.3.1)0
and set
wy = O. (3.3.2),
Then, since f € Wi[a,b] Siwi[a,b] , it follows, by
Corollary 3.6, that Yo € Wi[a,b] s and that y6 satisfies
the integral equation:
yb = f'+ w, + nyb s (3.3.1)6

where

wl(t) = Ayo(a)k(t-a) - Ayo(b)k(t—b), almost all t € [a,b]. (3-3~2)1

Since Wy € N?[a,b] and may be infinite on some subset
of [a,bl] of measure zero, (3.3.1)6 is understood to hold in the
L1[a,b] sense (see Remark following Corollary 3.6), and so we
cannot use Corollary 3.6 to obtain any information about yg .

However, setting n = [é} +1, defining a new function vy by

nglz

Y. = Y4 — Ky w >

1 0 20 A1

and substituting for yé in (3.3.1)6 s We obtain an integral

equation for ¥y s which we take as the next equation im our

sequence:

n
= ]
¥y £' + KA w, +K

1 2y ¢ (3.3.1)1



51,

It follows then, by Corollary 3.4, that (3.3.1) 1 has inhomogeneous
term in 1[a,b] . Thus, by Corollary 3.6, y, €W, [a,b] and 'Y
satisfies
' = £1 n - _ - ' !
yl(t) £ (t) + (DKA)wl(t) + Ayl(a)k(t a) Xyl(b)k(t b)+ nyl(t) (3.3.1)1

for almost all t € [a,b] .

Since ¥y was obtained by subtracting the singular (i.e.

1

non—Wi [a,b]) terms away from y(') s our aim now is to define Yy
from yi in the same way, and obtain an integral equation (3.3.1) 2

for y, . Since f£E€ Wf [a,p], it follows that f£" € L [a,bl,

and hence, yi may contain non—W; {a,b] terms induced by f" .

1
If we first subtract f" from yi and rewrite (3.3.1)1 as
]
(yi - f") = wz + K)\(Yi - f") ’ (3-3-1)1
where
wy () = KyE"(r) + (DKDw, (£) + Ay (a)k(e-a) - Ay, (B)k(t-b) ,
almost all t € [a,b], (3.3.2)2

it then follows, from Corollary 3.4, that w, € Ng [a,bl] for

all q<a .

Then, setting

n-X-l 9

y, = (y; - £") - Ky,

2 1 2=0 A2

thus subtracting the rest of the non—Wi [a,b] terms away from

L
yi - f", and substituting for y:'l - f" in (3.3.1)1 » We obtain

the equation

PR + !
Yo = K)\ Wy + K)\}'z ’ (3.3.1)2
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which has inhomogeneous term in W} [a,b]. Thus, by Corollary 3.6,
y, € Wi [a,b], and

vy = w3+ Kyyy s (3.3.1)}
where

w,(t) = (DK;)wz(t)+ Ay, (a)k(t-a)-Ay, (b)k(t-b), almost all t € [a,b]. (3.3.2),

Now by Corollary 3.4, w3 € N‘ll [a,b] for all q<a ,
and so, defining Y3 by
n-1
2
Yo=Yy - L K o,
37727 LR

and substituting for yé in (3.3.1)é , we obtain,

vy = 2w, + K

A 93 T K Y (3.3.1)4

which has inhomogeneous term in Wi [a,b] .

By mimicking the transition from (3.3.1)2 to (3.3.1)3 R

we can continue this process indefinitely. Thus for any m €& INO
m

j=0 ° and {w, }l? . For

we have the sequences {(3.3.1)j} 37 5=0

each j = 0,1,...,m , Wy will be in N% [a,bl] for all

g<a , and (3.3.1) will have inhomogeneous term, and hence

3

solution, Yy in Wi fa,b] . Moreover, for each j =1,...,m, vy

will be obtained by subtracting the non—Wi [a,b] components

away from y5_1 .

In this illustration, the integral equations (3.3.1) 0 and

(3.3.1)1 both contain explicitly the inhomogeneous term £ (or its

derivative), while the equations (3.3.1) for j =2,...,m do not.

j’

This is because we have assumed that f g Wi [a,b] and hence we

"run out" of Wi [a,b] (derivatives of f at the point j = 2

in the sequence {(3.3.1)j}?=0 .
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When f € Wll- fa,b], forany r € N,», an analogous
process to that described above will define sequences {(3;3.1)j}?=0

and {wj }?=0 . In this general case, we shall "run out" of

Wi [a,b] derivatives of £ at the point j =1 .

In the particular case r =0, we have f € L1 [a,b] ,
and so (3.1.1) has a non—Wi [a,b] inhomogeneous term, and so we
cannot simply adopt (3.1.1) as (3.3.1)0 . Instead, we modify (3.1.1),
using a method analogous to that used to define (3.3.1)2 in the
case T = 2 above, to obtain an equation which has inhomogeneous

term in Wi [a,b], and which we then take to be (3.3.1)0 .

To do this, we rewrite (3.1.1) as

(y - £) = K + K)\(y ~ £) . (3.1.1)

Then we define Wy by
0o = K&

and set

\ n~1
G- - 220 K9 -

Y0

Then, substitution for y - f in (3.1.1) yields
n

o = K * KyIp »
which we take to be (3.3.1)0 , the first equation in our sequence.
The rest of the sequence is then defined by mimicking the transition
from (3.3.1)2 to (3.3.1)3 in the case r =2 above.

The general result is now given in the following lemma.

Lemma 3.7. Let Al and A2 be satisfied, let wa’l’[a,bJ,

for some rel\lo , and set =n = [i—] + 1.
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(1) For any m€ N, » define inductively the sequence of

integral equations {(3.3.1) j}?____o by

vy = Ej’rf(j) + UK, 3=01,..,m, (3.3.1)
where
Ej’r =1, 0<ji<r,
and
E,e =0 r<j<m,

and the sequence of functions {wj }?=0 is defined by

Wy () =6 ,rKAf(j)(t)"' DK;:wj_l(t)+ ij_l(a)k(t-a)- }\yj_l(b)k(t—b), (3.3.2):1

J

for almost all t € [a,b]l, and j=0,...,m, where

and § denotes Kronecker's delta. Then, for j = 0,1,...,m, wj

is well defined in Njla,b] for all gq<a, and y; (the

solution of (3.3.1),) exists and is unique in Wi [a,b]- .

3

n-1 9
(1) yg=y -8, f - 20 KWy (3.3.3),
] 2=

where y 1is the solution of (3.1.1), and,

n-1
voog, £@ L o j=1,0eeom . (3.3.3)

V3T 7317 Opr Lo Miv 3
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Proof. We prove (i) by induction on j . First, consider the

case j=0. Then,

0, r>0,
w, = (3.3.2)0

K)‘f, r=0,

and so in either case (see Corollary 3.4) ,

W € N?[a,b] - Ng[a,b] , forall q<oa .

The equation (3.3.1)0 is then

Yo = f + KAYO s r>0,
or (3.3.1)0
+1
Vo =Ky E+Ky,, =0,

and so, in either case, by Corollaries 3.4 and 3.6, Yo exists

and is unique in Wi[a,b] .

Now, suppose (i) is true for j - 1, where j € {1,...,m}.

Then, since € Wi[a,b], it follows that wj is well-

yj-l
defined, and by Corollary 3.4, we have wj € N?[a,b] » for all
qg<o . Hence, by Corollary 3.4, (3.3.1)j has inhomogeneous
term in Wi[a,b] , and thus, by Corollary 3.6, vy exists

and is unique in Wi[a,b] R
The proof of (i) then follows by induction.

(i1 We first prove (3.3.3)0. Since f € Wi[a,b], for some
r € No ’ we know, by Corollary 3.6, that the solution y of
(3.1.1) exists and.is unique in Llla,b] (and y is in

Wi[a,b] if r>0) .
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Set
n~-1

=y-6 f XKA(DO’

and substitute for y in (3.1.1) to obtain

n-1 n-1
2 2+1
) f+21<w +Y=f+6, Kf + ) + K, Y,
0,r 2=0 A0 o,r A 220 Y A
which is equivalent, via (3.3.2)o to
_ _ n
Y=Q Go’r)f + KA“O + KXY .

which, since

(1 - so’r) = go’r ’

is the same as (3.3.1)0 . Thus, by the existence and uniqueness of

the solution to (3.3.1)0 we have Y = Yo and (3.3.3)0 follows.

Now, let j € {1,...,m} , and use part (i) of this Lemma
and Corollary 6, to differentiate (3.3.1)j_1, obtaining, via

(3.3.2)j ’

£ _s. xePrw, +x

Vi-1 = 84-1,:f 5.2 j F Ry - (3.3.1)35.

If we now set

-1
-yt @ _ "
Y Yi-1 Gj,r £ Z K ,
and substitute for y5_1 in (3.3. 1)j 1» we obtain,
-1 n-1
1 .5 2 (1) g+
. £ , + +

. + zZo Koy +Y =&, £+, zzo Ky wy tKY,

and thus,

(&) n
= (Byy = 8y, ) Ky HKyY
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Now, since

j=1l,...,m (3.3.4)

it follows, by the existence and uniqueness of the solution to
(3.3.1)j that Y = yj , and (3.3.3)j follows, completing the

proof of Lemma 3.7.

We now use the sequence {yj}?¥0 to obtain a singularity
expansion for y . Starting with Yo 0 which we know satisfies
(3.3.1), we may "unravel" the singular terms in y by a process
of applying (3'3'3)j’ j=m, m-1, m-2,...,0, and
integrating, to obtain successively, an expression for

Y12 Vg 2°°°» yl,yO , and, finally, y .

The general expression for the p~th step in this unravelling

process is proved in Lemma 3.8.

Lemma 3.8. Suppose the conditions of Lemma 3.7 are satisfied, and,
for j € {0,1,...,m} , 1let Y3 be the solution of (3'3'1)3" Then
- (m)

m Em,rf + ¢m ’ (3.3.5)m

and
-1
_ @-p), ¥ "7 L -

Yop = Enp,rf + jzl 2501 N e (3.3.5), .

where 1 = I[a bl as defined by (3.1.5), and ¢m_p€W§+1 [a,b],

for p=0, 1,...,m .,

Proof. We shall prove this result by inductionon p .
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First consider the case p=0. By Lemma 3.7 (i) we know that

1
. Pl E
y, satisfies (3.3.1) , and that y_ Wlla,b] , and

W, € N?[a,b], for all q <o . By Corollary 3.4 and Theorem
n 1

3.5, Ky w and K,y  are both in Wl[a,b[, and so by

(3.3.1)m s

yo= & £ w0,

where ¢m (S wi[a,b ] and we have proved (3.3.5)m .

Utilising (3.3.3)m and integrating using T , we obtain

-1
(m-1)  ® L
+ Sm’r)f + zzo KW + 6 o »

Y-

L= G

m,T

where

¢m—1 = I¢m + constant of integrationm,

and so ¢, € Wi[a,b] . Utilising (3.3.4) , we then complete

the proof of (3'3'5)m—1 .

Suppose now that (3'3’5)m—(p-1) is true for some p € {2,...,m}.

Then, using (3.3.3) and integrating using I, we obtain

m~-(p-1) °’
-1 n-1
= (m-p) , P jHL 8
Tn-p (gm—(p-l),r + (Sm-(p-l),r)f ¥ jZ'I zZn I K>f"111—(1>-1)+.’1
n-1 2
+ Z IR W, p-1) ¥ pp * (3.3.6)
=0
where ¢m—p =1 ¢m_(p_1)+constant of integration, and hence

pt+l
¢mrp € w3 [a,b] .
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Using (3.3.4), and collecting terms on the right hand side

of (3.3.6), we obtain

= (m~p) ik
Ya-p = Sm-p,r * Zl ,LZ S

and thus we have proved (3.3.5)m_p . Induction completes the proof

of (3.3.5)m__P for all p = 0,1,...,m .

Theorem 3.9. Suppose Al and A2 are satisfied, let f € W;': [a,b]

for some r € N, , ‘and set n

0 [l]+ 1. Then, for any m € I

o 0
the solution y of (3.1.1) has the singularity expansion (3.1.7)

with

e
n

1,...,m ,

0
i

Ay _q(a)
)\YJ_i(b) ) S

j-i

d

j-i= iy0ce,m

where, for each j € {0,1,...,m} , Y5 is the solution of (3.3.1):] .

Proof . Using Lemma 3.8 with p=m , we have
1 2 I
Vo =&, £+ IK\w, + ¢, , (3.3.5)
0 0,r 4=1 2=0 )\ j 0 0

where ¢, € Wliﬂ'l [a,b] , and, using (3.3.3)0 , we obtain

n-1
- J L
y = (Eo,r + 60,r)f + _}21 220 I ka + Z K Yo + 99
n~1
= £+ 2 I Ryw; + g » (3.3.7)
j=0 2=0

since, for any r € N,
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Now, from (3.3.2)0, we have

and, by induction on the relations (3.3.2)j for j=1,...,m,

it can be shown that

n,i-1 _ _
wj = igl(DKA) kj—i ’ i =1,2,00.,x-1,
and
_ j-r (r) ] n,i~1 _
0y = (DK) Ky £ + 121@18‘) kj_i s § = Tye..,m ,
where £=1,...,1,
kj_i(t) = ij_i(a)k(t—a)- ij_i(b)k(t-b), { S=1rm

Substitution for wj in .(3.3.7) then yields

n-1

y=£+ I I dxtohI™ g™
j=r =0
o
+ PRy ErH Tk, L+ ¢
j=1 2=0 i=1 * A -+ 70

which, on rearrangement of the order of summation in the last term,

yields
m
y=f+ ) Z IJ (DK)\)j - Af(r)
j=r 2=0
D
+ I'K (DK ) +¢
i=1 j=i EZ A j—i
where ¢ = ¢, € W?+1[a,b], and
j i(.t) = Ay i(a)k(t-a) - Ay 1(b)k(t-b), i=l,...,m, j=i,...,m ,

as required.
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In this section, we shall use (3.1.7) to obtain explicit

singularity expansions for the solution of the equation

y(t)

1
=f(@)+ Af
0

It-sla_l y(s)ds , t€ [0,1] , 0<a<1

in the following four cases:

In Example o is and £ is
1 irrational | infinitely continuously differentiable on [0,1].
2 rational infinitely continuously differentiable on {o,11.
3 3 given by £f(t) = et, t € [o,11.
4 " given by £(t) = t /3 4+ a-vyV3, te€ o,1l.

Physical motivation for these examples can be found in the

Kirkwood Riseman theory of intrinsic viscosities [34]. (See Example

1 of Chapter 1.)

The results given in these examples depend on the

technical Lemma A4, proved in the Appendix.

Recall that the notation {a(t) + b(t) + ... + z(t)}

denotes some linear combination of the functions a(t), b(t)se..,

and z(t) .

Example 1.

¢ denote an

will necessarily be equal.

we may choose

Throughout this example, let mE€ N, , and let

0

unknown WT+1[0,11 function. No two instances of ¢

Since £ is infinitely differentiable,

r as large as we wish, and (3.1.7) gives

n-1

3 8
=f + 'K (DK yi- +¢,
121 Jzi R.Z S
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where
I=1[,11°
n = [é:] +1
and i=1,...,m,
ky_y () = *1 4 a-0*1y, t € lo,1],
j=i,...,m,

Since KA = AK , we can write this, using the notation for

linear combinations, as

1 i-1, o-1

I < S Forf fn, a-1.¢
y(t)=f(t)+{2 Y Y TRT(MK)T (t + (1-t) )}+¢(t),

i=1 j=i 2=0
t € [0,1]. (3.4.1)

Now, from Lemma A4,

m-1 . .
ke + a-0%h- { 2 q-n®1y oy (t“+j+(1-t)“*3)} + (),
: 3=0

. m-1 n-1 . .
Ml Ca TN SO {tna-l+ A"y Y ety (l_t)2a+j)}
3=0 %=1

+ ¢(t) ,

and

KR 1y (l_t)a—l) _ { g (ool (l_t)(n+1)a—l

m-1 n .
I IR G (1—t>2“+j>} + o(t) .
j=0 =1
Thus
m n-1 m-1 n .
j=1 2=0 j=0 =1 .

+ ¢o(t) (3.4.2)
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and, similarly,
m n-1 . m-2 n
} T oRrad® (L (1-0%7Y) - { ) (t(n+2.)a+j+(1_t)(n+2.)a+j)}
3=2 2=0 3=0 2=1
+ terms already in (3.4.2)

+ ¢(t) .

Continuing this process, we obtain

m m n-1, .
7Y ot 4 -0l
i=1 j=i 2=0

=

m-1 m-i-1 =n .
{ Zo zo ) (t(in+2)a*j + (l_t)(1n+£)a+j)} + o)
i= j= 2=1

and substitution into (3.4.1) yields the singularity expansion for y:

m-1 m-i-1 n .
7(8) = £(t) +{ 7Y ) ety (1-t)<1“+")°‘+3)}+ 6(t), t€lo,1],
i=0  §=0 g2=1

where ¢ € WTH [0,1].

Example 2. Let o = p/q, where p,q are comprime and p< q .

Following Example 1, y has expansion (3.4.1):for any m € No R

and n=[ﬂ]+1.
P

Note first that this implies that g < np . ©Now let p be

the smallest integer such that ¢ < np, i.e.

q = n(p-1) + o ,
where (3.4.3)

0<o<n, and p €N .

It then follows that p<p.
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It will be convenient to rewrite (3.4.1) with m replaced by

mp+1
mp, and with ¢ denoting some unknown Wlp [0,1] function:

mp mp n-1 . )
y(t) = £(t) +{ Xp y O3 Ijx"(DK“)l’l(tp/p'1+(1—t)"/q'1)} + (1),
151 §=1 20 '

t€ lo,. (3.4.4)

Then, as in Example 1,

c-1 mp n-1 .
i=1 j=i 2=0

p-2 mp-i-1 n . .
{ oL zzl(t(in+&)p/q+j+(lft)(1n+2)p/q+j)} + o) ,
= J= =

s 20 D L Y S It 5|
+ {@DP/a oy 2o aygg L (Y

+ LY

+ {¢(P-Dot)p/q o (e-Dnp/aye, 4 &+ (OP-PHLy

+ (-0 4 L@/ 1+ L+ -0l
+ {Q-@Dr/a L P9 g s L 0™
+ ...
+ {(l_t)((p-2)n+1)plq + oes 4 (1-0) (p-1)np/qy
{1+...+ Q- P

+ ¢(t) . (3.4.5)

However, by (3.4.3) the integer q (= (p-1)nt0) lies in the
set {(p-Dn+1,...,pn} , and hence, by Lemma A4, we generate a log
term in the singularity expansion when the index ((p-1)n + o)p/q

is attained. To be precise,
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mj
Zp 7 IJK or™P 1P/l L - yP/aY
j=p 2=0

= (¢{-DtDp/a L (@-Dp/ay (Poniyr 40,4 DR
+ {PentH{eP/D 4., 4 POPIIPY 4y (2 D)Ry
+ {10y (P DDIP/a 1y (DRI gy Pen(1-6))
{1 +...+ (1-t) @10y
+ {(1-0)P (-0 H -0 + ...+ 1-0)PP/T Py 4., .+ (1-r) @ DPy

+ terms already in (3.4.5)

+ ¢(t) . (3.4.6)

Combining (3.4.5) and (3.4.6), and generalising to obtain the

summation in (3.4.4), we obtain

y(t) = £(t)

m-1
* { I (Paan)® ((tp/q foot €21 (1 4. 4 (DL
1=0

+ (¢{p-Dotp/a | tPant) (1 +...+ t(m'i'l)p))

+ 2 ((1-t)Pan-nNi(ca- 0P % . +(1-6)"Y (1., (1) DR L

1=0
+* seees
+ eeeee
+(@-t) (PDmDP/a L (1-£)Pea(1-t))
(1 +...4+(1-t) (m'i'l)p))}
+ ¢(t), t € [0,1] , (3.4.7)

where ¢ € WTp+1[O,1].
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Example 3. This is the example (3.1.8), given in Section 3.1.

We merely apply the results of Example 2 with p =1, q = 2,

We have

n=[2]+1=2, andhence p=1 and o =2 . With these

values of the indices and with £(t) = et , forany mEN

(3.4.7) becomes

y(t) = et

m-1
+ { Y (t2ae)1(t% + eane) (1 + ... + 1))
i=0

m~1 i 1
+ Y ((1-t)2n(1-£)) " ((1-t) % (1-t)n(1-t)) (1+...+(1-t)

1=0

+ ¢(t) , t€fo,1] ,

where ¢ € WT+1[0,1], which gives us (3.1.10).

Example 4. Since, in this case, f € L1[0,1] = W?[O,l], we

m-i-l)}

must calculate (3.1.7) with r=0. Let mn€ N, , then with

0

¢ denoting an unknown WT+1[0,1] function,
-1/3 -1/3

+ (1-t) .

y(t) = t

m n-1 .,
+ 47 7 KoMk (1-t)”1/3)} (a)
=0 2=0

m m n-1,
{ } SO0 IJK“(DK“)i‘lct'3/4+(1-t)'3/4)} (b)
i=1 §=1' 20

+4

+ 6, telo,1l . J

Nowwith p=1,q=4,n=4,p=1 and o=4,

(3.4.8)

the

results of Example 2 may be applied directly to obtain (3.4.8) (b).

We must now calculate (3.4.8) (a), which equals
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m 3
{ v ¥ ok @ok®Ireel3 + 10713 } )
§=0 2=0

By Lemma A4, with a =% , we have

m-1
k™3 4 (1-073) = (V12 197 V12 1Y (im0 1+ e,
j=0
m-1 2 .
3% 073 = (V% a-0% 7 T *MHia-0 ) + e
420 2=1
B -0V < (51200512 20 22§t2u+3+(1 0¥t 4 o0,
&3 -0713 = (2P 4 -0 + Z z§1 2t -0 e},
m-1 5 . .
S 3 ooy o (12 o 11127 Fsari g gty Ly
320 %=1
so that
3
P 3 s o3y o 12 (16, (SI12 213

2=0
+ {(1—1:)"1/12 + (1—1:)1/6 + (1-t)5/12 + 61ﬁt)2,3}

+ terms already in (3.4.8)(b)

+ ¢(r) .

Similarly

3
) K ok (£ 34 (1-0)

=0

-1/3 {t—1/12+t1/6+t5/12+t2/3}{t}

) =
+ {(-0"12 L 16 L 16312 ¢ 1623 -t}

+ terms already in (3.4.8)(b)

+0()
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and continuing this process, we obtain

(3.4.8)(a) = {t:"ll12 +t1/6 4 t5/12 + t2/3}{1 +t4 ...+t

-1/12 5/12 2/3}

+ {(1-t) + (1—1;)1/6 + (1-t) + (1-t)

{14 Q0+ ... + 1-6)™
+ terms already in (3.4.8)(b)
+ ¢(t) .

Combining this with (3.4.8)(b), obtainable from Example 2,

we have

y(t) = 13 4 p/3

{12 16 SN2 28 L e ™)

-1/12 1/6 5/12

+ {(1-t) + (1-0)% + (1-v) + =023 + ..+ a-0™

m~1
+ { (tznt)i(t1/4+t1/2+t3/4 + tnt) (1 + ... + tm’i"l)

1=0
m—-1

+ ) (-0ma-ia-n + -2 @034 + 1-0a-0)
1=0

(1 + ...+ (l-t)m'i"l)}

+ ¢(v), t € [0,1] ,

where ¢ € WTH [o,1] .
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CHAPTER 4

GALERKIN METHCDS FOR EQUATIONS WITH SINGULARITIES

4,1 INTRODUCTION-

In this chapter we shall discuss the numerical solution of

equations of the form

b
ye) = £(e) + A [ k(t,s) y(s)ds , t € [a,b] ,
a
where k and £ are given functions on [a,bl x [a,bl, and

[a,bl respectively, A  is a given scalar, and y is the

solution to be determined.

Without loss of generality, we may assume that A=1,
fa,b] = [0,1], and so in this chapter we simplify the treatment by

considering only the equation:

1
y(t) = £@) + [ k(t,s) y(s)ds, t € [o,1]. (4.1.1)
0

We abbreviate (4.1.1) by

y=f+Ky ,

where K is the integral operator given by

1
Ky(t) = [ k(t,s) y(s)ds . (4.1.2)
0

The Galerkin and iterated Galerkin methods are well-established

numerical algorithms for the approximate solution of (4.1.1).

It has been shown by Sloan et. al., [63]1, [571, [58], that
the iterated Galerkin method provides, in general, a more accurate

approximation to y than does the Galerkin method.
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Accurate quantitative estimates for this improvement in order
(or "Superconvergence") have been obtained by Chandler, [91, [10],
[11], for the case when the underlying approximating subspace is a
space of splines, and when both the kernel, k , and the inhomogeneous

term, f, are suitably smooth.

The aim of this chapter will be to obtain such quantitative
estimates, again when splines are used as approximating functions, in
the case when k 1is of weakly singular convolution type, and also

when £ may have a lqw order of smoothness.

Our main quantitative order of convergence result is Theorem
4.8 of Section 4.4. To illustrate the results of this rather general

theorem, consider the particular equation

1
- o~-1
g = £ a [ Je-s|®! yieras, c€ D0,10 (4.1.3)

0
where 1 >0 >0, and 2 >B8>1. Suppose our approximating
subspace is the space of splines of order r €N defined on a

'

uniform mesh over [o,1] , and let yi and in denote,

respectively, the Galerkin and iterated Galerkin approximants to y .

Tﬁen, Theorem 4.8 predicts that

Iy - ' = 0[—1;] , (4.1.4)
n
and
Iy - va'lw = 0[71;3‘} , (4.1.5)
n
where
Y = min{rs a, B-1} ,
and

=]
[}

min{r, a} , (4.1.6)

and n+l is the number of points in the mesh.
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Much more general error estimates for the numerical solution
of weakly singular equations are given in Theorem 4.8. However, the
illustration given here highlights two important points which are also
true in the general case.

(1) The order of the improvement obtained by using yﬁI

instead of yi is 0(33} , with & given by (4.1.6).
n

(ii) If either o or B dis small, then both yi and
in may converge rather slowly to y, regardless of how large r 1is.

The reason for the phenomenon (ii) is of course that, as
demonstrated in Chapter 3, any weakly singular convolution integral
equation, such as (4.1.3), will, in general, have a non-smooth
solution, and the order of approximation of such a solution using
splines on a uniform (or arbitrary) mesh will, in general, be rather

low.

This order may be improved, however, if we use a mesh
which takes account of the singularities in the solution. In
Section 4.5, we consider equation (4.1.3), and demonstrate how
to improve convergence by using an appropriate non uniform mesh.
In particular, we show that with the correct mesh, (4.1.4)

and (4.1.5) may be improved to (in the particular case r = 1)

Iy - 9o = 03 (4.1.7)
amd
Iy - %'le = 0[—%_;5} (4.1.8)
n

For any r>1, we also show that, provided we use

a suitable mesh we may obtain the high order convergence estimates
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in the L2[0,1] norm:

Iy - valy - O[f;] ’ (4.1.9)
and
Iy - 521, = o[f;) : (4.1.10)

The main convergence results are contained in Sections 4.4
and 4.5. The remainder of the chapter is organised as follows.
In Section 4.2, we define the Galerkin and iterated Galerkin algorithms
and give a résumé of existing convergence results. In Section 4.3
we present some necessary theoretical tools which we shall use to
prove our order of convergence estimates. It is at this point that
we restrict attention to the case when the kernel k of (4.1.2)
is of convolution type. In Theorem 4.3 we prove (with the aid of
the analysis of Chapter 3) two results which describe how the
smoothness of- k and f affects the properties of K and vy.
In Theorem 4.4 we prove some spline approximation properties of
typical weakly singular functions. Finally, the order of convergence
estimates contained in Sections 4.4 and 4.5, are illustrated in

Section 4.6 by some numerical calculations.

The numerical solution of weakly singular integral equations
has recently been the subject of much research activity. For example,
Chandler [11], [12], and Schneider [55] have studied product
integration using graded meshes to obtain good convergence rates.
Spence [65] and Lin Qun [38] have considered the use of extrapolation
methods to improve the rates of convergence of product integration and
iterated collocation methods respectively. Anselone and Krabs [3]

have used a double approximation scheme based on replacing singular"
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functions by bounded approximations, while Anselone [2] has given a
theoretical basis for the popular practical technique [52] of
subtracting out the singularity from the solution. Delves,
Abd-Elal and Hendry [17] have studied ways of making the Galerkin

method for weakly singular equations more economical.

Finally, we note the extensive treatment in Baker's book
[7, Sections 5.3-5.8], where the performance of most of the standard
methods, as applied to the numerical solution of weakly singular

equations is discussed. Many numerical examples are given.
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4,2 METHODS AND BACKGROUND,

In this section we introduce the Galerkin and iterated
Galerkin methods for (4.1.1), and describe some of the recent progress

which has been made in research on these methods.

For each n€ N , Ilet U~ denote a finite dimensional

subspace of Lz[O,l], and let Pn denote the orthogonal

projection of L2[0,1] onto U .

Let us assume, for the moment, that K 1is a compact operator
on L2[0,1], that (I - K)-1 is well defined on L2[ 0,11,
and that f € L2[0,1]. (Conditions sufficient to ensure this
are formally stated in Section 4.3), and let us assume also that the

spaces Un are constructed to have the property that

u¢ - Pn¢“2 +0, as n- o ,

for every ¢ € L2[0,1] .

The Galerkin solution of (4.1.1), yI

o ® is then defined

by the equation

1 1
V. = Pnf + PnKyn s (4.2.1)

and the iterated Galerkin solution, yﬁI is obtained by the

natural iteration:

IT _ I '
Vo = £+Kky - (4.2.2)

For the details of the practical computation of these approximate

solutions, see Sloan et. al.[63].



75,

Applying the operator Pn to each side of (4.2.2), and

comparing with (4.2.1), it follows that

I1 I

Pnyn = Yn ’

which on substitution into (4.2.2) gives

I I1
v, = f£+RRy . . (4.2.3)

A proof of Theorem 4.1 below can be found in the seminal paper of

Sloan [571.

Theorem 4.1 (Sloan) For sufficiently large n, y;I is well

defined, and

I1
“Y - yn “ZSC“KY - KPnyl‘Z 5 en “Y - Pnyﬁ2 ’

where én +0, as n-~+®,

Since it is also known [57], that yi is also well defined,

for sufficiently large n , and

Iv-23l, < lv-v], sa+ e;)ﬂy -2 ), (4.2.4)

| A
where € +0, as n-=>® , it may be deduced that Hy - yiﬂz

approaches zero with an order of convergence that is asymptotically the
same as that of “y -P y“ while “y -~ yII“ approaches
n’l2 °? n 12

zero more quickly (by a factor of O(en)) than Hy - PnyBZ .

This "improvement by iteration" has particular practical

significance since the calculation of in requires roughly the

same amount of computation time as the calculation of y; [63].
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The obviously interesting mathematical problem, therefore, is:
What is the order of the improvement in accuracy obtained by using

yI::l as an approximation to y rather than yIIl ?

We shall
consider this problem for the particular case when Un is a certain

space of spline functions, which we now define,

For any interval f[a,b]l, and any n€ N , 1let I

denote the mesh (partition)given by

T[n:a=x0<x1<x2<...<xn=b.

For r€ N and VE N, with Vv <r, we shall let

S:'(]'In, [a,b]) denote the space of splines on [a,b] which have

order r , continuity v , and knots l'[n . Thus

u € S‘r)(nn’ [a,p]) if u € ¢Vl [a,b]l, and wu is a polynomial
of degree not greater than r -1 on each (x; ;, X i] , for

i=1l,...,n . When Vv =0 the splines are possibly discontinuous

at the knot points, XgseessX but, to ensure that they are well

defined, we assume left continuity at each knot, and right continuity

at a . We shall abbreviate S:: (l'{n ,[0,11) by S: (Hn) .

I1
Yn

Throughout the remainder of this chapter yl]; and
will denote the approximations to y defined by (4.2.1) and (4.2.3),
where,
U = SU(I) n€ N
n T n ? £}
(4.2.5)

for some fixed r € WN and VEN with v<r.

0 ?
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We shall give our order of convergence estimates in terms of

the maximum mesh spacing h , defined by

h = max (hi) .
i=l"..’n

where
hi = (xi-xi-l) . i=1l,...,n . (4.2.6)

Note that, for a unifornm mesh we have

1

Then the following quantitative estimates have been derived

by Chandler .

Theorem 4.2 (Chandler). If k and £ are sufficiently smooth
(for precise requirements see {10l or [11]) , and if, as n
varies the meshes Hn satisfy a certain quasiuniformity

condition (see Section 4.4), then

Iy - vole = o™

and y (4.2.7)

I1
“y = Yn ﬂw

0%y .

Remarks. (i) The estimates (4.2.7) demonstrate the great improvement

of in over yi when all our given information is sufficiently

smooth. The startling fact that yil converges to y with

o(th) » when the best approximation to y from splines of order
r is generally only O(hr) ’ is generally referred to as

superconvergence. Since the estimates (4.2.7) are in the infinity
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norm, they demonstrate the global nature of the superconvergence,

and automatically imply estimates of the same order in Lp[O,l],

for any 1 <p< . However, if weak singularities are present

in k or £, the regularity requirements of'Theorem 4.2

will not be satisfied, see, for example [10, p.106], and estimates of
“y - yIIl“°° and “y - in“m are not yet available. Such

estimates will be obtained in Sectioms 4.4 and 4.5 of this thesis.

(ii) An elegant overview of Superconvergence phenomena, which

includes the results reviewed above, may be found in Chatelin [131].
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4.3 REGULARITY AND APPROXIMATION

In the first part of this section, we give a result describing
the properties of the integral operator K , and the solution vy
of (4.1.1), in the case when the kernel, k, or the inhomogeneous

term, f , may be weakly singular.
First, we introduce the assumptions:

Bl. The kernel k of (4.1.2) has the specific convolution form
k(t,s) = k(t-s) , t, s € [0,1] ,

with k€ N?[-l,l] for some o >0 .

B2. The homogeneous equation
1
y(t) = [ k(t-s) y(s)ds , t € [o0,1],
0

has no non trivial solutions in L1[0,1] .

Remark. While the results of this chapter hold only for pure
convolution equations with kernels of the type described by Bl and
B2, the methods used to obtain these results are readily generalised

to deal with kernels of the form

k(t,s) = k(t-s) m(t,s)
where K satisfies Bl and B2 and m is suitably smooth.
Theorem 4.3 Suppose Bl and B2 are satisfied.
(1) If f€clo,1], then
y = @07 ¢

is well defined in C[O0,1].
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(1) 1f £ € NE[O,I], for some B> 1,

then

1 e

Proof. Since N?[-l,l] c L1[-1,1] , 1t follows from Theorem
2.3 that k € M1[0,1], and hence that K is compact from
L 0,11 to <cl0,1], and hence also from cI0,1] to clo,1].

The proof of (i) follows by the Fredholm Alternative. To obtain (ii),
refer to Chapter 3, and note that by (3.2.3), Al 1is satisfied with
[a,b] = [o0,1]. Since B2 dimplies A2 with fa,p] = [0,1], we
may apply Theorem 3.9. The required result then follows, since
Theorem 3.9 implies that y(t) is a linear combination of £(t),

t t
terms of the form fo k(x)dx and fo k(x-1)dx , plus smoother

functions.

The spline approximation properties of the space Nz[a,b]

are proved in Theorem 4.4 below. The proof involves the Lp[a,b]

mth ornder modulus of smoothness, w (¢,h) which is

Lp[a,b] ’

defined for arbitrary ¢ € Lp[a,b], mn€EN, ,h>0, and

0
l1<p<x® , by

L]

wm(¢’h)Lp[a,b] B Tup “A:¢“

0 <|€ls_h Lp[a’b]me

with [a,b]m€ given by (3.2.2). We abbreviate this by mm(¢,h)P )

when [a,bl] is unambiguous.

Some important properties of the modulus of smoothness are

collected in Lemma AS.
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Recalling the notation of Section 4.2, we shall let IIn
denote a family of meshes on [0,11, with h denoting the maximum

mesh space of Hn .

Theorem 4.4 Let r€ W, vE ]No be fixed with Vv < r .

(1) Let Bl be satisfied. Then, for each t € [0,1],
there exists a spline u € S\;(I[n) ,» such that
8

1 Ch r=f=or.,

J |k(t-s) - ut(s)lds <
0

Chsln(il;) , r=o0 ,
where 6 = min{r,0} , and C is independent of t and h .

[n]

(ii) Let ¢ € NE[O,I] Nc "[o,1] , for some n > 0, where

v
[n] is given by (3.2.1). Then there exists a spline v €& Sr(l'[n) ,

such that
Ch.Y r + n
I¢ - vl <

1
ChYSZn('E) , r=n

where ¥y = min{r,n} , and C 1is independent of h .

Proof (i) It follows from De Vore [18, Theorem 4.1], that, for
A"
t<€{o0,1] there exists u, € S, (Hn) , such that
1
fo [k(t-s) - u_(s)]ds < Cw_(k ,h);

where C depends onlyon r , and kt is the function

kt(s) = k(t-s), s €[o0,1] . (4.3.1)



82.

The required estimates then follow from Lemma A5 (ii) and (1) .

(ii) It follows from De Vore {18, Theorem 4.1] that

Vv
there exists a spline v € Sr(nn) , such that
“¢ - Vuw < wr(¢,h)°° s

and the required result follows directly from Lemma AS5(i) .
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4.4 ORDER OF CONVERGENCE ESTIMATES.

In this section we derive global order of convergence estimates
for the Galerkin and iterated Galerkin approximants to the solution
y of (4.1.1), in the case when the kernel k satisfies Bl and
B2. The first step in proving the required estimates is given in
Theorem 4.5, and consists of transforming the original convergence
theory (Theorem 4.1, and its sequel), from its L2[0,ll setting into a
clo,1l] setting. An analogous global convergence theory for
equations with smooth kernels and solutions was first given by

Chandler [11]:

Recall that yi and yII are defined by (4.2.1)

n

and (4.2.3), where the approximating subspaces Un are defined

for fixed r € N, v Gl\{) » VST by (4.2,5). As indicated in
Theorem 4.2, we shall assume that, as n varies, the partitions

Hu » used in the defintions of the splines, remain quasi uniform

as n varies, i,e. there exists a constant C with the property

that

max (h,)
i=l,...,n hi
min (hjl

i=l,...,n

(4-491)

F I,
(]
-

for each partition 1L , where h, 1is given by (4.2.6).

One important consequence of (4.4.1), is that it implies
that h~>0 as n+> , vwhere h is the maximum grid
spacing. Another important consequence of (4.4.1), which is well
known in the finite element literature [8], [2Q0], is the fact that

P, is bounded when considered as an operator on LmEO,lj, and,
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in fact, there exists a comnstant c, independent of n , such

that

“Pn”w <c, n€N . (4.4.2)

Note that it follows that Pn is also bounded as an operator

from C[0,1] to L _[0,1]1, with norm also satisfying (4.4.2)

Then we can prove the following theorem.

Theorem 4.5 Let Bl, B2 be satisfied, let f € clo,1], and

suppose that

Ix - KPn“C[o’ll >0, as n+e (4.4.3)
_ 1 11 .
Then, for sufficiently large n , Y, » Yq are well defined,
y: € 1,00,11, y'I € clo,11,
I
Cly -2y <y - v Je Sy -2yl > (4.4.4)
and 5
IT
Iy - Y, lo < clxy - KPnyH°° s (4.4.5)
with Cl’ C2 and C independent of n .
. . 11 R
Proof. We consider first Yo o and aim to apply the

Collectively Compact Operator Approximation Theory of Anselone

[1, Theorem 1.6].

Note first that, when proving Theorem 4.3 (i), we showed that
k € M1[0,l], and that K is compact on C[0,1]. Since K
is also compact from 1,[0,11 to ¢[0,1], it follows that

KP,  is compact on cfo,11.
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By virtue of (4.4.3), it follows directly that KPn + K
pointwise on clo,1], and also, less directly, that the set
{KPn} is collectively compact [1, p.5]. We prove this last
assertion, by showing,using the Ascoli-Arzela Theorem, that the set

st = {kRRo:n€EN , ¢€clo,il, [of,s1}

has compact closure in clo,11. Firstly, for ¢ € clo,1],

with I|¢“°° <1, and n€ N , we have, using (4.4.2),
Ixe ¢].. < Ix[.l2, ¢l

f c“K||w||¢l|m f C“Klloo ’

where “K“w denotes the norm of K operating from Lw[O,I]

to ¢l0,1]1, and thus S is bounded. Secondly, for ¢ € clo,1],

with ||¢|lw <1,n€xw8, tt€lo,1], we have, using (4.4.2)

and Holder's inequality,

1
|ke_¢(t) - kB ¢(0)| = | [ (k(t-s) - k(1-8))P_o(s)ds]
0
< e -y [P0l
fcﬂkt-k,r““-*O , as t>T ,
since k € M, [o,1]1, and hence S 1is an equicontinuous set in

cL0,1]. Thus, by the Ascoli-Arzela Theorem, [46, p.82], it follows
that S has compact closure in CcL0,1], and hence that the

set {KPn} is collectively compact in C[0,1].

Then, since, by Theorem 4.3 (i), (I-K)_l exists on

c[0,1], it follows that (I—I(Il"n)m1 exists on cfo,1] , for
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sufficiently large =n , and is uniformly bounded in n . Using
(4.2.3), then, it follows that yﬁI exists for large enough =n ,
with

I1
Y.

-1
n = (I"KPn) £,

and by Theorem 4.3 (i), we have,

II
n

y-y [a-k)"? - (I—KPn)—llf

-1
-k )™ (KR )y , (4.4.6)

from which (4.4.5) follows, on taking the infinity norm.

B

Now return to y_ , the existence of which is ensured,

for sufficiently large =n , by the fact that
I1 I
Pnyn = ¥, . (4.4.7)

To obtain the bounds (4.4.4), we use (4.4.6) and (4.4.7) to

write

I_ Ir_ _JII
Y-y, =Y - Py (y-By) + P (3-y;")

-1
(y-P_y) + P (I-RP )™ (R-KP )y .

Then, since K 1is bounded as an operator from LWLO,l]

to c¢[0,1], (,I--Kl’n)_1 is uniformly bounded on ¢{0,1], and P

n
is uniformly bounded as an.operator from cf0,1] dinto L _[0,1],
we have

bvale € P27l + clare)™ cerepy],
s 2yl + cf ey,
S P23l + cfRle |5-2u70

1A

C"y—Pnyﬂ& ’ (4.4.8)
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and also, in view of (4.2.1), we may write

I
(I-PnK) (y—yn) y - P Ky - Pnf

y "Pny ’
from which it follows that

Iy-25]e < 12Kl Iy-ile

< a+cfgly |-yl (4.4.9)

The result (4.4.4) then follows from (4.4.8) and (4.4.9), and this

completes the proof.

It is clear that in order to satisfy (4.4.3), and to
estimate the order of the right hand side of (4.4.5), we must

estimate
ﬂK¢ - KPn¢“w ’
for any ¢ € C[0,1]. This is the purpose of the next theorem.

In fact, it turns out that (4.4.3) is a redundant assumption,

being automatically satisfied by Bl .

Theorem 4.6 Let Bl be satisfied. Then, for ¢ € ¢[0,1],
we have
c115||<1>-1>n¢||°° , rta,
| x-xe 9], <
ChGR.n(%)IId)-Pnd)“m , T =20 ,
where

§ = min {r, o} .
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Proof For t€ [0,1], n€EN, and ¢ €clo,1], we have,
using Theorem 4.4 (i) and the duality arguments from the mathematical

theory of the finite element method [11],

1
| | k(t-8)(@(s) - B ¢(s))ds]
0

| -k )o(t) |

1
| [ (k(t-s) - u (8)) (9 (s)- B O(s))ds] ,
0
and hence one application of Holder's inequality yields,
1
| (k-xe Yo (e) | < fo |k(t-8) - u (s)|ds [o - B of,

from which the required estimate follows via Theorem 4.4 (1) .

This result leads immediately to the following corollary.

Corollary 4.7. Let Bl, B2 be satisfied, and let £ € c[o0,1].
Then, for sufficiently large =n , yﬁ and in are well
defined, (4.4.4) holds, and
II )
Iy - vyl s o0’y - B3|, > rtae ,
-y < by - @ =
Iy - vyl s @y -23]g s =0,

where 6 = min{r,a} .

Proof. It follows by Theorem 4.6 and (4.4.2) that for ¢ € clo,11,
)
Ch ||¢“oo ? r*a ’
| &-xe_)¢],, <
s, ,1
ce’ @ o], r=a ,
where § = min{r,a} . Hence (4.4.3) holds, and the estimates

(4.4.4) and (4.4.5) follow. The required estimates
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for “Y-Yzlﬂw then are obtained by applying the results of

Theorem 4.6 to (4.4.5).

Remark. It has been shown by Chandler (see Theorem 4.2 above)

that, 1f k 1is sufficiently smooth then “y-&ilnw converges

I
faster to zero than “y—yn“°° R the order of the improvement

being O(hr) ’ if splines of order r are used as approximating
functions. The results obtained here show that, even if k is

weakly singular, “y—y;[lI“°° still converges faster than Ily-yIIl"°° .

However, the order of improvement may be drastically reduced, and

indeed, may not be enhanced by the employment of higher order splines.

The final theorem of this section estimates the rates of

convergence of yi and yil to y , given certain smoothness
properties of f and k. This is the main theorem of the

chapter, and the results of Corollary 4.7 are included in it.

Theorem 4.8 Let Bl, B2 be satisfied, and let f € N?[O,l],

for some B >1. Then, the conclusions of Corollary 4.7 hold,

and
Iy - valo = o0@" ria
IIY B Y;[llum - o(hY+6) r + min{a,B-1} ,
A
Iv - 5. = o ™ead) |r = minfa,g-1}
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1
ly - yillm = o rma
r
Iy - v = ow™eacdy) r 4 minfa,8-1}
n J
Iy - vi. = owmd» | r=a .
\
"y - innm = O(HY+62n2(%)) J r = min{o,B-1} .
with vy = min{r, a, B-1} ,
and 8 = min{r,0} .

Proof. By (3.2.3) , we have
tentio cwflp,1 ceo,u ,
and thus the conclusions of Corollary 4.7 hold. The required

estimates are obtained by estimating “y - Pny“°° .

Note that, by Theorem 4.3 (ii), and (3.2.3), it follows that

- NTin{a+l’B}[0,l] c wEmin{m+l,B}][0’1]‘E C[min{asB—l}][o’lj’

and

y € Wintotl.Bleg 1y ¢ yminenBllrg 4y

Hence, using (4.4.2), we have, for any En € S¥(Hn) s

Iy - 2ol = lGEp. = Ja-B6-E)],

IA

(1+C) Ily - E'-'nllm 4

and thus, by Theorem 4.4 (ii),
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chnY s r % min{o,B-1} ,
Iy - 2oyl <
Y, 1
Ch.zn(E) , r = min{o,B-1} ,
with 6 = min{r, o, B~1} ,

and the required estimates follow.



92.

4.5 A GRADED MESH

The results of Section 4.4 demonstrate that Galerkin methods
for equations with singularities may sometimes possess rather poor
rates of convergence. It may be remarked, however, that these poor
rates arise partly as a result of our (rather naive) approach of
using splines defined on arbitrary (quasiuniform) meshes, and that
much better results may be obtained by using meshes specially chosen
to take account of the singularities in the solution, y . Recently,
such an approach has been employed by Chandler [12] and Schneider
[55] to improve the performance of product integration methods for

weakly singular equations.

We shall illustrate some methods that may be used to improve

Galerkin methods, by referring to equation (4.1.3).

Note that Bl is satisfied by the integral operator of

(4.1.3). We shall assume throughout that B2 is also satisfied.

It follows from Theorem 3.9 that the solution y of
(4.1.3) is of the type {y, r, {0,1}}, see Rice [48] , for any
r€ N , where Y = min{a, B-1} . Suppose we consider the
solution of (4.1.3) using splines from Sg(Hn) , Wwhere, for
n€ N , the mesh Hn is no longer arbitrary and quasiuniform, but

is given (see Rice [48]) by

0,0--, 2

14
(;; i

2+1 ,.00 1

—i. 4
.
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where
2 = n/2 (n even)
o = EE—I (an odd)
and
qQ = rl/y .

Note that the knots of this mesh are "bunched up" near the end
points 0 and 1 (where y behaves badly), and "spread
out" in the interior of the interval [o,1] (where y 1is

well-behaved).

It is shown by Rice that, for each n € N, there exists

a spline En € Sg(l'[n) such that
Iy - €] = ol (4.5.1)
y n w nr L] L] L

The mesh Hn does not, however, satisfy the

quasiuniformity requirement (4.4.1), and so, with P denotirg

the orthogonal projection of L2 0,11 onto Sg(Hn) , we do
not necessarily have, for general r €N ,

[P locc, neEw. (4.5.2)

However, wvhen r =1, we have, for ¢ € Lw[O,I]

n (¢, ui)
AU o

where, for each i =1,...,n, uy is the function on [0,1]

defined by the relations
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w @) = 1, t € o, xll
1=1 ,
u) = 0, te(xl, 1]
u () = 1, te(xi—l’ xi] .
i 1 .
ui(t) = 0, t € [0,1]\(xi_1,xi}
Hence,
|(¢’ui)l
P <
kol s o Tey
Jusl
S - A L
i=l,...,n "uiHZ
*4
[ dt
x
= sup i-1 -
i=l,...,n EN ﬂ¢“w N “¢ﬂm
[ at
X4-1

and so (4.5.2) is satisfied in this case.

Thus, using the space S?(Hn) as our approximating
subspace, the estimates of Corollary 4.7 are true for r=1.

Using (4.5.2), we also have, for any gn € Sg(ﬂn) R

el = laepogl.

iA

C"y_gnMw )

and, using (4.5.1) with r =1, and the estimates of Corollary 4.7,
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we then obtain the improved estimates (4.1.7) and (4.1.8) for

rvale = prglle -

If we wish to use higher order splines (i.e. r > 2) defined
on the non-uniform mesh Hn , then (4.5.2) is not known to hold,

and so we may not use the results of Corollary 4.7 to estimate
—yT d ~yi1 Ho r, if we are willing to
“y yn“°° an “y Yn “w . wever, we are willing

accept estimates in the L2[0,1] norm, then we may appeal to the
initial convergence results (Theorem 4.1 and (4.2.4)),to obtain

the following result.

Theorem 4.9 Let yI ’ yII

n a be the approximate solutions to

(4.1.3) defined by (4.2.1), (4.2.3), with

0
U, = s (M) , n€EN ,

for some r €N , where Hn is the graded mesh introduced

Ei
in this section. Then estimates (4.1.9) and (4.1.10) hold.
Y

Proof. Note that (4.1.3) is of the form (4.1.1), with
f € L2[0,1], and [70, p.3211, K compact on L2[0,1]. Since
we have assumed B2 , it follows that (I—K)-'1 is well defined

on L2[0,1]. Also [18] we have
ﬂ¢ - Pn¢“2 -0, as n >,

for every ¢ € L2[0,1]. Thus, Theorem 4.1 and (4.2.4) hold.

Now, by (4.5.1), we have, for n € N ,
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lv-evl, = Ja-2) G-,
< 2fy-g ], < 2fy-E .
s cx
n

and, using this in Theorem 4.1 and (4.2.4), we obtain (4.1.9) and

(4.1.10), completing the proof of the theorem.
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4.6 NUMERICAL EXAMPLES.

In all four examples given below, splines of order 1 (i.e.
plecewise constant functions) were used as approximating subspaces.
In Examples 1, 2, and 3 a uniform mesh was used, while in Example

4 a graded mesh, as discussed in Section 4.5, was used.

To obtain reliable estimates of the orders of convergence
for our numerical calculations, we choose to solve equations which
have known solutions. Thus in each of our examples the imhomogeneous
tern, £, is chosen specially so that y has a particularly
simple closed form. To obtain theoretical convergence rates, in
the case of Examples 1, 2 and 3, we use the known properties of y
to estimate the order of “y—Pny"°° . and then we use Corollary

4.7 to estimate “y—yi"oo and “y—yI];I"°° . In the case of

Example 4, theoretical convergence rates are given directly by

(4.1.7) and (4.1.8). Theorem 4.8 is not applicable to these examples,
since it employs the full singularity analysis for a general f

given in Chapter 3, and hence is inappropriate whemn £ is specially

chosen.

Although the solution in Examples 1 and 2 is smooth, in
Examples 3 and 4 it is singular, and so these examples do constitute
a representative sample of the type of problems encountered in

practice.

In Tables 1 to 4 the estimated order of convergence, EOC,

of the quantity e, , say, was calculated using the formula

Zn(en/ezn)

EOC = ——Il‘-l_é_ .
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In all examples we assume that B2 is satisfied.

Example 1.
1 i '
y) = £(t) + [ |t-s| ? y(s)ds, t € [o,1] ,
0
where f was chosen so that y(t) =¢t . Note that Bl is

satisfied with o =13, Since the solution is contrived to be

smooth,

o) ,

“}’ - Pny““’
and so Corollary 4.7 gives

by - v5. = o

.

and

L
<
1
<
-
H
p——1
8
]

1
0 [nslz} :
The results are shown in Table 1.

Example 2.
1 3
y@) = £) + [ |t-s|? y(s)ds , t € [o,1] ,
0

where f was chosen so that y(t) =t . Note that Bl

is satisfied with o = 3/2 . Corollary 4.7 predicts
I 1
“y - ynnw - o(n)
s S
“y ~ Yn “w = 073 *
n

The results are shown in Table 2.
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n Iy | y-va | EoC
© (Theory © (Theory
predicts 1.0) predicts 1.5)
2 0.47 0.32
1.31 1.54
4 0.19 0.11
1.27 1.78
8 0.79(~-1) 0.32(-1)
1.13 1.71
16 0.36(~1) 0.98(~-2)
1.08 1.71
32 0.17(-1) 0.30(~2)
Table 1.
n Iy FOC Jy-v2'] EOC
L ( Theory o (Theory
predicts lJﬁ predicts 2.0)
2 0.26 0.17(-1)
1.00 1.95
4 0.13 0.44(-2)
1.05 2.00
8 0.63(-1) 0.11(-2)
1.02 1.92
16 0.31(-1) 0.29¢-3)
0.95 2.01
32 0.16(~-1)

JﬁO.?Z(ﬁé)

Table 2.
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Example 3.
2 (1 .y
y(t) = £(x) +3 | |t-s|7? y(s)ds, t €[-1,1] ,
_ 2.3/4
where f was chosen so that y(t) = (1-t") . Bl 1is

satisfied with O = 1/2 . This example has been considered by
several authors, see, for example, Baker [7], Phillips [44], Spence [65]

and Schneider [55 1. In this case, the solution is not smooth, and

in fact y € NZ/4[-1,1] E:N3/4[-1,1] Nncl-1,11 , and so Theorem

4.4 (ii) implies that ~

1
Iy - 29w = o[:3—/—4} .

Thus Corollary 4.7 predicts

I 1
Iy - ol = °[03/4]' ,
and
1T 1
Iy -9l = °[n5/4} y

'
The results are shown in Table 3.

Example 4.

We consider the same equation as in Example 3, but this time we

use a graded mesh as described in Section 4.5. Then, the predictions

Iy - v = o
and
I 1
Iy - v lo = 0[;375}

follow from (4.1.7) and (4.1.8). The results are shown in

Table 4.
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n “ y—yrIx“m EOC “y—yIIIIH EOC
(Theory © (Theory
predicts 0.7 predicts 1.25)
2 0.75 0.40
0.35 0.57
4 0.59 0.27
0.71 1.17
8 0.36 0.12
0.78 1.29
16 0.21 0.49(-1)
0.81 1.29
32 0.12 0.20(-1)
Table 3
n “y-yi“°° ~ EOC l "y—yﬁlﬂ EOC .
(Theory (Theory:
predicts 1.0) predicts 1.5)
2 0.75 0.40
0.50 0.80
4 0.53 0.23
0.92 1.31
8 0.28 0.93(~1)
1.00 1.54
16 0.14 0.32(-1)
1.11 1.68
32 0.65(~1) 0.10(-1)

Table 4
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CHAPTER 5

COLLOCATION METHODS FOR TWO-DIMENSIONAL PROBLEMS

5.1 THE METHODS.

In this chapter, we will be concerned, in general, with the

numerical solution of the equation
y(£) = £(t) + A [_k(t,s)y(s)ds, t€Q,
Q

where SQE? is a domain (i.e. an open connected set) which is
bounded, and § denotes its closure. The functions k and f are.given
on 0xQ and @ respectively, A 1is a given scalar, and

y is the solution to be determined.

Without loss of generality, we may simplify matters by

considering the equation

y(t) = £(t) + [ k(t,s)y(s)ds, t€Q. (5.1.1)
Q

Equations of this form are important in applications (see

Chapter 6 and [27]) . We abbreviate (5.1.1) in the usual way by
y=f+Ky ,

where

Ky(t) = [ _ k(t,s)y(s)ds, t€EQ . (5.1.2)
Q

In order to analyse the numerical methods which will be

devised for this equation, we introduce the following basic assumptions.

Cl. k is in the class Ml(ﬁ) .
c2. The homogeneous version of (5.1.1) ,
y(t) = [_k(t,s)y(s)ds, t€qn ,
Q

has no non~trivial solutions in Llfﬁ) .
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c3. fE€c® .

It then follows, by Cl and Theorem 2.1 that K is compact
as an operator from Lm(ﬁ) to C(Q) , and hence, also from
C(ﬁ) to C(ﬁ) ) Hence it follows from C2, C3, and the Fredholm
alternative, that

y = @R E
is well defined in C(Q) .

We shall use the methods of collocation and iterated collocation

to define two different approximationms, y; and y;I s to y.
Specifically, we shall seek y§ in the form
o)
y ] au ’ (5.1.3)
N i=1 ii
where {ul,...,uN} is a certain set of piecewise constant basis

functions defined on § , and the coefficients {al,...,aN} are

the solution set of the N X N linear system obtained by demanding

13
“

that

y;(tj) = f(tJ.) + Kyﬁ(tjz s j=1,...,N, (5.1.4)

where {tl,...,tN} §7§ is some predetermined set of collocation

points.
We then define yﬁ by Ehe natural iteration,
N
I1 I
vy = f+Kyy = f+i£1ai Ru, . (5.1.5)

The basis set {ul,...,uN} and the collocation

points {tl,...,tN} are defined as follows.
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For each NE N we introduce a mesh (partition) HN of

Q, consisting of N open, simply-connected, pairwise-disjoint subsets

of Q, {Qi:

its centroid, and

i=1,...,N} , with the property that each Qi contains

N
Q = U Q 3

=1 T

For i=1,...,N, we then define ug to be the function on
which takes the value 1 on Qi R and 0 elsewhere. We
assume that

L g as N~»w, (5.1.6)
where

“ u = max sup "t -t! >

Tl i=l,...,N t,t'€Q, I

and we also assume that

for i=1,...,N.

It may be noticed immediately from (5.1.4), (5.1.5), C3 and

the fact that K  maps Lw(ﬁ) into C(Q) , that y§1 is

a continuous function which coincides with at each of the

I
N
collocation points, and hence is a kind of natural continuous inter-

polation for yﬁ . The main theme of this chapter will be to

compare the numerical performances of y; and yﬁI . In

y; generally has better convergence

properties than y§ s provided the collocation points are appropriately

fact we shall show that

chosen. A summary of the main results which we shall obtain is given at the
end of Section 5.2. My two~dimensional results given here were first
reported in [64] ; where analogous methods for one dimensional equations

were discussed.
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5.2 THEORETICAL FRAMEWORK. .

In order to analyse the convergence of the approximations y§
and yéln defined in Section 5.1, we need to cast equations. (5.1.4)

and (5.1.5) (which define our approximations) in some suitable
operator theoretic setting. With this in mind, we define a projection

PN from C(R) onto Span{ul,...uN} S:Lm(ﬂ) by

N
P = izl¢(tilui . (5.2.1)

It is easy to show that PN is bounded as an operator from

c@® to Lm<§) , with the operator norm satisfying
2yl <1 NEN . (5.2.2)

Then, noting that conditions Cl, C2 and C3 ensure
that £, y and Ky are all in c() , We may rewrite

(5.1.4) as

1

It follows then, from (5.1.5) and (5.2.3), that

I1 I

PNYN = ¥y o (5.2.4)

and hence, on substitution of this relation into (5.1.5), that

11
N

_ 11

y§ and Yy exist and converge

to y we shall use some standard arguments. Our method is

In order to prove that
II
analogous to that used to prove Theorem 4.5. We first consider YN
which is defined by equation (5.2.5). Aiming to apply the
Collectively Compact Operator Approximation Theory of Anselone, we show

that the hypotheses of [1, Theorem 1.6] are satisfied in the space C(ﬁ) .
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Firstly, K 1is compact as an operator on c(R) (see
Section 5.1). Secondly, K 1is also compact as an operator from
Lw(_ﬁ) to C@) ’ and since PN is bounded as an operator from

C(ﬁ) to Lw(ﬁ) , it follows that KPN is compact, and hence

bounded as an operator on C(ﬁ) .

Thirdly, for ¢ € c(® , we have,
| x-xe o], = [xG-2®) |,
< [Rlel? - 20l

Ixl, weo, Jogfe) 0, as N>, (5.2.6)

IA

where w is the two-dimensional modulus of continuity,

defined [ 68, p.111] , by

w(p,e) = sup _ |o(t) - d(tN] , (5.2.7)
t,t'eN
Je-e'],, <e

for €>0, and ¢ Ec@® .
Thus,
KPyo ~ K¢ ,

as N-»>o in ¢@) . for each ¢ € C(ﬁ) .

Fourthly, we show that the set
s = (kR : NEN , ¢Ec(§),]|¢||w51}
has compact closure in c@®@) . We do this using the Ascoli-Arzela

theorem [46, p.82]. When ¢ € c(Q) with lld)"m <1, we have,

using (5.2.2),
Ixeytle < [¥]l2n¢l
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and it follows that the set S is bounded. Also, for t, TER ,

¢ € C(?Z.) . “¢Hm <1, we have, by HO6lder's inequality and (5.2.2),

|Kkeyo(t) - Re@(D)| = | [_ (k(t,8) - k(1,8)) Bd(s)ds]
Q

1A

"kt - k‘rlll IIPN¢“m

||kt-kTﬂl+0, as t>T1T

IA

by. Cl. Hence the set S 1is equicontinuous. We may now use the Ascoli-

Arzela theorem to conclude that S has compact closure in C(ﬁ) .

Since (I-K)“1 is bounded on C(ﬁ) , it now follows
[1, Theorem 1.6] that, for sufficiently large N , the operators

(I-KPN)-]' exist on C(§) R and are uniformly bounded in N .

Returning to (5.2.5), it follows that -yél exists in

C(ﬁ) , for sufficiently large N , and

yl? = (I- Kl’N)“1 £ .
Hence
- -1
y-nl= l@-07 - a-re)TE
_ -1
and thus

>y e < Oy - =@l
with €  dindependent of N .

Now, let us return to yi; . The existence of yl:g ’ for

large enough N, is guaranteed by (5.2.4). It may also be shown,
using an argument analogous to that used to prove (4.4.4), that
1
Cily-Pyle < Jy-vyle < Colv2yrle -

with € and C, independent of N . Since y € c(®) R
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we have, cf. (5.2.6),

Iy - PNy“w +0,as N+>w,

and thus we have proved the following theorem.

Theorem 5.1 Let €1, C2 and C3 Dbe satisfied. Then, for

sufficiently large N, yﬁ exists in Lm(ﬁ) ’ y;I exists in

c), y; R yﬁl converge to y , and

I
v - s3l_= ody -zl
and

Iy - 55 = o(fry - kRG] -

Our task in the remainder of this chapter is to use Theorem

R :
IN N

5.1 to analyse the rates of convergence of
to y. In Section 5.3 we analyse the case when the kermel k ,
the inhomogeneous term £ , and the solution y are suitably

smooth. In such case we obtain the estimates

Iy - sile = 0l (5.2.8)
and
Iy - 55le = 0T} (5.2.9)

the latter result being dependent on the correct choice of
collocation points {tl,...,tN} . These estimates are proved in

Theorem 5.3.

It is often (indeed usually) the case that the properties of k
and f are known, but that the properties of y are unknown. In
Theorem 5.4 we give conditions on k and f which ensure that y has

the smoothness properties needed for (5.2.8) and (5.2.9) to hold.
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The analysis of Section 5.3 uses Taylor's series methods,
and hence requires that both k and y be fairly smooth.
If k 1is weakly singular then not all the conditions of Theorem
5.3 are satisfied. The analogues of (5.2.8) and (5.2.9)
for the weakly singular case are proved in Section 5.5, using
approximation theoretic arguments which are more sensitive to the
regularity of both k and y than the Taylor's series methods.

We restrict ourselves to the case when ! 1is a rectangle and

k has a weak singularity along t=s.

The main result of Section 5.5 is Theorem 5.15. As an
illustration of the kind of information contained in Theorem 5.15,

consider the prototype equations,

ye) = £¢6) + [9 [Ye-s]% Yy(e)as, t€l0,1x[0,d],  (5.2.10)
0 0

with 0<a<1, and

d

y&) = £¢8) + [O [Mon|e-s|y(s)ds, t€[0,1Ix[0,dl,  (5.2.11)
0 0

where [xl denotes the length of any vector x € ]R2 . and

f is twice continuously differentiable on [0,1] x [0,d]. Theorem

5.15 then predicts that, for these prototype equations,

I
Iy - e ls = 0l

and

B+1
0Ty 1yl

where, in the case of equation (5.2.10), B is any number satisfying

YN(T) “oo

0<B<a , and, in the case of equation (5.2.11), B is any.
number satisfying 0 < B < 1 . Here HN(T) is a family of

rectangular meshes on Q= 1[0,1] x [0,d], which depend on a parameter
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T 1in such a way that, as T+ 0 , N(t) +» , and, as T-+0,
the subsets of given by HN(T) shrink in size in a suitably
uniform manner. The precise way that N(T) depends on T will

be explained in Section 5.5.

One of the crucial ingredients of the proof of Theorem 5.15
is an accurate characterisation of the regularity of the solution to
(5.1.1), in the case when Q is a rectangle and when k has a

weak singularity along t = s . The required regularity theory

is given in Section 5.4.
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5.3 EQUATIONS WITHOUT SINGULARITIES

2

Let QCR be the domain introduced in Section 5.1.

In the remainder of this chapter, we shall make use of the Banach spaces
) , @ , cMa,bl , Lipg (P0)  and Lipscﬁ) ,

where m € N and 0<B<1l. Aunified definition of

0 ?

these spaces may be given as follows.

Let D be any domain in R . Then we let Cm(f)
be the space of all functions ¢ € ¢(D) , which have the
property that

alvly

Y
Bxll cee

€ c@® ,

ox @
n

for all multiindices Yy satisfying I'y] <m. (We use here
the standard notation for multiindices, see [37, p.19] .) Also,
we let LipB(-D_) denote the space of all functions $ € C(S) ,ii
which have the property that

sup |¢(t+h) - ¢(t)] < ClhlB R

teD
t+heD

for a1l h € R'\{0} , with C independent of h . Both
Cm(_ﬁ) and I..:i.pB (D) become Banach spaces when equipped with an
appropriate norm, [37, p.25], but the precise definition of the
norm will not be required for what follows. We shall also refer

to the Sobolev space W;(ﬁ) . the space of all functions ¢ € Lz(-ﬁ)

such that % ¢ L, () , and % ¢ L,(®) . This is also a
atl 2 at2 2

Banach space under an appropriate norm [37, p.264] .
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When we define t to be any point in &, then, without

further explanation, we shall assume that t has coordinates

(tl’tz) .
We shall consider the orders of convergence of y; and
yéI when the collocation points {ti :i=1,...,N} are chosen

so that t, is the centroid of Qi s for each i=1,...,N.

Using elementary calculus, it can be shown that, in this

case t; = (til R tiZ) ’ where

. L §
til = 3 f 51 ds1 ds2 ’
i Qi
and : (5.3.1)
1 P
ti, = 5= | s,ds;ds, , i=1,...,N,
i Q
i
and Ai denotes the area of ﬂi .

The choice of points (5.3.1) is crucial to the following
analysis, the main motivation for this choice coming from the

following lemma.

Lemma 5.2. Let y€ Cl(—ﬁ) with %%— € Iipl(§) . —g—%—e Lipl(-ﬁ) s
2

1
and let the collocation points {tl,...,tN} be chosen according

to (5.3.1). Then, for i =1,...,N,

| [ Gs) - y(e)ds| < c“nNni [ds
Qi 91

with C dindependent of i and N, and

2
| I?i (y(s) - PNy(s))dSI < CIIHNL ’

with C independent of N .
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Remark. This lemma shows that the function y - PNy although
?

only O(HHN"w) in the supremum norm, has an integral which converges
with order uﬂNni . This is the central fact which allows us

to prove increased rates of convergence for y - yél in Theorem 5.3.

Proof of Lemma 5.2

For 1i=1,...,N, we have, using the two dimensional

Taylor's theorem,

[ GG - ye)ds = 2 (e [ Gomtyy)ds + 2 ) [ (sytypas
2 : o,

i ’ 2y 2

+ [ (Sl-til){ %f—(e - (t >]ds+ [ (sy-t iz)[ 3, - (t )]ds
Q 1 i,s
i i
(5.3.2)
where Ei s denotes some point on the segment joining ti

and s .

By choice of collocation points (5.3.1), the first two
terms of (5.3.2) vanish, and, by the hypotheses of the lemma, the®

integrands of the remaining terms are uniformly O(HHNH:) . Thus

| (o) - y(evas| < cfngf2 [ as (5.3.3)
y 2y

with C independent of i and N, as required.

Since, by (5.2.1)

-

N
[_ @) -RyeNds = [ [ (3(s) - y(ty)ds
Q ' i=1 2

the second part of the lemma follows by summation of (5.3.3) over i .
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Theorem 5.3 Let Cl , C2 and C3 ©be satisfied.

(1) 1f ye€c'@) , then (5.2.8) holds.
(i1) f yect@ , 2L, 2L €Lip, (@ , k € Lip, (5% , and
3t, ’ t, 1 1

the collocation points are chosen according to (5.3.1), then -

(5.2.8) and (5.2.9) hold.

Proof. (i) Since vy € Cl ® . it follows simply from Taylor's

theorem, that, for t, t' €Q , with ||t-t'“m < ‘HN““' , we have
lye) - yen] < cmyf, .

with C independent of t and t' . Since

Iy - 2yle € 00, M)

with ® defined by (5.2.7), estimate (5.2.8) now follows via

Theorem 5.1.

(ii) Clearly (5.2.8) holds by the reasoning of part (i). To
prove (5.2.9), we estimate HKy - KPNy"w s and then apply Theorem

5.1. Note first that, for t € Q ,

[ky(e) - kegy(e)| = | [_ k(t,8)(y(s) -~ Byy(s))ds|
Q
N
=Y [ k(t,s)(y(s) - y(ti))dsl s (5.3.4)
i=1 Q,

using (5.2.1).
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Then, since k€ Lipl(ﬂxﬂ) » Wwe have

N

| ¥ [ x(t,8)(y(s) - y(ti))ds|

i=1 Qi

N
) [kct,ti> [ GG) - yedds + [ (k(t,s)—kct,ti))(y(s)—y(ti))ds]
i=1 Q Y]

i i

N N
< ¥l I HGte)-y(eDas| + [f!k(t,s)-k(t,ti)lly(s)—y(ti)lds]
1=1 Q, 1=1%
2 5.3.5
< ¢ IIH"N“oo (5.3.5)

with C independent of N and ¢t , where the final estimate
is obtained by Lemma 5.2, and the fact that, since

k € Lipl(hx_ﬂ) = I..:i.p1 @), and yE Cl ® ,
lk(t,8) - k(t,t)][y(s) - y(e)| < c|n)? , s €@
L] H i i - HN 00 E i

with C independent of N , t and s .

The estimate (5.2.9) then follows via Theorem 5.1, after we

have used (5.3.4) and (5.3.5) to show that
2
I&y - ey, < iyl -

As remarked in Section 5.2, generally the properties of y are
unknown, while the properties of k and £ are known. Therefore
the results given here will be a lot more relevant practically if we can
present conditions on k and f which ensure that the regularity
requirements of Theorem 5.3 are satisfied. Such is the purpose of ‘the

following theorem.
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Theorem 5.4 Let k€ Cz(ﬂxﬂ) , f£€ 0265) and let C2 be

satisfied. Then y € Cz(ﬁ), and, provided the collocation points
are chosen according to (5.3.1), the estimates (5.2.8) and (5.2.9)

hold.

Proof. It follows from Theorems 2.3, and 2.1, that k satisfies

Cl, and thus, by C2, y exists in c@® .

Now, letting D2 be any differential operator of order two
with respect to the multivariable (tl,tz) » and using Lemma A2 ,

we have

p2y(t) = D2E(t) + [ D’k(t,s) y(s)ds . (5.3.6)
a

Since Dzk(t,s) € Cc(OxQ) = Cdﬁxﬁ)_, it follows from Theorems 2.3
and 2.1 that the integral on the right hand side of (5.3.6) is continuous
in ¢t . Hence, since f € Czdﬁ) R it follows from (5.3.6) that

D2y €c(@ , and thus yE szﬁ) .

The estimates (5.2.8) and (5.2.9) then follow via Theorem

5'3.
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5.4 REGULARITY RESULTS FOR WEAKLY SINGULAR EQUATIONS

We will be concerned in this section, with the equation (5.1.1),
in the case when & is a rectangle in ]Rz s and k has a weak
singularity along the diagonal t = s . Without loss of generality,

we assume that & = [0,1] x [0,d], for some d > 0 .

To clarify notation, when X is a scalar, lx| will

2, Ixl

denote the absolute value of x . When x = (xl,xz) ER
. 2 2.%

will denote the length of x , (xl + x2) . For the rectangle

—_ —k

Q =[0,1] x [0,d], we let & = {t-s : t,s €Q}=[-1,1]1 x [-d,d],

and we define

= sup, [x| .

xefd

From now on we shall study integral equations of the form
(5.1.1) which satisfy Cl1' , C2, and C3' , where Cl' and C3'

are new assumptions on k and f given as follows.

cl'  k(t,s) =1Pa(,]t-sl) for some 0<a<1,
with
Vv ) = B, o<a<1,
and
¥ =) = B(x) Inx ,

—ke
where B € CIEO,IQ 11 .
3 fec’@® .

A kernel k which satisfies C1° is said to be weakly

singular along the diagonal t = s .
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It is easy to show, using the properties of B, and

Lemma A6, that the function
x>y (x])

isin L,@), forall 0<a<l, and it follows by Theorem 2.3,
that, if k satisfies Cl1', then k GIMZ(Q) . Hence

k € Ml(ﬁ) s, and so Cl' implies Cl . Since C3' trivially
implies C3, it follows that any results which are true under Cl,

C2 and C3 , are also true under Cl', €2 and C3' .

In the next theorem we list the important properties of the
integral operator K (given by (5.1.2)) when the kernel k 1is

weakly singular.

Theorem 5.5 Let k satisfy Cl1' . Then the operator K  has

the following properties.

(1) K:L,@ +C@® 1is compact.

(ii) K: Cc@® »c@ is compact.
(iii) K maps ;.2(5) into w;(ﬁ) .
(iv) K maps C(R) into Lipl(ﬁ) .

Proof. The proof of (i) follows from Theorem 2.1 (since k,E'MZ(ﬁ)),
and (ii) follows immediately. Part (iii) follows from some results of

Mikhlin (see the recent paper of Pitkidranta [45, Lemma 1]) .

To prove (iv), we appeal to the results of Kantorovich and
Akilov [33, p. 363]. Denoting the gradient with respect to the multi-
variable t by V_, we have, for 0<a<1,

t
e (t-s]) .
Vobollemsl) = =g (e msL + (£-s)47
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and thus

| v, ¥ e=sD ] = Jysle-s])]

cle-s]*2 (5.4.1)

(A

with C independent of t and s using C1' ,

Thus, using Lemma A6, and (5.4.1), it follows that, for

0<a<1l,
[ 19, Cle=sD]ds < ¢ [_ |e-s]%%as
Q Q

s|*2ds<c<w, (5.4.2)

< ¢cf
= —%
2
with C independent of t .

Since, using Cl' , we also have, for 0<a <1,

lb, (le-sD)] -
S s < I8l [ le-s]® as
— —s - —
Q © Q
where 6 =aqa if 0<a<l,

g
<

and 6 is any number, satisfying 0 < 6<1, if a=1, it
follows by the reasoning used to obtain (5.4.2), that for all 0<a <1,

[wy(t=s]) |

_ — ds < C<o>®

with C independent of ¢t .

The required result (iv) then follows from [33, p.363, Theorem 4],

and on recalling that c(Q) Cc Lw(—ﬁ) .

In order to motivate the next theorem, which investigates the
properties of certain integral operators which are related to K,
recall the methods of Chapter 3, where we analysed one dimensional weakly

singular equations of the form (3.1.1). Qur technique hinged on the
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fact that, provided y is sufficiently regular, we may differentiate
the integral Ky given by(3.1.2) to obtain ( cf. Lemma 3.1):
d b b
Ky'(t) =3¢ f k(t-s)y(s)ds = y(a)k(t-a)-y(b)k(t-b)+ f k(t-s)y'(s)ds .
a a

Consider the two dimensional equation (5.1.1), with operator of the

form given by (5.1.2), and Cl':.

dl1
Ky(t) = f§ by lt-sDy(s)as = [ [ ([(t),t)) - (s1,8,)[)y(s;,8,)ds,ds, .
00

A technique analogous to that used in Lemma 3.1 may be employed. Suppose

gaty— € L2(§) . Then we may obtain, formally,
1

dl1
) .
atl fO fowa(l(tl’tz) - (sl,sz)by(sl,sz)ds.lds2

d 1
_ 9
= Io 3, folpa(l(tl,tz) = (5158,)]) y(s,8,) dsds,

d
IO Vo U (E158)) = (0,8,)]) 3(0,5,) ds,

d
fowa(l(tl,tz) - (l,sz)|) y(l,s,) ds,

d1
- 2y
A [(Vall (et = (13D 5T (o105 doyds, (5.4.3)
We show in Theorem 5.7 that formula (5.4.3) is valid. But
first, Theorem 5.6 investigates the properties of a class of integral

operators which arise in such formulas for the differentiation

of Ky.
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For z =(zl,z2) €N, define the integral operators

d . —
{,¢a<|(t1stz) - (zl,sz)l>y(z1,fz)ds2, t€aq,

2]
N
<
~
t
N’
]

and,

1
Iowa(l(tl,tz) = (51,2,) y(s;,2,)ds;, t €Q

T vy(t)
)

The operators Sz s Tz arise naturally in the differentiation of
1 2
the two dimensional weakly singular integrals, Ky . For example,

the formula (5.4.3) can be written much more concisely as

9 - - 3y
3tl Ky = Soy Sly+K3t1 .
Concerning the properties of Tz . Sz, ’ we have the
1 2
following theorem.
Theorem 5.6 Let 2z = (zl, zz) be any point in & .

(1) s Tz are compact on cE@ .

(ii) s , T map c(Q) into Lip ® , for any 0<B<aoa .
z,” Tz, 8

(111) If yE€c@ with 2L €c@ , then =—T yEL,@) and
ot atl z, 2

1

8t1 2

°
+T 2L (p)
z, 8;1 ?

for all ty €[0,d], and almost all tg €flo,1] .

i a oy 7o) 9 0e)
(iv) 1If y € c(Q) with at, €¢(Q) , then 3, SzlyELz(ﬂ)

T T, y(t) = 30,200, (| (t1,t5) = (0,2)]) = y(Lz)U, (| (£1,E)~(L,2,)])
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3%;-szly(t> = 321,000, (| (e}, £,)- (2,00 D=y (2, ([ (£, ~(2 ), D) )

9
+ 5 =X () ,
z, atl

for all t; € [0,1], and almost all t, €[0,d .

Proof (1) We prove the result for Sz only; the proof for

T is analogous.
Z3

First, write
5,78 = 15 Py esty) = (z758))]) y(zp58,)ds ,

and note that Szl = Q2 Q1 s

where
Ql Y(tl’tz) = Y(letz) ’ (tl’tz) €EQ ’

and
Qz Y(t19t2)= Iﬁwa(l(t]_’tz) - (ZI’SZ)I)Y(S].’SZ)dS’ (t]"tz) €N .
Y

Since Q1 maps c@) continuously into cE , the proof will
follow, provided we can show that Q2 is a compact operator, on c®) .
To prove the compactness of Q2 s we show that its kernel is in

leﬁ) . and use Theorem 2.1. Note that Theorem 2.3 (ii) is not

applicable to this case, so instead we must argue from first principles.

We first abbreviate the quantity l(tl’tz) - (sl,sz)l , for

any t,s €8 by Itl’tZ’sl’szl .

Then, for t€R, and a#$1 we have by Cl1', and

Lemma A7 ,
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[ﬁ.wa(l(tl,tz) - (zl,sz)!)ds < "Bﬂm_fﬁ_Itl,tz,zl,szla-ldsf c. (5.4.4)

with C  independent of ¢t , and a similar argument holds

if a=1.

Also, for t,t' €Q ,a %1, we have

Lﬁlwa(ltl,tz,zl,s2|> - Yy (t],t5,2,58,])|ds

ﬁﬁl(B(ltl’tz’zl’sz'> - B(ltd, 20,8, | D) | ,t,2,,8,] %7

o-~-1

+ B(|t],th,21,8, ) ([t t5,2,8, ] - Iti’té’zlssz'a_l) lds

A

C sup lB(ltl,tz,zl,szl) -~ B(Iti,té,zl,szl)l + “B“mlt-—t'[B s
SZGEO:d]

where C is independent of t and t', and O0<B<a<1l,
and the final inequality is obtained using Lemmas A7 and A8. Also,

* &
since, by Cl1' , B E Cl[O,IH |1 , a simple application of the’two
'
dimensional Taylor's theorem shows that

sup IB(ltl,tz,zl,szl) - B(|ti,té,;rs2|)l < Clt - t'|
SZeEO,d]

with C independent of t,t' , we have
f_ﬂ Il]}a(ltl,tz,zl,szl)—ll)a(lti,té,zl,szl)lds < C]t—t'IB s (5.4.5)

with 0 <B<a<1. An analogous result may be proved if a =1 .

It follows from (5.4.4) and (5.4.5) that the kernel of Q2

is in leﬁ) s, and the required result follows.
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(ii) Again we prove this result for Sz only ; the proof
1

for Tz is analogous. The proof is simple, for, letting y € C(ﬁ) .
2

and using the same abbreviations as in (i) we obtain, analogously to

(5.4.5), that for t, t+h€E€Q

|s. y(t+h) - s_ y(t)]
1 31

d
= l fo (’tpd(ltl+hl’t2+h2’zl’szl) - ‘pa(Itl’tZ’Zl’szl))y(zl’SZ)d82|

<chl® ,

with B any number satisfying 0 <B<a<l1l, and C

independent of t and h. This completes the proof.

The proofs of (iii) and (iv) follow simply from Theorem A3.

For example, letting

kG = Y, O +(t,z)D) . x€[-1,1]
¢(=) = Y(xszz) ’ x € [0,1] ’

then it is easy to show that Kk € L1[—1,1] , and since, by (i),

T, vy exists for all (tl’tz) €Q, Theorem A3 may be applied to
2

obtain the formula for ——— T given in (iii). The fact that

5%—-T y € L, (Q) follows from (i) and Lemma A6.
1 22 2

The result (iv) may be proved similarly.

The properties of the operators Sz and Tz proved in
1 2

Theorem 5.6 now enable us to prove the following theorem, which is the

natural generalisation to two variables of Lemma 3.1l.
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Theorem 5.7 Let k satisfy Cl', and let y€ cE .

W 1 LEL.@ , then
Btl 2

2Ky = Soy—Sly+K—§L .
1 1

(ii) i 2 € L, , then

o - - 9y
atz Ky = Toy le 4+ K 3t1 o

Proof. We prove (i) only, (dii) is proved similarly. Fix

t, €[0,d], and let
1 .
g(t;,s,) = fowa(l(tl,tz) - (s1,8,)]) y(s;,8,)ds, .

Then, by Theorem 5.6(iii) we have, for all s, € [0,d], and almost

9
351— (t1>85) = ¥(0,8)¥ ([ (t;,t,) - (0,8))])

= Y(lssz)wa(l(tlatz) - (lssz)l)
1 9
+ fo‘”a(“"l’tz) - (sl,sz)I)W"I(sl,s-,z)ds1 (5.4.6)

Now, by Theorem A2 {using the methods of Rudin [50, Chapter 7]

to verify the required measurability conditions), it follows that

d 1
de; b LVl - Gpasp Dyteras;)deyds,
d d 1
- fog-,;; fo“’a(l(tptz) - (57,8, )y (s;,8,)ds,ds, , (5.4.7)

and the required result follows on substitution of (5.4.6) into

(5.4.7).
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Recall the notation used in Chapter 3: The expression
{a(t) + b(t) + ... + z(t)} is used to denote some linear combination

of the functions a(t), b(t),..., . and z(t) .
We are now ready to state and prove the main result of this

section.

Theorem 5.8 Let Cl' , C2 and C3' be satisfied. Then,

if y is the solution to (5.1.1),

@ yecd@® .

(11 2 € Lipg@) and 3y € Lipg @ ,

3ty oty
where B 1is any number in the range 0<B<a .,
P e @
(iii) 3t13t2 € LZ(Q) , with

2
a'—' —
5tlaE; (t) = { ¢a(|(t1,tzﬂ) + wa(l(tl,tz) - 0,
+ ‘pa(l(flgtz) - (1,0)') + l]la(l(tl,tz) - (l,d)l)}

+ ¢(t) , for almost all t€Q ,

where ¢ €c@) .

Proof. Since f € Cz(ﬁ) Cc@® , it follows from C2,
Theorem 5.5 (ii), and the Fredholm alternative, that (5.1.1) has

a unique solution y € cE@ . Thus, Theorem 5.5 (iii) Ky € W;(ﬁ) .
and by C€3' , it follows that.the right hand side of (5.1.1)

is in W; ® , and hence 1y € W;(ﬁ) .

We may then use Theorem 5.7 (i) to differentiate (5.1.1),

obtaining

8y _ af - 8y 5.4.8
ot g +8gy - §;y +K oy ( )
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By Theorem 5.5(i), K T)%:L € c() , and by Theorem 5.6 (i)
1

s5Y € c@® and sy € C(f) . Hence, by C3', the right-hand
side of (5.4.8) is in C(ﬁ) R and thus gat}'_ Ec® . It may
1
. dy ey
be proved similarly that oY € c(?) , and we have proved (1) .
2

It follows from Theorems 5.5 (iv) and 5.6 (ii), and since

f € CZ(-Q-) , that the right hand side of (5.4.8) is in Lips(ﬁ)

for any B satisfying 0 < B <o , and hence %__Y— € LipB(ﬁ) s
1
for 0<B<a . It may be shown analogously that a_aty_ € Lipe(ﬁ) R
2

for 0<B<oa , and hence (di) follows.

To prove (iii), note again that 3%2- €Ec(® , and so, by
1

Theorem 5.5 (iii) K ?atl € Wé(ﬁ) » and also, by Theorem 5.6 (iv),
1

3 = 9 = 2 =
L. (] — (S

31:2 Soy Lz(ﬂ) and 3t2 S,y € LZ(Q) . Since fE€C(Q),
the right hand side of (5.4.8) has a partial derivative with respect

2 _
which is in LZ(S'Z) . Hence 2y € LZ(Q) , and we

to t
atzatl

2

may use Theorems 5.6 (iv) and 5.7 (ii) to differentiate (5.4.8)

with respect to ty s to obtain:
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dt,9t; &) = Ly (et + 9 (e ,e) - 0,a)])

+ Py (et) = @00 + ¥ ([ (ept,) - QL))

2
o f
4 (t)
atzatl

9y - a OV
+ 8y 3t (t) 5; 3t, (t)

+T. 2 (t) - 7. 2L (e)

0 atl 1 atl
%y
+ K atzatl (t) . (5.4.9)

By Theorems 5.5 (i) and 5.6 (i), and since £ € Cz(ﬁ) .
it follows that the last six terms on the right hand side of (5.4.9)
are in C(ﬁ) . and the result (iii) follows. This completes the

proof of Theorem 5.8.

In this section we have investigated the regularity properties of
the solution to a weakly singular two dimensional integral equation.
It is clear from Theorem 5.8, that, in the case that Cl', C2 and C3'
are satisfied and @ = [0,1] x [0,d], the conditions of Theorem 5.3 (i)
are satisfied, but the conditions of Theorem 5.3 (ii) are not satisfied,
either by y or k . The analogue of (5.2.9) for the weakly singular
case will be proved in Theorem 5.15 using the regularity results of

this section.
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5.5 CONVERGENCE RESULTS FOR WEAKLY SINGULAR EQUATIONS.

In this section, we analyse the convergence of the numerical
approximations to y defined in Section 5.1, in the case when the
kernel of the integral equation (5.1.1) is weakly singular, and when

Q =[0,1] x [0,d].

Since the piecewise constant functions introduced in Section 5.1
are really just two dimensional splines (of order 1 or, equivalently,
of degree O0) , it is reasonable to expect that a tight analysis of
these numerical methods will require some two-dimensional spline
approximation theory. Appealing to Munteanu and Schumaker [41]
for such a theory, we must first define a certain class of rectangular

meshes on Q .

Definition 5.9 For each T € (0,1], 1let there exist integers

p(T), q(T) , and meshes

: 0= xO(T) < xl(T) < ... <x

)(T) =1,

IIp(‘f) p(t

and

Hq('r) : 0= yo('c) < yl('r) < eee < ¥ )('r) =4,

q(t

with the property that, for some constants Cl’ CZ’

CT <A (M <A () SCT, i=1,2, TE(0,1],
where

A (T) = min &, -x, . (1)),
$lyeee,p(@) 3 3-1

A (1) = max () -x,_,(@)),
17 ge,ep@ 3 31

A (t) = min Gy T) - y,_,())
2 2=1,...,q(t) * -1
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and

A (T) = max (yo (T) - vy, . (T))
277 sl F A1

In addition, suppose that, for 0< T i—;- ’

{xj(ZT) : 3 =0,...,p21)} C {xj('t) 3 =0,...,p(0)} ,
and
{yz(ZT) : 2 =0,...,q27)} c {YR,(T) : 2=0,...,q(0)} .

Then, with N(T) p(T)q(T), we have, for each T € (0,1] .

a mesh Do, on R, given by
r[N(T) B {(xj-l(T)s Xj(r)) x (yl_l('l'), ¥ (D): 3=l,...,p(T)32 =1,...,q(T)}.

We call such a family of meshes {HN(T) : T€ (0,11} an M.S.Family

of meshes on § .

We shall refer to the mesh HN (1) as being made up of the
subsets Qi('l.') (or Qi when T is understood), for
i=1,...,N(t) , where, for definiteness, we adopt the indexatfon

convention
9(2-1)p(~r)+j () = (xj_lcT), Xy (1) % (5_1 ()5 v (1)

for j=1,...,p(t), and £ =1,...,q9(T) .

Remarks 5.10. Let {H'N(T) : T € (0,11} be an M.S. family of meshes
on €.

(1) For each 1i=1,...,N(T) , the collocation point ti ’
defined by (5.3.1) then turns out to be the centre of the rectangle

51(1) .

(ii) It is clear from the definition of HN(T) ’ that

N(T) + » as T~+0,
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and
€T < ||%(T)Hw <c,t
so that
“HN(T)H“+0’ as T*>0.
(iii) Four examples of M.S. families of meshes are given in [41].

A particularly simple example is the case where, for T € (0,1] s, p(T)

is chosen to be the integer which satisfies

1 1 1 1
:E+§>P(T) >T"73

and q(T) is set equal to p(T) . Then

Hp('t) : 0= xo(‘r) < xl('r) < ... < xp(_r)('r) =1

is given by
Xj('l') = jt , J=0,c0,p(t) -1,
Lo =1,
and
Hq(T) :‘IO = YO(T) < Yl('f) < .00 < yq(T)('[') =4
is given by
Yo (1) = 21d , £=0,...,q(1) ~ 1 ,
Yoyt =4 -

‘(iv) ry practically important subfamily of the family given in

Remark 5.10 (iii) s
{IIN(n_l) tn=1,2,...} .

In this case p(n-l) = Q(n_l) =n, and the mesh HN(n'l) is just

obtained simply by dividing & into N(n—l) = n2 subrectangles, each

1
of dimensions a by n .
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From now on we shall let {HN(I) : T € (0,11} denote some

fixed family of M.S. meshes on § . We shall let PN(T) denote
the projection, analogous to (5.2.1), onto the space spanned by the

set of piecewise constant functions defined on the mesh HN('I.') ’

using the collocation points discussed in Remark 5.10 (i).Then, for any

T € (0,1}, P is a bounded operator from c() to Lw(-ﬁ) ’

N(1)

with operator norm satisfying

"PN(T)“ <1, T € (0,1] . (5.5.1)

We define, for r € N , the two dimensional spline space

-1 —
Uyry » M 5 by

-

-1 — —
Ulyey D = {E & EGspusy) = £1(s))Ey(s)), for (sy,8,) €7,

rl

where £1€Sr 1( (T)’[O 1), E eS (T),[O dl) },

r-l

r—l
and S [0,11) and Sr q (

are the one dimensional spline spaces defined in Section 4.2,

We describe some important approximation theoretic properties

of this two dimensional spline space in the next two lemmas.

Lemma 5.11 Let wa be defined as in Cl'. Then, for each t €Q ,

0 —
€
there exists a spline um’t S1 (HN(T) ,2) such that

f o, Cle-s]) - u, (s)lds < C|hyepyle

with C dindependent of t and T .
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Proof. The proof follows from Munteanu and Schumaker {41, Lemma 5.5],

0 —
P - - E
where it is shown that there exists ua,t SI(HN(T) ,8) such that

[ﬁ lwa(lt-SI) - ua’t(s)]ds

< [T I Itj}a(lt-sl)lds + sup f__ l\pa(lt—s—hl) - lpu(lt—sl)lds s, (5.5.2)
Q o<hnll <t R

3

with C independent of t and T, and where for EE R ,

@==u€§mﬁem. (5.5.3)

Now, for ¢t € Q » we have, using Cl' ,

“B“m f__ lt—SIa_l ds < Cl, O<aac<l,
[}
[y Ce-s])as < (5.5.4)
Q
I8]., J_lam|t-slls<c, , o=1,
Q

with Cl’ C2 independent of t .

Also, arguing as in Theorem 5.6(i), we may show that, for

heER? , O0<a<1,

fﬁ‘lwa(lt—s—hn - ¥ (| t-s])]ds
h

fC[ sup |B(|t1—h1, t,~hy,8.,8, h - B(ltl,tz,sl,szl)l:l
seﬂh

¥ “B““’ ‘L !‘tl‘_hl’tz-'hz’sl’szlmm1 - Iil’tzasl,szla-llds

where € is independent of t and h . It then follows, using

Lemma A9 and the fact that B € C1 [O,Iﬁ*]] , that for h € IRZ, 0<ac<l,

I_ 1y tle=s=n]) - ¥ ([t-s])[as < C |n] , (5.5.5)
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with C independent of t and h, and an identical bound

may be proved when a=1.

Combination of (5.5.2), (5.5.4) and (5.5.5) and noting that

In| < v2 |n], 5 yields
.‘;_i|lpa(|t-s|) - ua’t(s)lds <CcT,

with C independent of t and T, and the result then follows

from Remark 5.10(ii) .

Remark 5.12 Note that, by the triangle inequality, we have, from

Lemma 5.11,

jﬁ 5, ¢ 1ds < Cfiy e fo + fh_ o, (lt-s])]as

<c ,

for some C which is independent of t and T , where the final

inequality follows from (5.5.4), and the observation that

“ILN(T)“oo <A+ ay= > T € (0,1] .

Lemma 5.13 Let Cl', C2 and C3' be satisfied, and let y Dbe
the solution of (5.1.1). Then there exists a spline & € S;(IIN(T) ,ﬁ)

such that
B8+1

Iy - £l < CIIHN(T)“oo g

with C independent of T.

Proof. Note that, by Theorem 5.8, y € C'.l ) and -ﬁ-, —BLELip @ ,
—_— atl Btz B
for any B in the range 0< B8 <a . It follows from Munteanu and

Schumaker [ 41, Lemma 5.5], that there exists £ ES%(HN 0 ,) such that

Iy - €l < Aoyl + w,05,01 (5.5.6)
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with C independent of T , where wz(y,T) is the two dimensional

modulus of continuity given by

w, (y,T) = ﬁ) sup |y(t + 2n) - 2y(t + h) + y(v)] ,
o<ih o=T tEQZh
and 5211 is defined by (5.5.3).

Now, it follows easily from the two-dimensional Taylor's theorem,
and the known properties of y , that

B+l

wz(y,T) <CT (5.5.7)

with C independent of T, and the required result follows on

substitution of (5.5.7) into (5.5.6) and using Remark 5.10(ii) .

The next lemma highlights an important property of the choice

of collocation points given in (5.3.1) and Remark 5.10(i) .

1 —
emmn € -
Lemma 5,14 Let & SZ(HN(I)’ Q) Then

&) -E)ds =0, i=1,...,N(1) .
Q, (1)
Remark. This result demonstrates the special role played by the

points (5.3.1), and one consequence of it is the fact that the two
dimensional approximate integration rule
N(T)

[_é¢tsdas =} ¢e) J_ ds
Q i=1 Qi(I)

turns out to be exact for functions in S;(HN(T),ﬁ), i.e. for functions
which reduce to bilinear functions almost everywhere on each of the subsets
Qi .

dimensional analogue of the product mid-point rule.

In other words, this approximate integration rule is the two
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Proof of Lemma 5.14. Note that, for all s & Qi s and thus, for

almost all s € §i , we have E(s) = El(sl)gz(sz) , Wwhere El

and 52 are linear. Note also that, by Remark 5.10(1), ty is

the mid point of 51 . Thus, to prove this lemma, it would be

sufficient to show that

a1
Io Io ((a;s,#b,) (a,8,4b,) = (a;t +b,) (a,t,+b,)) ds,ds,

0,

1 d
where ay» bl’ ays b2 ‘ are constants, and tl =3 t2 =3 .
Now,

[ ] ((a;s,+ b)) (a,8,+ b)) - (@t 1t byl (ayt,+ by)) ds,ds,

d 1
= a3, fo fo (slsz- 2)ds ds2
d 1
+ alb2 fo fo (sl tl)dslds2
d 1
+ a,b, [ [ (s~ t‘z)dslds2 s
0 0
and
d 1 1
J | (s-t))dsds, =d [ (s;-t))ds; =0, (5.5.9)
0 0 0
since tl --;— s and, similarly,
d 1
[ | (s,- t))dsids, =0 . (5.5.10)
0 0
Also,
A - (4 )
(s,s,.,~ t,t )dsd -—s-—tt ds
0 0 152" t1t 0 272 172
= 142 =
= % d® -~ dtlt:2 =0, (5.5.11)

and the required result follows on combination of (5.5.9), (5.5.10)

and (5.5.11) with (5.5.8).

(5.5.8)
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I I1

Let yN('c) ’ y1\1(1')

denote the approximations to y defined

by the collocation and iterated collocation methods respectively,
using the M.S. family of meshes {HN(T) : T€ (0,11} . Note that,
in view of Remark 5.10(ii), Theorem 5.1 holds with N replaced by
N(T) , provided that the phrase "N sufficiently large" is replaced
by the phrase " 1 sufficiently small” . This fact will be used in

the proof of the following theorem, which is the main result of this

section.
Theorem 5.15 Let ©€l', C2 and C3' be satisfied. Then
. I
0 Iy - IN(T) I, = O(HHN(T) lo?
and
.. B+ 1
(11) “ yN(T)“w = O(HHN(T)“ ’

for any B in the range 0<B<a .

Proof. By definition of the projection PN(T) ’ it follows that
y-P vi, < sup _ ly(e) - yen] 5
“ N I t,t'€N

le-tt ||°°<IIIIN(T) oo

and since it was proved in Theorem 5.8 that y € C1 @ R an easy

application of Taylor's theorem yields

17 " ByenTle € My le 5-3-12)

with C independent of T , and the result (i) follows from

Theorem 5.1.

To obtain (ii), recall Lemma 5.11, and write, for t €Q ,



138.
Ky(t) - KBy yy(t) = Iﬁ tpa(lt—SI)(YCS) = Py(q)Y(e))ds
= Iﬁ (-‘pa(lt-sl) - ua’t(s))A(y(s) - PN(_T)Y(S))dS

+ fn_ (5 () (y(s) - By y7(s))ds
= Il(t) + Iz(t) . (5.5.13)
say .
Now, using Holder's inequality, we have for ¢t € Q,
|1, ()] < Iﬁ [y (Jt=s]) - u, (®]ds |y - 2y yy]. »
and it follows from Lemma 5.11, and (5.5.12), that

l1,(e)] < CIIHN(T)H: , (5.5.14)

with C independent of t and T .

0 = g
€ p)
Also, since l:o.,t Sl(HN(T)’ ) , we have, for some

CiseeesC which are constant with respect to S ,
1 n

fo) [ e (s))
I,(t) = c (y(s)- P v(s))ds
2 i=1 i -gi N(T)
N(T)
= _§.1 ci fﬁ (I - PN(T))(Y = E) (S)ds s
a i

. . 1 5 .
where § is any function in SZ(HN(T),R) s using Lemma 5.14.

Thus, making use again of Holder's inequality, we have, for ¢t € Q R
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|1,(e)] | [_uy, ) @ - Byy)& - E)()ds

f

1A

f_g luy cds Ja -2 G - D,

A

cly - £l

with C independent of t and T , where we have used (5.5.1),

and Remark 5.12. Thus, by Lemma 5.13 ,

B+1
RGN LN (5.5.15)

with C independent of t and T, and 8 any number such

that 0 <B<a .
Combining (5.5.14) and (5.5.15) with (5.5.13), we obtain
B+1
LSRR NS | LY L J

with C independent of T, and (ii) then follows from Theorem

5.1.
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CHAPTER 6

NUMERICAL SOLUTION OF A CURRENT DISTRIBUTION PROBLEM

In this chapter we discuss the numerical solution of a two
dimensional integral equation which describes the distribution of
sinusoidally varying current in an infinitely long conducting bar of
rectangular cross section. In such a conductor, the alternating
current induces a magnetic field, which in turn sets up eddy currents,
causing the current to be displaced towards the surface of the
conductor. In the case of a conductor with a circular cross section,
an analytic solution to the problem is known [ 56], but in the case
of a rectangular cross section the problem must be formulated as
an integral equation, and solved numerically. The numerical solutiomns

obtained are of interest to electrical engineers [16], [51].

The physics of this problem is discussed in [56] and [27,
Section 4], where it is shown that, for a conductor with rectangular
cross-section of length a and breadth b , the current

distribution y may be found by solving the integral equation

b/a 1
A 2 2 A
F(tysty) = Cy + A fo {).Q,m/(tl—sl) +(t,=8,)" y(s;,8,)ds, ds, (6.1)

over the scaled rectangle [0,1] x [0,b/a] C R? , and retrieving

the solution y over [0,al x [0,b] using the relation
ylat ,aty) = 3(c1,ty), (£),t)) € [0,1] x [0,b/a] . (6.2)

In (6.1), the parameter )\ 1is given by

)\-_-iESQ
27 ’
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where g is the conductivity of the material which the bar is made
of, yu  is the permeability of free space, and ®w 1is the angular
frequency of the alternating current. In all the examples given

below, we consider a copper bar, which has conductivity given by

_ 1 8
&8 = 7,83 10,
and we set
u o= 4mx 1077 .

and

w = 60 % 27

these quantities being given in RMKS wunits.

Remark. We point out a misprint in [27, p.99] where the value

of w given should read 60 X 2w , instead of 60.

As explained in [27], C0 is a constant which may be chosen
arbitrarily, and may be considered to be a scaling factor which
determines the total amount of current flowing in the conductor. To
understand this point more clearly, note that if we modify (6.1)
by replacing Co by 2C0 R then the solution to the equation

thus obtained is merely twice the solution of (6.1).

Let us suppose that, for given NE€ N , we have a mesh

{Q :4=1,...,N} of Q: = [0,1] x [0,b/a] , as described in
AT ~TT

Section 5.1, and let us denote, by N and YN » the approximations
to the solution § of (6.1), defined by (5.1.4) and (5.1.5)
respectively. The approximate solutions y§ and yﬁl of the

unscaled current distribution problem are then retrieved using (6.2).

We describe below the numerical results obtained for three different
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cases of this problem, all using rectangular meshes, with the collocation
points chosen as the mid points of the rectangular subdivisions. In

Examples 1 and 2 the scaling factor C0 in (6.1) will be chosen

so that
b/a 1 AT

[ vyttt =bfa (6.3)
0 0

or, equivalently,

b a

[ | yywae =ab,
00

i.e. the total current flowing, according to the first approximation

I . .
Yy is equal to the cross—sectional area of the conductor. In

Example 3, the value of C0 is kept constant as the meshes vary. (The
actual choice of C0 will be given below.) It is necessary to keep
C0 constant if we wish to compare our numerical results with the

theoretical predictions of Section 5.5, since the theory assumes that

the inhomogeneous term does not change as the mesh varies.
In order to determine the coefficients in the system of linear
equations which arises from (5.1.4), and in order to compute the

solution y;I at an arbitrary point, it is necessary to calculate the

integrals

2 2
é 2n/(t1-sl) +(t2~sz) dslds2 . i=1,...,N
i

at an arbitrary point ¢t = (tl,tz) . Fortunately these integrals
are sufficiently simple (in the case of the rectangular meshes we
describe below) to be calculated analytically. We remark however,

that, in the case of a mesh with a more complicated geometry, or in
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the case of a less simple kernel, these integrals may have to be
calculated by quadrature, a technique that would introduce more errors

into our numerical scheme.

Example 1. We choose a rectangular bar with length a = 0.1, and
breadth b = 0.005 (dimensions in meters), and we solve the problem

using three different meshes

(a) 4 equal partitions lengthwise and 1 breadthwise.
(b) 8 equal partitions lengthwise and 1 breadthwise.

(c) 16 equal partitions lengthwise and 1 breadthwise.

These meshes are illustrated in Figure 1. In Tables 5 and 6 we give
the results of the numerical solution of this problem. In Table 5
we give |y§I| R the approximation to |y| s the physical

current flowing, while in Table 6 we give arg(YﬁI) (defined in

radians in the range -m<6 < w), the approximation to

arg(y) the phase angle of the current.

The results are given at a number of points along the line
drawn lengthwise through the centre of the cross-section (the results
along any line across the width varied only on the third significant
figure). We mark with an asterisk the values of |y§1| s arg(ylé)
at the collocation points. Note that Tables 5 and 6 also include the
values of Iyil and arg(yé) , since yI is constant over

N

each of the mesh subdivisions, and equal to at each of the

II
N

collocation points.

The results are given for the top half of the cross section

only. The results for the bottom half will be the same by symmetry.
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The values of Iyllél and IyI];II for the 20 x 1

case are given in [27]. The 20 x 1 case is also solved by

Silvester [56], using a different method.
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0.0025 0.0025 0.2%?5
N\
P ‘
! |
| | |
| | —t
| 1 |
| | !
0.05- | 0.05 | 0.05 :
I | —f =
| | |
| T T
1 i t
\B ' .
(a) (b) (e)
4 X 1 case 8 %X 1 case 16 X 1 case

In each case Yil' is calculated at points along the dotted line

Figure 1.
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for 0.1 x 0.005 bar

Distance
along
breadth
0.0025 0.0025 0.0025
Distance
along
length
0.0 1.24 1.26 1.27
*
0.003125 1.22
0.00625 1.17" 1.18
0.009375 1.13"
0.0125 1.00" 1.10 1.10
0.015625 1.06"
%
0.01875 1.04 1.03
0.021875 1.01"
0.025 1.00 0.987 0.985
%
0.02815 0.965
0.03125 0.949" 0.947
0.034375 0.933"
0.0375 0.931% 0.924 0.921
0.040625 0.912"
0.04375 0.907" 0.906
0.046875 0.902"
0.05 0.918 0.903 0.901
(a) (b) (c)
4%1 case 8%X1 case 16xX1 case

Table 5.

* denotes the value at a collocation points.
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for

0.1 x 0.005 bar

Distance
along
breadth
0.0025 0.0025 0.0025
Distance
along
length
0.0 0.527 0.486 0.473
*
0.003125 0.342
0.00625 0.254" 0.245
0.009375 0.167"
0.0125 0.134" 0.109 0.102
0.015625 0.0462"
*
0.01875 0.00419 ~0.00194
0.021875 ~0.0435"
0.025 ~0.0583 ~0.0745 ~0.0794
0.02815 -0.110"
0.03125 —0.131" ~0.136
0.034375 ~0.157"
0.0375 -0.156" ~0.171 ~0.175
0.040625 -0.188"
*

0.04375 ~0.193 ~0.197
0.046875 -0.203"
0.05 ~0.194 -0.202 ~0.205

(a) (b) (c)

4%x1 case 8%1 case 16X1 case

* denotes the value at a

Table 6.

collocation point.
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Example 2. We choose a square bar with length a = 0.1,
and breadth b = 0.1 (dimensions in meters), and we solve the problem

using three different meshes

(a) 4 equal divisions lengthwise, and 8 equal divisions breathwise.
(b) 6 equal divisions lengthwise, and 8 equal divisions breadthwise.

(c) 8 equal divisions lengthwise, and 8 equal divisions breadthwise.

The numerical results are given in Tables 7(a), 7(b) and 7(c).

In this example we confine ourselves to displaying Ty;Il .
evaluated at a fixed grid of 36 points equally spaced within the square
{ 0,0.05] x [0,0.05] . Since the bar has a square cross-section,
it is easy to see, by symmetry, that Iyﬁll will have the same
values as those given here at the corresponding points of the other
three squares; [0,0.05] x [0.05, 0.1], [0.05,0.1] x [0,0.05] , and

[0.05, 0.1 x [0.05,0.1] .

This problem was solved using the Galerkin and iterated
Galerkin methods by Dewar [19], where the same meshes as in (a), (b)
and (c) above were used. On comparison of the present results with
those of [19], it turns out that the collocation methods converge
a little faster at interior points of the cross section and a little
slower at points on the edge of the cross section, than do the Galerkin

methods.
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Distance
along
ength
0.00 0.01 0.02 0.03 0.04 0.05
Distance
along
breadth
0.00 7.65 5.09 3.79 3.16 2.85 2.75
0.01 5.24 2.93 2.46 1.68 1.19 1.04
0.02 4.05 1.68 1.67 1.03 0.61 0.52
0.03 3.63 1.19 1.15 0.64 0.42 0.46
0.04 3.51 1.11 0.90 0.41 0.31 0.42
0.05 3.48 1.11 0.83 0.33 0.27 0.40
I1
Values of ]yN | for 0.1 x0.1 bar

4 divisions

lengthwise, 8 divisions breadthwise.

Table 7(a).

Distance
along
length
0.00 0.01 0.02 0.03 0.04 0.05
Distance
along
breadth
0.00 7.22 4.87 3.63 3.01 2.83 2.79
0.01 4.87 3.07 2.08 1.43 1.19 1.13
0.02 3.61 1.93 1.29 0.84 0.54 0.44
0.03 3.11 1.35 0.81 0.54 0.31 0.24
0.04 2.95 1.16 0.56 0.35 0.21 0.22
0.05 2.91 1.13 0.50 0.27 0.19 0.22
'Values of ly;II for 0.1 x 0.1 bar.

6 divisions lengthwise, 8 divisions breadthwise.

Table 7(b)
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Distance
along
length
Distance
0.00 0.01 0.02 0.03 0.04 0.05
along
breadth
0.00 7.10 4.81 3.54 3.00 2.82 2.78
0.01 4.81 3.09 1,98 1.39 1.18¢ 1.14
0.02 3.54 1.98 1.23 0.77 0.52 0.45
0.03 3.00 1.39 0.77 0.47 0.29 0.22
0.04 2.82 1.18 0.52 0.29 0.19 0.18
0.05 2.78 1.14 0.45 0.22 0.18 0.18
II
Values of lyN | for 0.1 x 0.1 bar.

8 divisions lengthwise, 8 divisions breadthwise.

Table 7(c).
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Example 3. In this example we choose a bar with length a = 0.1,
and breadth b = 0.05. We solve (6.1) by the collocation and iterated

collocation methods, using the family of meshes
{HN(n‘l) tn=2,3, 4,5, 6, 7, 8} over [0,1] x [0,b/a] ,

which were described in Remark 5.10 (iv). That is, for each n = 2,3,...,8 ,

A1 ~1IT

IN(@1) and IN(a-1) were defined by (5.1.4) and (5.1.5) using the

mesh obtained by dividing [0,1] x [0,b/al into n2 subrectangles,
each of dimension 1/n by ©b/an . The solutions y;(n'l) and
yé%n_1) over [0,al x [0,b] were then retrieved using (6.2). 1In
this example Co was kept constant as the meshes varied, and in fact
was chosen so that ;5(5_1) satisfied (6.3). We shall display here

only our results for y;in‘l) for n=2, 4, 6 and 8, and we

use them to obtain experimental rates of convergence of our approximate
solutions, for comparison with the theoretical estimates of Theorem 5.15(ii).

In Table 8 we give the values of yéin‘l) at the four points *

(0.0, 0.0), (0.05, 0.0), (0.0, 0.025) and (0.05, 0.025) of the
0.1 X 0.05 cross section, where the coordinates denote, respectively,

the distance along the length and breadth of the cross section.

According to Theorem 5.15 (ii),

B+l
oyl )

11 A AT
Iy - el = P - yanl

1
0{;§;I} (6.4)

(since we have a uniform rectangular mesh), where 8 is any number

satisfying 0 <B <1,
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To estimate the experimental rate of convergence, we conjecture

that

I _ 1
(Y - YN(n-l))(t) = c(t) n)‘ (6.5)

where the c¢(t) are complex constants which depend on the point
t € [0,a] x[0,b], and A >0 1is to be determined. Using the

computed values of yéin_1) for n=2,4,6 and (6.5) we obtain

three equations in the unknowns y(t), c(t) and A . Eliminating
y(t) and c(t), we obtain a non-linear equation in A which we
solve using the secant method. A second approximation to A is
obtained by the same procedure, using, this time, the numerical values

of yé%n"l) for n =4, 6, 8. The approximate values of A obtained

in these two approximations are displayed in Table 9. The values of A
obtained by the first approximation are rather erratic in comparison

to (6.4). This is possibly because the asymptotic convergence rate
proposed in (6.5) only holds true for sufficiently large values of n .
The values of A obtained by the second approximation conform more
satisfactorily to the prediction (6.4), at least in the cases of the points
(0.0, 0.0), (0.05, 0.0), and (0.0, 0.025) . The exceptionally high
value of A at (0.05, 0.025) may be seen as evidence that the global
prediction (6.4), although probably sharp on the edges of the domain

(where the solution is singular), is likely to be pessimistic at points in
the interior of the domain (where the solution is smooth). For each of
the four points t, the second approximation to A (given in Table 9)
was used along with the values of y;%6_1)(t) and y§%8'1)(t) to calculate

the constants c(t) in (6.5). The value of c(t) was then uséd to

estimate the maximum absolute error in y§§8_1). The results are given

in Table 10.
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t 11 at LI at 11 at
N 2 IN@-1) ING™Y) IN(@™Y)

(0.0, 0.0) (0.05, 0.0) (0.0, 0.025) (0.05, 0.025)
1.2704+5.8571 0.9466+1.0621 1.140+3.9311i 0.7277-2.1861
1.900+4.4211 1.026+1.2441 1.399+2.3471 -0.2349-0.47831
2.188+4.0551 1.166+1.1714 1.680+1.8401 -0.1187-0.35801

8 | 2.327+3.929i 1.211+1.1344 1.841+1.6474 -0.09286—0.3467i
Table 8.
At point | At point At point At point
(0.0, 0.0) | (0.05,0.0) | (0.0, 0.025) |(0.05, 0.025)
1st approx. to A
using
11 I1 II ~
yN(_Z_l)’ YN(4—1), yN(6—1) 1.3 (— 000) 0.9 3-3
2nd approx. to A
using
11 II 11
Table 9.
At point At point At point At point
(0.0,0.0) (0.05, 0.0) (0.0, 0.025) (0.05, 0.025)
Estimated
error
in II
Yn(s—1) 0.32 0.080 0.12 0.013

Table 10.
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APPENDIX

In this appendix we present the proofs of some of the more
technical results which are used in the main body of the thesis,
Within each theorem the equations will be numbered consecutively

starting from (1).

The first theorem proves the connection between the Lipschitz
spaces of Taibleson [67], and the Nikol'skii space N:(]R) ’
introduced in Chapter 3. This theorem pinpoints one comnection
between the Applied Analysis school of Besov-Nikol'skii et. al., in
the U.S.S.R, and the Harmonic Analysis literature which was developed
contemporaneously in the West. For a unified treatment of the results
of these two schools see, respectively, Nikol'skii [42], and

Stein [66].

Theorem Al. Let A(a,p,q,]Rn) be the Lipschitz space of

Taibleson [67I, p.421], and let N?(]R) be the Nikol'skii space

defined in Section 3.2. Then

NM(®R) = A@,1,,R) ,
for all a>0.

Proof. We prove the more general result
o
A@,p,q,R) = B PYR), 1<pgse, (1)

where Ba’p’q(]R) is the Besov space defined by Kufner et. al.

[37, p.3881. The required result then follows since [37, p.389]
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To prove (1), let o >0 ,1<p<®, 1<q<®, and o«

be split into the sum of [a] and a

Now, by [67I, Theorem 10, p.444], it follows that

¢ € A(0,p,q,R) if and only if ¢ € L(R) , and ¢[°‘]€ A(xy5p54,R) 5

and thus by [67I, Theorem 3, p.421], since 0 < % <1<2,

it follows that ¢ € A(a,p,q,R) if and only if ¢ € Lp(]R) and

20,
fly 0 uyy<x,y>llpq<«» ,

¢[0t]

where wu dis the Poisson Integral of » and we have adopted

the mixed norm notation [67I, p.411] .

Since 0<ao

o $1<2, it follows [671, Theorem 4, p.421]

that ¢ € A(a,p,q,R) if and only if ¢ € LPCIR) R and

-0
I“hl 0 A121¢[ o} (z-h)| . )

< o
Pd

Now, using the definition of mixed norms [67I, p.411]}, we have

[al

-0 -0 1/
0 & ety - 1 gy & a4,

and

|th—% 2 [adl

A ¢ (x—h)“ = ess su I“hl—ao 2 ¢i°d (x-h)
h p® P Ah np ?

heR

and thus it follows, that for q + ©

- -1-0,q 1/q
0,2,.[a] _ %9, 2 [a] q
Ilnl “ao™ Gemll = { L I G <x-h>llpdh}

1/q
> (3)

]
N
ot
—
o
o
>
N
-
—
Q
i’
Q.
t~
o—
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and,

2 [a]

-0 A

finl 0 Aﬁ ¢[a](x—h)" = ess sup ﬂ_______!ﬁ

Po heR 0
|n]

2 . [a]

A ¢

= sup _n_h__a_ll.ll (4)
b0 |n] ©

It follows from (2), (3) and (4) and using the definition of
Ba’P’q(]R) given by Kufner et. al., [37, pp.388-389], that

¢ € A(a,p,q,R) if and only if ¢ € Ba’P’q(]R) , and the

proof is complete.

The next two theorems consider some important properties of
distributional derivatives. The first, Theorem A2, answers the
question: If the integrand of some integral depends on a parameter,
when may we differentiate under the integral sign to obtain the
derivative of the integral? The second, Theorem A3, examines the
distributional derivatives of convolution integrals over finite

intervals.

Theorem A2. Suppose g is a Lebesgue measurable function of
{;,s)éE(a,b)><(c,d),%%- is Lebesgue measurable on  (a,b) X (c,d),

and the iterated integrals,

| [ s8(t,s) dsdt, and f f —a—g- (t,s)dsdt
a ¢ a ¢

exist. Then, for almost all t € (a,b)

d

4 = 9g
r fc g(t,s)ds = fc se (t»8)ds .
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Proof. By definition of distributional derivatives [24, p.142]

we have, for all s € (c,d) , ¢ € Cl(a,b), ¢ having compact support,

b b 3
[ ') gle,o)de ==f ¢(c) 32 (¢,8)de . 1)
a a

Thus, using Fubini's Theorem and (1), we have, for ¢ € Cl(a,b) R

with ¢ having compact support,

b d
[ ¢'(®) [ s(t,s)dsdt
a c
d b. d b 4

= [ [¢'(®) st,e)deds = - [ [ ¢(g¢ (t,8)dtds
¢c a c a

b d 3
= - [ o) [ 2 (t,s)dsae ,
a c

and the result follows.

Theorem A3. For any interval [a,bl, let «k € Ll[ a-b, b-al] ,
éi

<

and let ¢ € wi [a,bl,. Then
d b b
i 1] r(t-s)d(s)ds} = dp(a)c(t-a) - ¢(bIk(t-b) + [ Kk(t-8)¢'(s)ds ,
a a

for almost all t €[a,b] .
Proof. Since Wi[a,b], we may integrate by parts to obtain
b t-s b b t-s
[ x(t-s)¢(s)ds = [{ -f K(x)}rb(s)] + {f K(x)dx} ¢(s)ds .
a

a a-b a a-b

Hence,

b
2 { ] k(e-e)0(s)ds} = d(a)k(e-a)= ¢(BIk(t-b)
a

d b t-s
+3c [ { ] x&ax} ¢'(s)ds , (1)
a a-b
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for almost all t €[a,b] , and the final result follows on using
Theorem A2. (The measurability conditions required may be verified,

for example,using the methods of [30, p.396].)

In the following lemma we prove some technical results concerning
the integral operators from the examples of Section 3.4. The method

follows Richter [49].

Lemma A4. Let K Dbe defined by
1 o-~1
Ky(t) = f It—sl y(s)ds, t€[o0,1}], O0<ax<1,
0
and let m€E Ny . Then

(i) For yv>0,  Yy+0oE N, i€EN we have

0 b

: ) .
k& ooy -0 e h= { T ¢ @andra-0*  gaa-0)d)
j=0

m~-1 . .
+{ 1 "4 @-0%hl e,
3=0

where ¢ € WTH'[ 0,1] .

(i) For ¥Y>0,Y+aE€EN ,i€EN,, we have

0

a+y-1

. i+l . .
k&' o)t + Q-0 @a-H= { T ¢ Garyd+a-o) (2n(1-£))"}

j=0

m-1 . .
+{] «* ¢ a-0""Hl + e ,
3=0

where ¢ € w’i“‘l l0,11.
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Proof. We have for Yy >0, 1 ENO ,
v-1 i 1 a-1 y-1 i
K& @at)?) = [ |t-s| s' " (%ns) ds

0

t 1
f (t:-.sa)m-'l.isy-:l (2ns) ids + f (s-t)
0 t

a_le—l (ns) 1 ds

n

I, () + I,(t) , say. (L

Now, using the transformation s = ut , we obtain

1

@ = 7 7 a-w®t e + gt @
0
io&—l ;
= { I & laandp . (2)
j=0

Now, let 1 >8>0. If t€[6§,1], then

syt = 7 a,-e)¥
j=o0 J

for some scalars a 50 with uniform convergence for s € [t,lﬂ ,

and thus we may integrate term by term to obtain:

w 1
1,(t) = 20 a; | (s-6)%1 (1-9)3 as
=0 %t
v 1 o-1 j ot
= ) a ( [ (1-uw) u’ du} (1-t) R
j=0 0

where we have used the substitution

Thus, for t €[6,1], mGNO,

m-1 ©
- _ey o _yoie R
I,(t) jZO bj(l t) + (1-t) jZO bj+m(1 t) s



160.

for some scalars bi s with the convention that the first term is

void if m= 0, and so

m—-1
I,(t) = {3 (1-t)°‘+j} +¢,(8) , (3)
3=0

where ¢, € WT+1[6,1] .

Now, if t €[0, 1-8] , then

a-l1 _  a-1 tya
(s-t) s (1 s)
o . .
&1 ) a ¢d g3
3=0
for some scalars aj ’ and convergence is uniform provided s > t .

Thus, for € >0, we have

1+e)t 1

( 1 i -1 e .
Iz(t) = f (s—;)a le l(lps)ids + f (S—t)a le 1(R,ns)ids (4)
t (1+e)t
with
1 o-1 y-1, %i Y 5 b ody-2- i
| 0% s " (ns)ds = ¥ a.t [ s J(ens)"as .
(1+e)t =03 Q+e)e
Now, since, for j * a+y-1, we have,
[ 23 gneylas = {2 (ns)t + ..+ (ns) + 1] ,

and for j=a+y -1, we have

[ 273 (neylas i+ly

{ (&ns)

thus, with o+ Yy §¢ N , it follows that

1 1
({+ ) (s-£)* 1Y (ansy Las = | ZO 21 (neyd} +9,(t) , (5)
et Jj=
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vhere ¢, € WTH[ 0,1-48] ,

and with o+ Y€ N, 4t follows that

1 i+l
/ (s—t)a_l sY-l(R,ns)ids= {1 -1

()} + ¢,(0),
(l+e)t 3j=0

where ¢2€W 1[0 1-8] .

Also, using the change of variable s = ut , we obtain

4+e)t
} (s-t)" 1 L gns) tas = t“”"l]l -1 1 et ne) Lau
t

i
) M neyd
j=0

Combining (4), (5), (6) and (7), we obtain

1,(6) = ] L gnnyd) 6,(8), oty N,
3=0
or
I(t) = 2 - Yene)d} + 6,00 wy EN
=0

where, in either case, ¢ is a generic W 1[0,1-6] function,
2 1

and it follows from (3), that

m-1 i
(Y a-0%9F + 1 7 " oI} + o), ety € W,
3=0 3=0

I,(t)

or

I(e) = { 2 (1-t)°‘+5} + 2 - Lgntyd}+ o), oty € W,
3=0

j—

where in either case ¢ is a generic WTHIO,II function,

(6)

€
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and it follows using (1) and (2), that

m-1 i
kR Tanh={ ] -0+ { T M oo} e, 0ty €W,
3=0 j=0

or

m-1 . i+l
ke Tnnh={ 7 -0} + {7 " Yo} + o), ot yew
3=0 §=0

where ¢ € WTH[ 0,11 .

Analogous results may be proved for K((l—t)Y_l(En(l-t))i) R

and the required result follows.

In the next lemma we investigate the properties of the m-th
order Lp[a,b] modulus of smoothness, introduced in Section 4.3.

These results are used in the proof of Theorem 4.4.

Lemma AS. let TEN .

(i) PFor n>0 and 1< p<eo, let

¢ENg[a;b] (1fp<°°)’
or-
¢ €ENla,bl N C[n][a,b] == .

Then, for 0 <h <1, 1<p<>, we have
w_(¢,h)_ < Ch' rtn
T ’ P - ’ ’

0 (6,m) < Ch' fa@) , r=n ,

where Y = min(r,n) .
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(ii) Let k satisfy Bl (Section 4.3), and define k

by (4.3.1). Then, for 0 <h <1, we have

< wr(k,h)

wr<kt’h)L1[0,1] L,0-1,1] °

Proof. Throughout this proof C will denote a generic constant,
which is independent of h . Unless otherwise stated p will

lie in the range 1<pLe» ,
To obtain (i) let 0 <h <1, and consider three cases.
CASE I: n<r. Since ¢ € Ngla,b], it follows directly

from Nikol'skii [ 42, p.159], that

n
wr(cb,h)p <Ch .

CASE II: n>r . In this case it follows, from (3.2.3), that

b € W;[a,b], and hence [ 32, Proposition 2.2] ,
r g,(r)
TRCR YIS e

cCh® .

A

CASE III: n=r . In this case we can infer, via (3.2.1) and

(3.2.3), that ¢€WLn][a,b], with
[l = n-1= r-1, (1)

and hence [ 32, Proposition 2.2], there obtains
[nl [n]
wr(q),h)p <h w1(¢ ,h)p . (2)
Now, it follows from (1) and the hypotheses of the lemma, that

¢[nl GN;[a,b] (1<p<>= )
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and

& e N a,b] N da,b] o=,

and thus [ 42, p.159]

w2(¢[“] M, <Ch o, 1<p<w. (3
Then [ 32, Proposition 5.2], we may extend ¢[ nl to a function
'™ such that

TJmELJR) (l<p<w),

and ,'

" € cm) ==
with T_¢[ nl_ ¢[ n} on [ab] ,
and

y rel ™ Py m) < C[h2||¢[n] I, + oy ,h)P](l <p<e),

w,(zdt ™ by <co,@™m, == ,

Lp(]R)

[n]

where the modulus of smoothness of T¢ n is defined on the whole

of R in the usual way [ 32]. Thus we have, using (3),

[nl

wy(T¢ " ,h) S Ch, 1<p<eo ,

from which it follows [68, p.107, 110], that

wl('l'q;["],h)nghzn%, l1<p<w>, (4)
Now, since
[n] - [nl
w, (¢ ,h)p w, (T¢ [a,b] ,h)P

iA

[nl]
wl(T¢ ,h)p . (5)
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it follows from (2), (4), and (5), that

1

n 1
wr(Cb,h)p <h’ fn 5 .

The required result (ii) then follows on collection of the

results of the three cases I, II and III above.

To prove (ii), note that

_ L.
selkemy = e Mokl po,n ©

0 <|el<h

= max sup IIArk | sup || ATk |
{0 <<h ©F o, ce<0 ©F ko3, }

Consider the case 0<e < h . Then

l1-re

T =,
I 8%l o = ) s

r
I DT (k(t-s-2e)
2=0

t

/

t-1+re

r
) (—l)r-2 (z)k(u-le) I du
2=0

1
/

r
J (-nT% (Jk(u-2¢)|du , since t€[0,1]

<

-1+re =0
r

= A" k <w (k h) Py (7)

S IR RIS N IR
and similarly it may be shown that for -h<€<0,

AT x < w_(k,h) . (8)
" € t"tho,ler - r L1[—1,1]

and the required result follows from (6), (7) and (8).

In the next four lemmas, we investigate the integrability
properties of some weakly singular functions defined over two-dimensional

regions. These results are used extensively in Sections 5.4 and 5.5.
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Lemma A6 Let D Dbe any compact subset of ]RZ . Then,
for 6§ >0,
[1s15% as <o,
D
and for i=1,2,
[ pnl]s]] ds < = .
D
Proof. Since D is compact, it must be closed and bounded. Let

R be a disc, centred on the origin, with radius Ty s say,
large enough to ensure that D S:R . Then, transforming to polar
coordinates, we have,

To

/ Isls-zds < f ISIG_Z ds =21 r6—2 rdr
D R 0

r

"0
= o[ P larca |

0

The second part of the lemma is proved similarly.

In Lemmas A7 to A9 we make use of the abbreviations introduced

in Theorem 5.6.

Lemma A7. Forall t, z€Q, and 0<a<1l, wehave
d
o-1
(i) {)ltl’tZ’zl’SZi dSz f Cl s
d
(i1) 'Llln(|tl,t2,zl,szlﬂdsz <Cy
1 a-1
(1i1) {)|t1,t2,sl,zzl ds; <€y ,
and

1
(iv) {Jzn(ltl’t2’51’22|ﬂdsl <c,
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with Cl’ C2’ C3 and C4 independent of t and z .

Proof. We give the proof of (i) only. The proofs of (ii),

(iii) and (div) are similar.

We have, for all t,z € Q s

d a .
o1 _ 2 2, (a-1) /2
foltl,tz,zl,szl ds, = j(')((::1 2) + (ty-8)) ds,

d d
-1 -1
f f ltz_sz'a d82 f f lea dx < » ’
4] -d
and the result follows.

Lemma AS8. Let t, t', z€EQ.
Then,

d
(1) fouel,tz,zl,szw-l— le1,th,2008, 1% s, < ¢y fe-er|®

for any B satisfying 0<B<ax<xl ,

d
(i) {lenltl,tz,zl,szl - fnle],th,2),s, ] |ds, < Czlt—t'IB ,

for any B satisfying 0 < B <1,

1
-1 -1
(1i1) fontl,tz,sl,zzr" - Je]atesg07, | Has, < cgle-er|®
for any B satisfying 0<B<a<1l1 ,
and

1
(iv) | llnltl,tz,sl,zzl - 2,n|ti,té,s1,zzlldsl < C4|t—t'|B ’
0

for any B satisfying 0 < B <1 s

where Cy» CZ’ C3 and C4 are independent of t,t' and 2z .
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Proof. We give the proof of (i) only; (ii), (iii) and (iv)
are proved in a similar way. The method used here follows Kantovovich and
Akilov [ 33, p.363, Theorem 4].

We divide [0,d] into two regions, [O,d.]1 , and [O,d]2

as follows.

[0,d]1: {52 €[o0,d : |(t1,t2) - (zl,sz)l < 2|t-t'|} .

[O’d]Z: [O’d] \ losd]l .

Then, noting that, for s, € [0,dl, , we have
ltis té’ zls szl < Itl’ tZ’ zl’ Szl + It - t'l < 3|t—t" s

it follows that

-1 -1
{o dal | IFl’tz’Z1’Sz|a - lefatyazyns, % as,
]
1
-1 a-1
< ] [t,,t,,2.,8 Ia ds, + [ ltr,e2,z,,s,] ds
[0,d]1 1°72°71°72 2 [0,d]1 1°72°71*72 2

Iti,té,zl,sz|a‘1

-1
[t .t ,2,,8,]%
1°2°71°°2 5 [ti,ti,zl,szleds2

B
< f |t ,t,,2 58, ] ds +f
1°72°71°72 2
[o’djliltl’t2’21’52|6 [O,JH_Iti,té,zl,szl

-B-1 o-8-1
d]ltl’tZ’zl’SZIa 8 ds2+3B|t—t'|Bf lt',té,zl,szl B ds2

< 2Ple-er|f f
[0’ 1 ] 1
< cle-e')® (1)

provided 0 < B <a, with € independent of t,t' and

z , where the final inequality follows from Lemma A7 .
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Also,
[g dhitl’tz'z1’szla_l - le]sthompes, |7 as,
E
£ o~1
= [g d]! {' VA(‘Al’xz’zlsszl )- dlldsz
U2
€ o-2
< C[g a1 £' |X1,12,21,52| 'dk]dsz (2)
£
2

Now, for s, G[O,d]2 s A in the straight line joining t and

L
t' we have,

IAps2yszps8] = 1(g2.) - (24,8
_>_ |(t19t2) - (zl’sz)l - l(tl’tz) - ()‘l,kz)l
> I(tl,tz) - (zl,sz)l - |e-t'|

1
Z '2' l(tl’tz) - (21;52)l s

and so it follows that

2|x1,x
|t

2’21’32I
128292158, ]

1<

and raising this to the power of 1-B , and substituting into

(2), we have

-1 -1
f ] ltl,tz,zl,szla - Iti,té,zl,sz|OL | ds2
[0,d]2
t
<cf [ 1Az s, Y B aA] | le)ut,.2) 8,17 e,
[0,d]2 t'
t
sclee|Bh T 1 an,z0e, %P s, (al

t! [O,d]2
(3)

IA

t
c]e-tr]B1 [ laA] = Clt—t'lB .
t'
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The result then follows from (1) and (3)

Lemma A9. Let £ =1[0,1] x[0,dl, t,t'"€EQ,0<a< 1,
Then

@ L e, 0tysp00, 1% = [e2,6508,05,1%  as < ¢ e-e]
and

(i1) Iﬁ lknltl,tz,sl,szl - Q.nlti,té,sl,szllds <Cle-t']|

with C, C

1 G independent of t and t' .

Proof. Again we confine ourselves to proving (1i).
The proof follows similar lines to Lemma A8 . Divide Q  into two

regions, D) 1 and D) s 38 follows.

@, = {s€0: |t-s] < 2[t-t']} ,
(ﬁ)2 - ’ﬁ\(ﬁ)l .
Then,
-1 ~1
{§)||t1’t2a51s32|a - Iti,té,sl,szla lds
1

2‘(!—1 ds

o-1
)

<[ lei,t .s,,s ds + [ |t!,t),s.,s
@, 2% . 2%

1

=[  Jt.,t,,s,,s ]a—zlt t,,8.s8,]ds+ [ |t!,t),s.,s la—th, t),s,,8,|ds
= 1°72271°72 1772°71°72 —= 1°72°71°72 1272°71°721
(SZ)1 (9)1

< cleet] 3

with C independent of t and t', using the definition of

(—ﬁ)1 and Lemma A6 to obtain the final inequality.
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Also (similarly to Lemma A8),

{ﬁ) lltlytzsslgszla-l - lti,té,sl,szla-l‘ds;;
°2
¢ o~-1
= {ﬁ) I {:' V)\“)\I’AZ’SI’SZI )- d)\lds
2

t
a~-2
<C {5)2 {:' IA[s2y58758, ] “[dA]ds

t
=cf [ IAl,Az,sl,szl""z ds |dA|
t' (@,

t
<C f' ldA] = cle-t'| , )
t

where we have utilised Lemma A6 again, and the required result

follows from (1) and (2).
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