Structural integrity of carbon fibre/aluminium foam sandwich composites

Download files
Access & Terms of Use
open access
Copyright: Idris, Maizlinda Izwana
Altmetric
Abstract
This thesis focuses on closed-cell aluminium foams (ALPORAS and ALULIGHT) and on sandwich panels comprising these foams laminated with 2/2 twill carbon fibre (MTM56/0300) skins. The thesis experimentally and analytically investigates the response of foam-only panels (ALPORAS) to indentation with various indenter sizes and shapes; and also studies the behaviour of sandwich panels to contact damage caused quasi-statically or by impact. Quasi–static uniaxial compression testing is used to determine the mechanical properties of the foams (ALPORAS and ALULIGHT). It is revealed that the plastic collapse strength (σ* pl) obtained from the stress–strain curves is lower than the values predicted by the Gibson-Ashby theoretical model. This phenomenon is explained by the fact that the aluminium foams tested are imperfect, non-homogeneous and non-isotropic, and show a distinct cell elongation. Whereas, the Gibson-Ashby theoretical model was based on the finite element method applied to the response of a unit tetrakaidecahedral closed cell having flat faces. The experimental work shows that the deformation of the foam-only panels to indentation is caused by progressive crushing of the cell bands and by shearing and tearing of the cell walls. This thesis presents new analytical models for the response of the foam-only panels and estimates the applied deformation load in all types of indentation. By fitting the experimental load-displacement curves, the shear strength (τ* pl) and the tear energy (γ) are deduced. Compared to the literature, more consistent results are obtained for the shear strength (τ * pl) and the tear energy (γ) from all types of indentation. It is also suggested to determine (τ * pl) and (γ) through indentations with long punches (FEP and LCP), instead of hemi-spherical or cylindrical indenters, because indentation on enclosed areas shows some indenter size dependence. It is concluded that thinner panels are not suitable for the determination of the tear energy (γ) since the densification of the foam is achieved before the tear resistance is fully engaged. Another objective of this thesis is to study the response of sandwich panels comprising a closed–cell aluminium foam core and laminated with carbon fibre skin to quasi-static and impact local damage. Special attention is paid to the residual (remnant) strength in bending of the already indented sandwich panels (quasi-statically or by impact) up to the failure point. The remnant strength in bending is determined by carrying out four point bending strength tests. The local damage is located on either the compressive or on the tensile side of the sandwich panels. Thus, the capacity of the panels to resist transverse loads after they have been locally damaged at contact is investigated. The contact damage on the sandwich panels is experimentally simulated using spherical indenters. The quasi-static indentation is carried out at a low constant velocity (0.5mm/min) – the induced contact damage is found to be independent on the sample thickness but dependent on the indenter diameter. On the contrary, the impact test indicates velocity-dependence of the failure mode of the sandwich panel (i.e. skin breakage or punch through) which is found from the load-displacement curves. The results reveal that there is a correlation between the area of the contact damage and the remnant strength, and that the use of metal foam cores leads to high contact damage resilience of composite structures.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Idris, Maizlinda Izwana
Supervisor(s)
Hoffman, Mark
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2010
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download whole.pdf 8.17 MB Adobe Portable Document Format
Related dataset(s)