Turing machines, computers and artificial intelligence

Download files
Access & Terms of Use
open access
Copyright: Krebs, Peter R.
Altmetric
Abstract
This work investigates some of the issues and consequences for the field of artificial intelligence and cognitive science, which are related to the perceived limits of computation with current digital equipment. The Church -Turing thesis and the specific properties of Turing machines are examined and some of the philosophical 'in principle' objections, such as the application of Gödel's incompleteness theorem, are discussed. It is argued that the misinterpretation of the Church-Turing thesis has led to unfounded assumptions about the limitations of computing machines in general. Modern digital computers, which are based on the von Neuman architecture, can typically be programmed so that they interact effectively with the real word. It is argued that digital computing machines are supersets of Turing machines, if they are, for example, programmed to interact with the real world. Moreover, computing is not restricted to the domain of discrete state machines. Analog computers and real or simulated neural nets exhibit properties that may not be accommodated in a definition of computing, which is based on Turing machines. Consequently, some of the philosophical 'in principle' objections to artificial intelligence may not apply in reference to engineering efforts in artificial intelligence.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Krebs, Peter R.
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2002
Resource Type
Thesis
Degree Type
Masters Thesis
Files
download whole.pdf 235.3 KB Adobe Portable Document Format
Related dataset(s)