Treatments for co-occurring depression and substance use in young people: A systematic review

Author/Contributor:
Deady, Mark; Kay-Lambkin, Frances; Teesson, Maree

Publication details:
Current Drug Abuse Reviews
1874-4737 (ISSN)

Publication Date:
2013

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/53276 in https://unswworks.unsw.edu.au on 2023-09-13
Treatments for Co-Occurring Depression and Substance Use in Young People: A Systematic Review

Short Title: Treatments for Youth Comorbidity: A Review

*Mark Deady, B.Psych (Hons.), m.deady@unsw.edu.au
National Drug and Alcohol Research Centre, University of New South Wales; &
NHMRC Centre of Research Excellence in Mental Health and Substance Use, Australia

Maree Teesson, PhD, m.teesson@unsw.edu.au
National Drug and Alcohol Research Centre, University of New South Wales; &
NHMRC Centre of Research Excellence in Mental Health and Substance Use, Australia

Frances J. Kay-Lambkin, PhD, f.kaylambkin@unsw.edu.au
National Drug and Alcohol Research Centre, University of New South Wales;
Centre for Translation in Neuroscience and Mental Health, University of Newcastle, Australia; &
NHMRC Centre of Research Excellence in Mental Health and Substance Use, Australia

*Corresponding Author: Mark Deady
National Drug and Alcohol Research Centre
University of New South Wales
NSW, 2052, AUSTRALIA
Telephone: +61(0)2 9385 0320
Fax: +61(0)2 9385 0222
Email: m.deady@unsw.edu.au
Abstract

Background: Depression and problematic substance use represent two of the major social and health problems facing young people internationally. Frequently, these conditions co-occur and this co-occurrence is associated with greater functional impact, poorer treatment outcomes, and increased costs to both society and the individual.

Objective: This review aims to identify peer-reviewed published trials of interventions for co-occurring substance use and depression delivered to young people, describe these interventions, and critique the methodological quality of the studies.

Method: Eleven electronic databases were searched. The reference lists of relevant review papers were searched manually for additional studies not identified by the electronic database search.

Results: Initially, 1,976 studies were identified, of which 22 were classified as trial studies of youth-based treatment interventions for co-occurring substance use and depression. Ten of these studies met criteria for review. The majority (60%) utilised a pharmacotherapy component, but found it to be generally no better than placebo when both groups received adjunct counselling. Methodological quality of studies varied.

Conclusions: There is a dearth of trials of interventions for co-occurring depression and substance use disorders in young people. The limited data available is promising regarding the overall effectiveness of a psychological counselling approach. Given the importance of early intervention, and the difficulties faced when engaging youth in treatment, there is a need for further focussed effort amongst this group. This may require more innovative techniques in intervention design and implementation. Recent advances in Internet- and mobile phone-based therapies present a potential avenue for further research.

Keywords adolescent, alcohol, co-occurring disorder, comorbidity, depression, substance use, systematic review, young people
Introduction

Prevalence

Major depressive disorder (MDD) and problematic substance use are among the most significant public health concerns facing young people in the developed world. Recent epidemiological studies have indicated that approximately 15% of young adults meet criteria for lifetime MDD, while 13-22% meet criteria for a substance use disorder (SUD) [1-3]. Furthermore, comorbidity across the disorder classes is common [4, 5], with population-based surveys reporting one in four (26.6%) young people with current major depression, also met criteria for a 12-month SUD diagnosis, while amongst those with a 12-month SUD, one in five (18.1%) met criteria for current major depression [3]. Moreover, studies indicate that there has been a significant increase in the rates of depression amongst young people with SUDs in recent years [6].

The presence of co-occurring conditions increases the likelihood of treatment-seeking, as the risks of hospitalisation combine in those who have had more than one condition [7]. As such, prevalence rates for comorbidity in clinical samples tend to be even higher than those in population-based studies, ranging from 70 to 90% in substance use treatment services [8, 9]. Amongst this group, MDD is consistently found to be more prevalent than any other mental illness, with rates ranging from 24 to 50% [9-11]. In mental health settings, rates of problematic substance use in younger populations range from 11 to 71% [12, 13]. These rates vary depending on the treatment setting, informant, and method of assessment. Specific types of substances used tend to mirror the general population, with the most prevalent substance being alcohol [14].

Risks and harms of comorbidity

MDD and substance use comorbidity is a significant risk factor for a range of adverse outcomes and harms. Perhaps the most significant is that of suicide. In those with problematic alcohol use, depression is associated with increased suicidal ideation, ideation intensity, and behaviours [15-18]. Conversely, in depressed samples, alcohol use is associated with these same suicidal risk factors, in addition to the use of more lethal means of suicide [17, 19-22].

It has also been shown that in people receiving depression treatment, those with co-occurring problematic substance use have greater depressive symptomatology, higher rates of other concurrent mental disorders, an earlier age of onset of depression and poorer general functioning than those with depression alone [23, 24]. This
group also tends to attribute greater functional impairment to their illness [22]. Compared with individuals with
depression only, those with co-occurring alcohol problems have impaired relationships with their spouses, as
well as higher rates of divorce and living alone [24].

Similarly, amongst those receiving substance use treatment, those with comorbid depression have been found to
report more substance-related problems, and a poorer quality of life [25]. This group also reports poorer
treatment outcomes [26, 27], higher rates of poly-drug use [28], and increased rates of early relapse [29, 30].
There have been mixed findings regarding rates of treatment dropout [31]. The limited available research
suggests that co-occurring substance use is associated with reduced treatment adherence for depression
treatment [32], while the inverse is true for co-occurring depression in substance use treatment [33].

One proposed mechanism explaining the high rates of depression in individuals with problematic substance use
is ‘self-medication’ [34], that is, substances being used in an attempt to medicate mental health symptoms [35].
However, this often only proves a temporary solution as co-occurring depression and SUDs have consistently
been associated with significantly larger treatment use and costs compared with any condition in isolation [36].
Curran and colleagues [37] reported that primary psychiatric patients generally—and depressed patients
specifically—with a co-occurring substance use comorbidity had a significantly more emergency department
visits than primary psychiatric patients without this comorbidity. Conversely, patients with SUDs generally and
coccurring depression had significantly more emergency department visits [38] and hospital admissions [39]
than patients without this comorbidity. Longitudinal studies, have indicated that depressed outpatients with
SUDs incur consistently higher health care costs overall than other non-comorbid outpatients [40], and the same
was true among substance use treatment outpatients with co-occurring depression [41].

Current state of comorbid treatment

There is an intuitive propensity, on the part of the medical profession, to view individual conditions in isolation
and a historic tendency to segregate treatment for different diagnostic groupings based upon primacy [8, 42].
However, there are practical difficulties in reliably diagnosing primary and secondary conditions [43].
Furthermore, once both conditions are established, the relationship between them is often one of mutual
influence, with each condition maintaining or exacerbating the other, thus rendering the primary/secondary
distinction immaterial [44]. Instead, comorbidity experts advocate for the focus of treatment to be on functional
impairment and distress caused by the conditions, as opposed to diagnostic sub-type classification, or the model
of aetiology [45]. Indeed, recent evidence highlights the importance of treating depression and substance use disorders concurrently [46].

Concurrent, integrated treatments for adults with co-occurring disorders have begun to emerge and expand over the last decade with encouraging results [47-51]. A recent meta-analysis identified 14 double-blind, randomized controlled trials (RCTs) for the treatment of depression and comorbid SUDs in general adult samples [52]. This study revealed a modest (i.e. 0.38) pooled effect size of antidepressant treatment, but maintained concomitant therapy directly targeting the substance use was also indicated. The therapies available to this group include motivational interviewing (MI), cognitive-behavioural therapy (CBT), contingency management, relapse prevention, case management, and skills training [53]. However, the tendency to exclude those with problematic substance use from clinical trials of psychiatric disorders [54-56] has limited findings and made inference difficult [57-59].

The importance of targeted youth approaches

Given the high prevalence rate and the myriad of adverse outcomes associated with comorbidity, early intervention in young people is fundamental to averting the development of more severe, ingrained morbidity [60]. Yet the proportional gap between those in need of treatment and those receiving it is widest amongst this group [61, 62]. In a recent national survey, Reavley and colleagues [63] found that although more than one in four young people between the ages of 16 and 24 experienced a 12-month mental disorder, less than 25% of these affected youth accessed health services in a 12-month period. This gap was widest amongst those with SUDs. These figures compared to one in five of the general population experiencing a disorder, with just over one in three of those seeking treatment.

The reasons for this discrepancy are complex. There is a suggestion that perceived stigmatisation among individuals with mental health disorders may be a component in this lack of health service utilisation [64-67]. Others have suggested motivations for behaviour and behavioural change in young people are likely to differ from those of adults which can lead to a reluctance to seek treatment, especially by way of traditional avenues [68-70]

These plausible explanations aside, a major reason for this shortfall is potentially due to the lack of applicable youth-based treatments and services [71]. Services have been slow to acknowledge that this phase of life has evolved with a unique culture, and thus requires treatment models that differ substantially from those suitable
for children and older adults [72]. Traditionally, in addition to the problem of historical separation of substance use and mental health services [55], attention has been further split between the child and adult mental health system services [71, 73]. The attempts of child and adult-based services to provide for older adolescents and young adults have been largely unsuccessful, failing to engage and provide access to this high risk group [71]. Consequently, due to this systemic weak point many of those with the greatest need fail to receive treatment, and the ability of transition-age youth with depression and problematic substance use to successfully adopt adult roles and responsibilities is at serious risk [73-75].

As young populations differ from adults in a number of fundamentally important ways, which are likely to affect treatment utilisation, adherence, and outcomes [76-79], simply replicating adult-oriented treatments for young people is likely to be inadequate. This group requires specialized treatment to meet their unique developmental and engagement needs [80-82].

Objectives

In light of these issues, this systematic review aims to: (1) identify published studies evaluating interventions aimed at improving depression and problematic alcohol use outcomes in young people, with these co-occurring conditions; (2) describe and critique the methodology of identified studies; and (3) pinpoint opportunities for future intervention.

Method

Sample

The search was limited to publications from 1994 to March 2012. This starting date was selected as the Diagnostic and Statistical Manual underwent major revision in 1993 and the DSM-IV was published [83, 84]. Rather than specify an arbitrary age range prior to the search procedure, which may have led to a failure to detect good quality intervention studies, the search strategy used general search terms pertaining to the term 'youth'.

Search strategy

Figure 1 summarizes the systematic search including databases used, the search terms employed, the exclusion criteria, and classification of included studies. Consistent with methods detailed in the *Cochrane Collaboration’s Handbook: Systematic Reviews of Health Promotion and Public Health Interventions* [85] and
PRISMA statement for systematic reviews [86], the search strategy comprised two steps. First, consultation with an experienced archivist identified eleven relevant electronic databases to search: Cochrane Database of Systematic Reviews (CDSR), Cochrane Central Register of Controlled Trials (CCRCT), EMBASE, ERIC, MEDLINE, Project Cork, PsycINFO, PubMed, Scirus, Scopus, and Web of Science. Electronic databases were searched individually with specific search strings as this method is deemed more effective at identifying relevant articles than a simultaneous search using generic search terms [85]. Keyword search terms used were as follows: youth (young, adolesc*, juvenile, “emerging adult”), comorbid* (co-occur*, “dual diagnosis”), intervention (treat*, therap* trial*, random*), “substance use” (alcohol, “drug depend**”, “drug abuse”, substance) and depression (depress*, mood).

The combined searches of the eleven databases located 3,544 articles. After automatic and manual removal of 1,571 duplicates, 1,973 articles remained.

The second step in the search process involved a manual search of the reference lists of relevant review papers (n = 52) identified in step one. This process identified three additional studies [87-89], not captured by the primary search.

Classification of studies

A three-step process was used to classify the abstracts of the 1,976 identified studies.

Step 1: Identification of studies for exclusion. Papers were excluded if they were:

i) Not in English (n = 71);

ii) Not peer-reviewed (e.g., books/posters) (n = 101);

iii) Disorder specific, non-comorbidity populations (n = 934)

iv) Not a comorbid depression/problematic substance use sample (n = 463)

v) Not youth focussed (n = 195)

Step 1 excluded 1,764 articles.

Step 2: Classification of studies. The remaining studies (n = 212) were classified as either intervention studies or one of four other criteria:

i) Interventions – evaluations or trials of youth-based intervention approaches targeting co-occurring depression and problematic substance use (n = 22);
ii) *measurement* – articles detailing the development and/or testing of measurement instruments
\((n = 2) \);

iii) *descriptive* – data-based descriptive, analytical research such as epidemiological studies,
prevalence/incidence studies, treatment rates, and correlates \((n = 130) \);

iv) *dissemination/adoption, protocols and secondary analyses* – studies reviewing and describing
development of interventions, evaluating approaches for improving delivery of these interventions
or using secondary data from intervention studies \((n = 6) \);

v) *reviews* – literature reviews, non-data-based articles, and comments \((n = 52) \).

Twenty-five per cent of the articles not excluded in step 1 \((n = 53) \) were classified a second time by a blinded
second rater (M.T.) to cross-check the classifications conducted originally by the first author (M.D.). The
articles excluded in step 1 were not cross-checked because they were deemed not relevant for the review.
Agreement between co-authors was 92%. Discrepancies were discussed and resolved. Due to high agreement
between co-raters, cross-checking more than 25% of article classification was deemed unnecessary.

Step 2 excluded 190 articles.

Step 3: Identification of relevant studies. Of the 22 intervention articles identified, six used a mixed sample of
various internalising and externalising comorbidities \[10, 88-92\]. These were excluded as they did not present
specific depression assessments and/or outcomes. Five follow-up and case study papers from a single cohort
study \[93-97\] were linked with the original paper as per Higgins and Green \[85\]. Finally, one paper reported no
substance use outcomes \[98\].

Step 2 excluded 12 articles, leaving a total of 10 studies for review.
Database search:
CDSR, CCRCT, EMBASE, ERIC, MEDLINE, Project Cork, Psycinfo, Pubmed, Scirus, Scopus, Web of Science.

Separate search for each database using database specific search strings.

1. Keywords:
 a. Alcohol/substance (basic terms)
 b. Depression (basic terms)
 c. Comorbid (basic terms)
 d. Intervention (basic terms)
 e. Youth (basic terms)
2. Limited to 1994 – present

1,973 articles were identified after removal of 1,571 duplicates.

Manual search of 1,976 citations/abstracts.

Excluded:
- Non-English: 71
- Not peer reviewed: 101
- Disorder specific, non-comorbid: 934
- Not depression/SUD comorbid sample: 463
- No young person focus: 195

212 articles categorised by type of publication

Measurement 2 (1%)
Descriptive 130 (61%)
Intervention 22 (10%)
Review/ no raw data 52 (25%)
Dissemination, protocol, secondary analyses 6 (3%)

Excluded:
- Mixed comorbidity sample 6
- Follow-up of included study 5
- No SUD outcomes 1

Total of 10 studies for review.
Data extraction from studies

The criteria used for data extraction from studies were adapted from the Cochrane Collaboration’s Handbook: Systematic Reviews of Health Promotion and Public Health Interventions [85]. These criteria relate to the intervention sample (including diagnosis, size, age range, percentage male), type of intervention (length, design, follow-up period, age-appropriateness), outcomes, and conclusions reached.

Methodological critique of intervention studies

The Dictionary for the Effective Public Health Practice Project Quality Assessment Tool for Quantitative Studies [99, 100] was used to test the methodological quality of the studies. This tool has been validated in previous studies [101]. Sections A to F (A = selection bias; B = design/allocation bias; C = confounders; D = blinding; E = data collection methods; and F = withdrawals and drop-outs) were coded weak, moderate, or strong, consistent with the component rating scale of the dictionary [99]. For Sections G (intervention integrity) and H (analysis), descriptive information was recorded, guided by the tool’s recommendations. Due to a degree of interpretation required by the assessment tool this was coded twice by two blind raters (M.D., M.T.). Agreement between co-authors was 88%. Discrepancies were discussed and resolved.

Data analysis

In order to understand the direction and magnitude of mean differences, effect sizes were calculated using the d-index [102] for commonly used, primary outcome measures using the following formula:

\[
d = C_p \left[\frac{(M_{post;T} - M_{pre;T}) - (M_{post;C} - M_{pre;C})}{SD_{pre,pooled}} \right]
\]

Where \(M_{post;T} \) and \(M_{post;C} \) represent the mean post-intervention scores for treatment and control groups respectively. \(M_{pre;T} \) and \(M_{pre;C} \) represent the mean treatment and control baseline scores respectively, and \(SD_{pre,pooled} \) represents the pooled baseline standard deviation, calculated as per Walter and Yao [103]:

\[
SD_{pre,pooled} = \sqrt{\frac{(nT - 1)SD^2pre,T + (nC - 1)SD^2pre,C}{nT + nC - 2}}
\]

Where \(n_T \) and \(n_C \) represent the sample size of treatment and control populations respectively. The above \(d \)-calculation was deemed the most unbiased estimate of effect size across studies [104, 105]. This effect size
formula was based on that of Becker [106]. However, an error in Becker’s formula has been found to potentially underestimate the sampling variance, particularly when sample size is small [107]. \(C_p \) corrects for this error:

\[
C_p = 1 - \frac{3}{4df - 1}
\]

In studies without a control condition the simplified version of the formula was used:

\[
d = C_p \left(\frac{M_{post} - M_{pre}}{SD_{pre}} \right)
\]

Where follow-up intervals existed, effect size was calculated using baseline and follow-up data. Where available, odds ratios, or risk ratios were extracted from papers.

A meta-analytic approach was explored, but deemed inappropriate, given the small number of studies and the heterogeneity of study quality and design, outcome measures, and follow-up rates. For this reason we chose to report the results in a systematic review.

Results

Intervention type and setting

Table 1 presents the extracted data of these studies. Of the 10 articles identified for review, three of these were uncontrolled trials [87, 108, 109]. Pharmacotherapy was utilised in 60% of studies, however, this was used in combination with psychological therapy in all but one study [110]. Sertraline \((n = 1)\) and fluoxetine \((n = 5)\) were the medications used. Cognitive behavioural therapy was used in eight of the nine studies utilising a psychological component. One study failed to report explicitly what constituted the psychological component of therapy [109]. Contact was made with the corresponding author who stated that, “the therapy was not particularly CBT-based” (author communication, August, 2012). In addition to CBT, five studies also included a motivational enhancement component [108, 111-114] and one utilised a family and coping skills component [87]. One study included an additional mindfulness component to the intervention [108].
Table 1. Study characteristics.

<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention</th>
<th>Control</th>
<th>Sample, eligibility</th>
<th>Age range, yrs (% male)</th>
<th>Number of sessions (Follow-up period)</th>
<th>Age appropriate</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornelius et al [112]</td>
<td>CBT/MET+</td>
<td>CBT/MET + Placebo</td>
<td>N = 50; outpatient, MDD, AUD</td>
<td>15-20 (44%)</td>
<td>12 (none)</td>
<td>Age specific CBT for MDD and AUD but separate manuals</td>
<td>Fluoxetine did not improve outcomes above that of placebo for either condition. The role of placebo effects, CBT/MET effects and natural disorder course are unclear.</td>
</tr>
<tr>
<td></td>
<td>Fluoxetine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornelius et al [111]</td>
<td>CBT/MET+</td>
<td>CBT/MET+ Placebo</td>
<td>N = 70; outpatient, MDD, CUD</td>
<td>14-24 (67%)</td>
<td>12 (none)</td>
<td>Age specific CBT for MDD & SUD but separate manuals</td>
<td>Fluoxetine did not demonstrate greater efficacy than placebo for treating either condition, the role of CBT/MET and placebo effects are unclear.</td>
</tr>
<tr>
<td></td>
<td>Fluoxetine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornelius et al [113]</td>
<td>CBT/MET</td>
<td>Naturalistic care</td>
<td>N = 118; outpatient, MDD, AUD</td>
<td>15-20 (49%)</td>
<td>12 (2-year)</td>
<td>Age specific CBT for MDD & AUD but separate manuals</td>
<td>CBT/MET therapy was associated greater improvement in depressive symptoms and alcohol-related symptoms at the two-year follow-up compared to naturalistic care.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deas et al [115]</td>
<td>CBT+Sertraline</td>
<td>CBT+Placebo</td>
<td>N = 10; outpatient, MDD, AUD</td>
<td>14-18 (80%)</td>
<td>12 (none)</td>
<td>Not reported</td>
<td>Sertraline did not improve outcomes above that of placebo, the role of CBT effects or placebo effects are unclear.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Findling et al [110]</td>
<td>Fluoxetine</td>
<td>Placebo</td>
<td>N = 34; outpatient, MDD, AUD</td>
<td>12-17 (85%)</td>
<td>8 (none)</td>
<td>Pharmacotherapy only</td>
<td>Fluoxetine did not improve outcomes above that of placebo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hides et al [114]</td>
<td>SC+CBT/MI+</td>
<td>SC</td>
<td>N = 88; outpatient, MDD, AUD</td>
<td>16-25 (44%)</td>
<td>12 (3-month)</td>
<td>Not reported</td>
<td>Preliminary evidence for the effectiveness of the integrated CBT intervention.</td>
</tr>
<tr>
<td></td>
<td>Mindfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riggs et al [116]</td>
<td>CBT+ Fluoxetine</td>
<td>CBT+Placebo</td>
<td>N = 126; outpatient, MDD, AUD</td>
<td>13-19 (67%)</td>
<td>16 (none)</td>
<td>Age specific CBT for SUD</td>
<td>Fluoxetine+CBT had greater efficacy than placebo+CBT on one but not both depression measures. SUD symptoms reduced overall, but not between groups. The role of CBT effects is unclear.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncontrolled trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornelius et al [93-96, 109]</td>
<td>Standard</td>
<td>UC</td>
<td>N = 13; outpatient, MDD, AUD</td>
<td>15-19 (23%)</td>
<td>12 (1,3,5 year)</td>
<td>Not reported</td>
<td>Preliminary evidence that the long-term therapeutic effects of fluoxetine and psychotherapy slowly decrease but did not disappear when fluoxetine is discontinued shortly after the acute phase trial.</td>
</tr>
<tr>
<td>psychotherapy +Fluoxetine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curry et al [87]</td>
<td>Family and coping skills CBT</td>
<td>UC</td>
<td>N = 13; outpatient, DD, SUD</td>
<td>14-18 (54%)</td>
<td>12 (none)</td>
<td>Age specific CBT for MDD & SUD</td>
<td>Preliminary evidence for the feasibility and effectiveness of the integrated CBT intervention.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hides et al [108]</td>
<td>MI/CBT+ Mindfulness</td>
<td>UC</td>
<td>N = 60; outpatient, MDD, AUD</td>
<td>15-25 (57%)</td>
<td>20 (6-month)</td>
<td>Age specific CBT for MDD & SUD</td>
<td>Preliminary evidence for the effectiveness of the integrated CBT intervention.</td>
</tr>
</tbody>
</table>

MDD = major depressive disorder; DD = depressive disorder; CUD = cannabis use disorder; AUD = alcohol use disorder; SUD = substance use disorder; SC = standard care; CBT = cognitive behavioural therapy; MET = motivational enhancement therapy; MI = motivational interviewing; UC = uncontrolled trial
Despite each intervention being aimed at an adolescent and young adult population, there was variation in how age-specific the interventions were. Five studies used a form of CBT developed for a young population [87, 108, 111-113]. One study reported using an age-appropriate CBT manual for SUD only [116]. The other three studies used a psychological therapy component that did not report on the age-appropriateness of the intervention [109, 114, 115].

Similarly, those that used an element of psychological therapy rarely used fully integrated approaches, preferring separate manuals for treating depression and substance use. In only two cases did the authors report use of a fully integrated treatment manual for comorbidity [87, 108].

The number of sessions ranged from 8 to 20, with 70% of studies using a 12-session model.

Sample characteristics and eligibility criteria

All studies used an outpatient population. The young people ranged in age across the ten studies from 12 [110] to 25 [108, 114] years of age. The percentage range of male participants was 23% [109] to 85% [110].

In all but one study a diagnosis of a depressive disorder was an eligibility requirement. In the final study [114] eligibility was based on high depressive symptomatology on the Kessler Psychological Distress Scale [K10; 117]. This study was retained due to a high rate of lifetime mood disorders and current distress across the sample. In eight of the other nine studies, depressive disorder eligibility criteria was a current diagnosis of major depressive disorder, while the remaining study included those with a current diagnosis of either major depression or dysthymia [87]. Depression was assessed using versions of the Structured Clinical Interview for DSM-IV [SCID; 118, 119] in two studies [108, 114] and the Child Schedule for Affective Disorders and Schizophrenia [K-SADS; 120, 121] in six studies [109-113, 115], the Diagnostic Interview Schedule for Children [122] in one study [116] and the Child and Adolescent Psychiatric Assessment [CAPA; 123] in one study [87].

The substance use disorder was specifically alcohol abuse/dependence in four studies [109, 112, 113, 115], cannabis abuse/dependence in one study [111]. In three of the remaining five studies, eligibility criteria specified a diagnosis of at least one current SUD. In the final two studies [108, 114], participants had a range of SUDs, but eligibility was based on either SUD diagnosis or high-risk substance use. SUDs were assessed using
the SCID [108, 109, 111-115], the CAPA [87], the Composite International Diagnostic Interview [CIDI; 116, 124] and the K-SADS [110].

Delivery

Sessions for psychological treatment components were delivered individually [108, 109, 111-114, 116], or in groups [87, 110, 115]. Family members were included to a minor degree in one study [116] and in concurrent family sessions in one study [87].

All interventions were delivered in university-affiliated clinics or research centres, except where no psychological component was administered [110]. In this case, medication was dispensed by parent at home. Eight of the 10 studies were conducted in the United States, the remaining two [108, 114] in Australia.

Data collection methods

Self-report and non-self-report measures. All 10 studies used a combination of self-report measures and corroborating interviews or observer reports. Four studies [87, 108, 110, 116] also used urine toxicology tests, however, reporting of these results was inconsistent.

Measurement instruments for substance use outcomes. In addition to diagnostic interviews and urine toxicology tests, other instruments used in the measurement of substance use outcomes included the Time-Line Follow-Back [TLFB; 125], used in eight studies [108, 109, 111-116]; and the Recent Recall Form [126] used in one study [87]. The Alcohol Use Disorders Identification Test [AUDIT; 127], and the Severity of Dependence Scale [SDS; 128] were both used in two studies [108, 114].

Measurement instruments for depression outcomes. In addition to diagnostic interviews, the primary instruments used in the measurement of depression outcomes were most often either the Hamilton Depression scale [HAM-D; 129], used in seven studies [108, 109, 111-115], or the Beck Depression Inventory [BDI; 130], used in five studies [109-113]. Curry and colleagues [87] was the only study to use the Child and Adolescent Psychiatric Assessment [CAPA; 123] and the Children's Depression Inventory [CDI; 131]. While the Mood and Anxiety Symptom Questionnaire [MASQ; 132], and the Children's Depression Rating Scale [CDRS-R; 133] were used only in Hides and colleagues [108] and Findling and colleagues [110] respectively. Similarly, the Center for Epidemiologic Studies Depression Scale – Revised [CESD-R; 134] was used in only one study [114].
Other measures used. The Clinical Global Impressions (CGI) Scale [135] was used in four studies [108-110, 116]; while the Children's Global Assessment Scale [CGAS; 136] was used in two [110, 116]. Similarly, the Readiness to Change Questionnaire [RTCQ; 137]; the Automatic Thoughts Questionnaire [ATQ; 138]; the Drug Use Motives Measure [DUMM; 139]; the Coping Inventory for Stressful Situations [CISS; 140] and the Social and Occupational Functioning Assessment Scale [SOFAS; 141] were all used in two studies [108, 114]. Hides and colleagues [108] was the only study to use the Dysfunctional Attitudes Scale [DAS; 142], and the Hamilton Anxiety Scale [HAM-A; 143]. Similarly, Hides and colleagues [114] was the only study to use the K10 [144] and the Quality of Life Interview [QOLI; 145]. The Beck Hopelessness Scale [BHS; 146] was also only used in one study [110].

Methodological adequacy

Table 2 summarises the methodological adequacy of the 10 studies. Although no studies used a sample adequate to be deemed representative, the majority of studies minimised selection bias where possible and overall response rates were 80% or better (where reported). There was, however, a degree of self-selection in half the studies reviewed [87, 109, 111-113]. Fifty percent of the studies were randomised controlled trials [110-112, 115, 116], with randomisation described, thereby reducing the risk of allocation bias. A further 20% were controlled trials without randomisation [113, 114].

Four studies had baseline differences that were not controlled for post-intervention, and were generally related to diagnostic criteria [87, 109, 112, 113], and while one study had markedly differing group sizes [114]. Strong blinding procedures were conducted in two thirds of studies [110-112, 114-116]. Measures with established psychometric were used by all studies, with one exception, in which some non-validated measures were used to assess substance use [87]. Drop-out (loss to follow-up) was less than 20% (strong) in four studies [111, 112, 115, 116] and in the moderate/strong range for all other studies.

Sample size was small (N ≤ 34) in four of ten studies [87, 109, 110, 115] and moderate in the remaining six (50 – 126 participants). Similarly, only four studies collected long-term follow-up data [108, 109, 113, 114], where follow-ups did occur, however, rates were over 60%.

In four studies an active control condition is likely to have been a factor in overall outcomes [111, 112, 115, 116], while two studies may have had unintended additional intervention, due to referrals offered to control groups [110, 113].
Table 2. Methodological adequacy.

<table>
<thead>
<tr>
<th>Study</th>
<th>Selection bias</th>
<th>Design/allocation bias</th>
<th>Confounders</th>
<th>Blinding</th>
<th>Data collection methods</th>
<th>Withdrawals/dropout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornelius et al [93-96, 109]</td>
<td>Weak</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Weak</td>
<td>Strong</td>
<td>Moderate</td>
</tr>
<tr>
<td>Cornelius et al [112]</td>
<td>Moderate</td>
<td>Strong</td>
<td>Moderate</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
</tr>
<tr>
<td>Cornelius et al [111]</td>
<td>Moderate</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
</tr>
<tr>
<td>Cornelius et al [113]</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Strong</td>
<td>Moderate</td>
</tr>
<tr>
<td>Curry et al [87]</td>
<td>Moderate</td>
<td>Weak</td>
<td>Moderate</td>
<td>Weak</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Deas et al [115]</td>
<td>Weak</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
</tr>
<tr>
<td>Findling et al [110]</td>
<td>Moderate</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Moderate</td>
</tr>
<tr>
<td>Hides et al [108]</td>
<td>Moderate</td>
<td>Weak</td>
<td>Strong</td>
<td>Moderate</td>
<td>Strong</td>
<td>Moderate</td>
</tr>
<tr>
<td>Hides et al [114]</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Strong</td>
<td>Strong</td>
<td>Moderate</td>
</tr>
<tr>
<td>Riggs et al [116]</td>
<td>Moderate</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
</tr>
</tbody>
</table>

Notes: Measured by the Dictionary for the Effective Public Health Practice Project Quality Assessment tool for Quantitative Studies [99]. Information on Intervention Integrity (G) and Analysis (H) is contained in the text of the article.
Techniques to maintain intervention consistency were reported in four of the eight studies with a counselling component [109, 112, 113, 116]. In seven of the ten studies, participants completed over 80% of intervention [87, 109, 112, 113, 115, 116]. In the remaining three studies, participants completed over 70% of the intervention.

Overall analysis was generally appropriate with only three studies failing to conduct intention-to-treat analysis [87, 109, 114] and adequate statistical techniques were employed for the analysis of study outcomes, though referencing a source for their statistical approach was uncommon.

Effects

Table 3 shows the results of the data synthesis. In the majority of cases, primary depression and alcohol use outcomes included the BDI or HAM-D and the TLFB. As such, effect sizes were calculated for these outcomes for ease of comparison across studies. Where data was available, effect sizes were calculated for follow-up points, though this was rare.

Amongst the RCTs (all pharmacological trials), only one study reported a significant intervention effect size on a depression measure between groups (CDRS-R, $d = -0.78$; $p < 0.05$) [116]. This was in the medium to high range, but no significant change was found on the study’s second depression measure. No RCT reported any significant effect between groups for alcohol outcomes. The two controlled trials (both psychological therapies) reported a significant intervention effect size on a depression measure between groups, but failed to find any significant effect on alcohol outcomes [113, 114]. When compared to a naturalistic control group at 2-year follow-up, Cornelius and colleagues [113] found those who had received a CBT/MET intervention had significantly ($p < 0.001$) improved HAM-D and BDI scores with large effect sizes ($d = -1.28$ and -1.14, respectively). When compared to standard care at 3-month follow-up, Hides and colleagues [114] found those who had received a CBT/MI intervention had significantly ($p < 0.05$) improved CESD-R (but not BDI) scores ($d = -0.51$). No difference was found at 6-month follow-up. Although no differences were found on the TLFB for alcohol use, there was a significant reduction in cannabis use quantity ($d = -0.57$; $p < 0.05$) and a reduction in rate of current SUD diagnoses at both 3 ($p < .02$) and 6 months post-baseline ($p < .02$) in the intervention group as compared with the standard care group.

Where no between-group effects were found between intervention and control groups, the study authors commonly reported overall improvement across both conditions. This was considered noteworthy as
psychological therapy was present in both groups in these studies. Cornelius and colleagues [112], for instance, reported significantly ($p<0.001$) improved HAM-D and BDI scores with large effect sizes ($d = -1.56$ and -1.29, respectively). Similarly, Cornelius and colleagues [111] reported significantly ($p<0.001$) improved HAM-D and BDI scores with equally large effect sizes ($d = -1.64$ and -1.03). Deas and colleagues [115] reported significantly ($p<0.001$) improved HAM-D scores with large effect sizes ($d = -1.56$) and medium to large effect sizes for improvements on the TLFB for drinking quantity ($d = -.83; p<.02$) and frequency ($d = -0.83; p<.02$).

Amongst the uncontrolled trials, improvement from baseline effect sizes also tended to be large for depression outcomes. Cornelius and colleagues [109] for instance, reported significantly ($p<0.001$) improved HAM-D and BDI scores with large effect sizes at 12 weeks post-baseline ($d = -2.81$ and -2.46, respectively), along with improvements on the TLFB for drinking quantity ($d = -.76; p<.02$). Long-term follow-up data, though positive, failed to adequately report on these measures. Curry and colleagues [87] reported significantly ($p<0.001$) improved CDI scores with a large effect size at 12 weeks post-baseline ($d = -1.3$). While no significant change was found on the use of alcohol, significant reductions were also found in the frequency of cannabis use ($d = -0.86; p<.02$). Finally, Hides and colleagues [108] reported significantly ($p<0.001$) improved HAM-D and MASQ-depression scores with large effect sizes at 20 weeks post-baseline ($d = -1.78$ and -1.12, respectively), and 44 weeks post-baseline ($d = -1.78$ and -1.09, respectively). Again, no alcohol use outcomes were significant, however, both cannabis use quantity and other drug use frequency were found to reduce significantly ($p<.02$), with medium effect sizes at 20 weeks post-baseline ($d = -0.51$ and -0.31, respectively). At 44 weeks post-baseline this reduction was still significant ($p<.02$ and $p<0.001$, respectively), with medium sized effects ($d = -0.44$ and -0.62, respectively).
Table 3. Study outcomes.

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of intervention</th>
<th>Time point</th>
<th>Depression outcomes</th>
<th>Substance use outcomes</th>
<th>Within-groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornelius et al [112]</td>
<td>RCT</td>
<td>Treatment end</td>
<td>HAM-D, $d = 0.27$</td>
<td>TLFB-A-quantity, $d = 0.57$</td>
<td>HAM-D, $d = -1.56^{***}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BDI, $d = 0.14$</td>
<td>TLFB-A-frequency, $d = 0.12$</td>
<td>TLFB-A-frequency, $d = -0.46$</td>
</tr>
<tr>
<td>Cornelius et al [111]</td>
<td>RCT</td>
<td>Treatment end</td>
<td>HAM-D, $d = -0.57$</td>
<td>TLFB-A-quantity, $d = -0.02$</td>
<td>HAM-D, $d = -1.64^{***}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BDI, $d = -0.1$</td>
<td>TLFB-A-frequency, $d = 0.11$</td>
<td>TLFB-A-frequency, $d = -0.36$</td>
</tr>
<tr>
<td>Cornelius et al [113]</td>
<td>CT</td>
<td>2-year follow-up</td>
<td>HAM-D, $d = -1.28^{***}$</td>
<td>TLFB-A-quantity, $d = -0.34$</td>
<td>HAM-D, $d = -1.03^{***}$</td>
</tr>
<tr>
<td>Deas et al [115]</td>
<td>RCT</td>
<td>Treatment end</td>
<td>HAM-D, $d = 0.33$</td>
<td>TLFB-A-quantity, $d = -0.13$</td>
<td>HAM-D, $d = -1.56^{***}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BDI, $d = -1.14^{***}$</td>
<td>TLFB-A-frequency, $d = -0.38$</td>
<td>TLFB-A-frequency, $d = -0.83^{**}$</td>
</tr>
<tr>
<td>Findling et al [110]</td>
<td>RCT</td>
<td>Treatment end</td>
<td>HAM-D, $d = 0.35$</td>
<td>TLFB-A-quantity, $d = -0.13$</td>
<td>HAM-D, $d = -1.56^{***}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CDRS-R, $d = 0.42$</td>
<td>TLFB-A-frequency, $d = 0.03$</td>
<td>TLFB-A-frequency, $d = -0.73^{**}$</td>
</tr>
<tr>
<td>Hides et al [114]</td>
<td>CT</td>
<td>Treatment end</td>
<td>BDI, $d = -0.17$</td>
<td>TLFB-A-quantity, $d = 0.0$</td>
<td>TLFB-A-frequency, $d = -0.44^{**}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CESD-R, $d = -0.51^*$</td>
<td>TLFB-A-frequency, $d = 0.08$</td>
<td>TLFB-C-frequency, $d = -0.51^{**}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-month follow-up</td>
<td>BDI, $d = 0.28$</td>
<td>TLFB-A-quantity, $d = -0.11$</td>
<td>TLFB-C-frequency, $d = -0.57^{***}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CESD-R, $d = -0.1$</td>
<td>TLFB-A-frequency, $d = -0.2$</td>
<td>TLFB-C-frequency, $d = -0.23$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TLFB-A-frequency, $d = -0.35$</td>
<td>TLFB-C-frequency, $d = 0.1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TLFB-A-frequency, $d = -0.3$</td>
<td>TLFB-C-frequency, $d = 0.1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TLFB-A-frequency, $d = -0.1$</td>
<td>TLFB-C-frequency, $d = 0.1$</td>
</tr>
<tr>
<td>Riggs et al [116]</td>
<td>RCT</td>
<td>Treatment end</td>
<td>CDRS-R, $d = -0.78^*$</td>
<td>TLFB-S-frequency, $d = -0.07$</td>
<td>TLFB-A-quantity, $d = -0.36$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CGI-I, RR = 1.08</td>
<td>TLFB-A-frequency, $d = -0.06$</td>
<td>TLFB-C-frequency, $d = -0.31^{**}$</td>
</tr>
<tr>
<td>Uncontrolled trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornelius et al [93-96, 109]</td>
<td>Uncontrolled</td>
<td>Treatment end</td>
<td>HAM-D, $d = -2.81^{***}$</td>
<td>TLFB-A-quantity, $d = -0.76^{**}$</td>
<td>TLFB-A-frequency, $d = -0.69$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BDI, $d = -2.46^{***}$</td>
<td>Insufficient data reported</td>
<td>Insufficient data reported</td>
</tr>
<tr>
<td>Curry et al [87]</td>
<td>Uncontrolled</td>
<td>Follow-up</td>
<td>CDI, $d = -1.3^{***}$</td>
<td>Alcohol frequency, $d = -0.05$</td>
<td>Cannabis frequency, $d = -0.86^*$</td>
</tr>
<tr>
<td>Hides et al [108]</td>
<td>Uncontrolled</td>
<td>Treatment end</td>
<td>HAM-D, $d = -1.78^{***}$</td>
<td>TLFB-A-quantity, $d = 0.04$</td>
<td>TLFB-A-frequency, $d = -0.31^{**}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MASQ dep, $d = -1.12^{***}$</td>
<td>TLFB-A-frequency, $d = 0.03$</td>
<td>TLFB-C-frequency, $d = -0.31^{**}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44-week follow-up</td>
<td>HAM-D, $d = -1.78^{***}$</td>
<td>TLFB-A-frequency, $d = -0.31^{**}$</td>
<td>TLFB-O-frequency, $d = -0.31^{**}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MASQ dep, $d = -1.09^{***}$</td>
<td>TLFB-A-frequency, $d = -0.31^{**}$</td>
<td>TLFB-O-frequency, $d = -0.31^{**}$</td>
</tr>
</tbody>
</table>
Significant difference between intervention (or post) and control (or baseline) p<0.001***, p<0.02**, p<0.05*. d = Cohen’s d (effect size); RR = risk ratio; BDI = Beck Depression Inventory; HAM-D = Hamilton Depression scale; CDRS-R = Children's Depression Rating Scale; CGI-I = Clinical Global Impressions-Improvement Scale; CESD-R = Center for Epidemiologic Studies Depression Scale – Revised; CDI = Children's Depression Inventory; MASQ dep = Mood and Anxiety Symptom Questionnaire-depression; TLFB = Time-Line Follow-Back (A – alcohol, C – cannabis, O – other drugs).
Discussion

Overall, there is a lack of peer-reviewed trials of evidence-based treatments for young people with depression and substance use disorders. The vast majority of studies available were descriptive in nature. This review identified 10 intervention trials, six of which were feasibility trials of pharmacological treatments (with all but one including a psychological component). Of the nine studies that utilised some form of psychological therapy, CBT and MI were most often used. Overall, this review provides rigorous support for recent assertions that very few psychosocial interventions for young people with co-occurring disorders have been developed and evaluated, as not a single RCT of this kind existed [147].

Methodological adequacy

The methodological quality of the studies was variable. For example, although the majority of studies had strong data collection methods, selection bias was consistently rated as moderate or weak (due in most cases to self-selection, or limited recruitment range). Most studies did, however, control for confounders (including additional comorbidities, substance use, age, ethnicity, gender) when identified and 60% of studies had strong blinding methods. Data collection methods and data analysis was generally appropriate and 70% of studies performed an intention-to-treat analysis. Withdrawal and dropout was moderate to strong in all studies, however, follow-up data was collected in only 40% of studies. Sample size and inadequacy of control group (either no control or active control) was consistently problematic.

Limitations of available literature

All of the six RCTs (all pharmacological), found medications safe and well-tolerated, but generally no more effective than placebo. A reason consistently suggested for this finding was the presence of adjunct psychological therapy received by both intervention and control groups that may have lead to a global improvement across all study participants. Of the studies that tested psychological therapies specifically, methodological issues pertaining to sample size and inadequate control conditions make interpretation difficult. Collectively, the studies provide preliminary evidence for the feasibility and effectiveness of the integrated intervention, with motivational interviewing components. As such, there is great potential for further development and evaluation of psychological treatments in this population.

The psychological interventions conducted in these studies rarely utilised a fully integrated approach to treatment, preferring instead separate manuals for treatment of SUD symptoms and those of depression. This is likely to be the result of availability of such manuals at the time of study. In recent years, however, a number of
integrated, adult psychological treatments for comorbidity have emerged [47, 48, 148], ideally similar youth-based programmes will follow suit. Only two studies in this review reported use of an integrated, youth-specific intervention [87, 108]; both were uncontrolled trials.

Finally, eight of the 10 identified studies were conducted in the United States. Although outcomes of interventions evaluated in the US may be applicable to other high-income countries (with common socio-economic factors and infrastructure for young people), between-country differences in substance use patterns and prevalence might lead to different intervention effects in different countries. Rigorous evaluation trials, conducted in other countries, would be valuable additions to the evidence base.

Intervention effects

Although limited in number, the studies identified by this systematic review suggest pharmacotherapy rarely improves outcomes above that of placebo for depression or problematic alcohol use when both treatment and control groups also receive adjunct psychological therapy. This finding is consistent with the conclusions drawn from reviews of adult comorbid interventions [52, 59]. Despite these somewhat bleak findings regarding a pharmacological approach, results were more promising for the use of psychological treatment approaches within this population. Where within-group change was explored (and in uncontrolled trials) significant improvement in outcomes was consistently reported. Although, demand characteristics (or other extraneous variables) cannot be discounted in explaining this change, such findings hold promise.

Where psychological treatments were used in isolation, there was preliminary evidence for the effectiveness of such approaches. Often, however, intervention effects were limited to depression outcomes, indicating an increased need for improved approaches to reducing problematic alcohol use in this population. Nevertheless, evaluations using more rigorous methodologies are required before clear conclusions can be reached about the most effective interventions among youth with these forms of comorbidity.

Limitations of current review

Although a meticulous and thorough search strategy was used, there is a possibility that the review did not locate all relevant studies. Similarly, relevant intervention evaluations may have been misclassified during the search refinement process, although this is unlikely due to the high inter-rater agreement (92%). There is also the small possibility that relevant studies may have been published prior to the cut-off of 1993. Due to the historical tendency to treat conditions in isolation integrated approaches to comorbidity before this point [54,
any trials which may have been conducted prior to 1993 are likely to be outdated and may not reflect current practice.

A number of multidimensional family therapy-based [149-153] and multisystemic [154-156] interventions were excluded from the review as they were not specifically aimed at comorbid depressive disorders, but rather were aimed to treat problematic substance use in a more holistic way. Similarly, this included studies aimed at treating SUDs in samples with a range of co-occurring (often unspecified) internalising and externalising problems [10, 88-92]. Although beyond the scope of this review, it could be suggested that such treatments may be clinically appropriate for co-occurring depression specifically, and trials amongst this population may be warranted.

Finally, as evaluations with statistically significant findings are more likely to be published than those without, it is possible that the published evaluations reviewed overestimate the interventions’ true effectiveness [157-159]. However, due to the low rates of between group differences this appears unlikely.

Future research

As mentioned prior, there has been recent interest in integrated treatment approaches for comorbidity in the general population [47, 48, 148], however, further work is required to develop and evaluate treatments that are specifically relevant to—and effective for—young people with depression and problematic substance use. This review suggests few trials and treatment manuals for this population exist. Due to the particular difficulties encountered in engaging young people in treatment [75, 160], this may require more innovative techniques in intervention design and implementation. This review indicates a gap exists regarding evidence-based approaches of this kind. Recent advances in Internet-, and mobile phone-based therapies and serious gaming, have lead to new delivery approaches to the treatment of individual disorders [161-166] and this may represent potential avenues by which to target those young people with co-occurring problems. These approaches have the potential to overcome many of the barriers to effectively treating this population, for instance, availability, cost, flexibility, privacy, anonymity, and avoidance of stigma associated with seeing a therapist [167-169]. Evidence exists to suggest that these approaches can be effectively applied to comorbid depression and substance use problems [47, 48, 148].

Conclusions
Overall, there is a scarcity of evidence-based intervention trials for treating co-occurring depression and problematic substance use in young people. More importantly, the studies that do exist are predominantly pharmacotherapy feasibility trails which do not adequately assess the role of psychotherapeutic treatment components. Interestingly, these trials consistently failed to find medication to be any more effective than placebo when both groups also receive psychological therapy. The few studies which do specifically examine psychological therapies rarely had adequate methodology. Further development and evaluation of integrated psychological interventions for co-occurring depression and problematic substance use in young people are required.
ACKNOWLEDGMENTS

The National Drug and Alcohol Research Centre at the University of New South Wales is supported by funding from the Australian Government. The Centre for Research Excellence in Mental Health and Substance Use is funded by the NHMRC, Australia. Maree Teesson is funded on Australia National Health and Medical Research Council Research Fellowship. Mark Deady is supported by a PhD scholarship from the National Drug and Alcohol Research Centre, which is acknowledged with gratitude. The authors acknowledge the assistance of Michelle Tye and A/Prof Tim Slade who provided valued support in the preparation of this paper.

DISCLOSURES

Mr Deady, Prof. Teesson, and Dr. Kay-Lambkin report no financial relationships with commercial interests with regard to this manuscript.
References

103. Walter SD, Yao X. Effect sizes can be calculated for studies reporting ranges for outcome variables in systematic reviews. J Clin Epidemiol. 2007;60(8):849-52.

