Decentralized Autonomous Navigation Strategies for Multi-Robot Search and Rescue

Download files
Access & Terms of Use
open access
Embargoed until 2018-08-31
Copyright: Baranzadeh, Ahmad
Altmetric
Abstract
Use of multi-robot systems has many advantages over single robot systems in various applications. However, it comes with its own complexity and challenges. In this thesis, we try to improve the performance of existing approaches for search operations in multi-robot context. We propose three novel algorithms that are using a triangular grid pattern, i.e., robots certainly go through the vertices of a triangular grid during the search procedure. The main advantage of using a triangular grid pattern is that it is asymptotically optimal in terms of the minimum number of robots required for the complete coverage of an arbitrary bounded area. Therefore, using the vertices of this triangular grid coverage guarantees complete search of a region as well as shorter search duration. We use a new topological map which is made and shared by robots during the search operation. We consider an area that is unknown to the robots a priori with an arbitrary shape, containing some obstacles. Unlike many current heuristic algorithms, we give mathematically rigorous proofs of convergence with probability 1 of the algorithms. The computer simulation results for the proposed algorithms are presented using a simulator of real robots and environment. We evaluate the performance of the algorithms via experiments with real Pioneer 3DX mobile robots. We compare the performance of our own algorithms with three existing algorithms from other researchers. The results demonstrate the merits of our proposed solution. A further study on formation building with obstacle avoidance for a team of mobile robots is presented in this thesis. We propose a robust decentralized formation building with obstacle avoidance algorithm for a group of mobile robots to move in a defined geometric configuration. Furthermore, we consider a more complicated formation problem with a group of anonymous robots; these robots are not aware of their position in the final configuration and need to reach a consensus during the formation process. We propose a randomized algorithm for the anonymous robots that achieves the convergence to a desired configuration with probability 1. We also propose a novel obstacle avoidance rule, used in the formation building algorithm. A mathematically rigorous proof of the proposed algorithm is given. The performance and applicability of the proposed algorithm are confirmed by the computer simulation results.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Baranzadeh, Ahmad
Supervisor(s)
Savkin, Andrey V.
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2016
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download public version.pdf 3.79 MB Adobe Portable Document Format
Related dataset(s)