Spectral asymptotics associated with Dirac-type operators

Download files
Access & Terms of Use
open access
Copyright: Vella, Dominic
Abstract
This thesis is concerned first with a non-compact variation of Connes' trace theorem, which demonstrated that the Dixmier trace extends the notion of Lebesgue integration on a compact manifold. To obtain the variation, we develop a new $\zeta$-residue formula, which is proved by an innovative approach using double operator integrals. Using this formula, Connes' trace theorem is shown for operators of the form $M_f(1-\Delta)^{- \frac{d}{2}}$ on $L_2(\mathbb{R}^d)$, where $M_f$ is multiplication by a function belonging to the Sobolev space $W_1^d(\mathbb{R}^d)$---the space of all integrable functions on $\mathbb{R}^d$ whose weak derivatives up to order $d$ are all also integrable---and $\Delta$ is the Laplacian on $L_2(\mathbb{R}^d)$. An analogous formula for the Moyal plane is also shown. The $\zeta$-residue formula we derive also enables a second result. We consider the smoothed Riesz map $\mathrm{g}$ of the massless Dirac operator $\mathcal{D}$ on $\mathbb{R}^d$, for $d\geq 2$, and study its properties in terms of weak Schatten classes. Our sharp estimates, which are optimal in the scale of weak Schatten classes, show that the decay of singular values of $\mathrm{g}(\mathcal{D}+V)-\mathrm{g}(\mathcal{D})$ differs dramatically for the case when the perturbation $V$ is a purely electric potential and the case when $V$ is a magnetic one. The application of double operator integrals also yields a similar result for the operator $f(\mathcal{D}+V)-f(\mathcal{D})$ for an arbitrary monotone function $f$ on $\mathbb{R}$ whose derivative is Schwartz.
Persistent link to this record
Link to Publisher Version
Additional Link
Author(s)
Vella, Dominic
Supervisor(s)
Sukochev, Fedor
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2019
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download public version.pdf 960.48 KB Adobe Portable Document Format
Related dataset(s)