Experimental investigation and constitutive modelling of thermo-hydro-mechanical coupling in unsaturated soils.

Download files
Access & Terms of Use
open access
Copyright: Uchaipichat, Anuchit
Altmetric
Abstract
A thermo-elastic-plastic model for unsaturated soils has been presented based on the effective stress principle considering the thermo-mechanical and suction coupling effects. The thermo-elastic-plastic constitutive equations for stress-strain relations of the solid skeleton and changes in fluid content and entropy for unsaturated soils have been established. A plasticity model is derived from energy considerations. The model derived covers both associative and non-associative flow behaviours and the modified Cam-Clay is considered as a special case. All model coefficients are identified in terms of measurable parameters. To verify the proposed model, an experimental program has been developed. A series of controlled laboratory tests were carried out on a compacted silt sample using a triaxial equipment modified for testing unsaturated soils at elevated temperatures. Imageprocessing technique was used for measuring the volume change of the samples subjected to mechanical, thermal and hydric loading. It is shown that the effective critical state parameters M, κ and λ are independent of temperature and matric suction. Nevertheless, the shape of loading collapse (LC) curve was affected by temperature and suction. Furthermore, the temperature change affected the soil water characteristic curve and an increase in temperature caused a decrease in the air entry suction. The simulations from the proposed model are compared with the experimental results. The model calibration was performed to extract the model parameters from the experimental results. Good agreement between the results predicted using the proposed model and the experimental results was obtained in all cases.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Uchaipichat, Anuchit
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2005
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download whole.pdf 2.53 MB Adobe Portable Document Format
Related dataset(s)