Modelling 802.11 networks for multimedia applications

Download files
Access & Terms of Use
open access
Copyright: Dao, Trong Nghia
Altmetric
Abstract
This thesis is concerned with the development of new mathematical models for the IEEE 802.11’s access mechanisms, with a particular focus on DCF and EDCA. Accurate mathematical models for the DCF and EDCA access mechanisms provide many benefits, such as improved performance analysis, easier network capacity planning, and robust network design. A feature that permeates the work presented in this thesis is the application of our new models to network environments where both saturated and non-saturated traffic sources are present. The scenario in which multiple traffic sources are present is more technically challenging, but provides for a more realistic setting. Our first contribution is the development of a new Markov model for non-saturated DCF in order to predict the network throughput. This model takes into account several details of the protocol that have been hitherto neglected. In addition, we apply a novel treatment of the packet service time within our model. We show how the inclusion of these effects provides more accurate predictions of network throughput than earlier works. Our second contribution is the development of a new analytical model for EDCA, again in order to predict network throughput. Our new EDCA model is based on a replacement of the normal AIFS parameter of EDCA with a new parameter more closely associated with DCF. This novel procedure allows EDCA to be viewed as a modified multi-mode version of DCF. Our third contribution is the simultaneous application of our new Markov models to both the non-saturated and the saturated regime. Hitherto, network throughput predictions for these regimes have required completely separate mathematical models. The convergence property of our model in the two regimes provides a new method to estimate the network capacity of the network. Our fourth contribution relates to predictions for the multimedia capacity of 802.11 networks. Our multimedia capacity analysis, which is based on modifications to our Markov model, is new in that it can be applied to a broad range of quality of service requirements. Finally, we highlight the use of our analysis in the context of emerging location-enabled networks.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Dao, Trong Nghia
Supervisor(s)
Malaney, Robert
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2008
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download whole.pdf 1.42 MB Adobe Portable Document Format
Related dataset(s)