Propane reforming under carbon-induced deactivation: catalyst design and reactor operation

Download files
Access & Terms of Use
open access
Copyright: Hardiman, Kelfin Martino
Altmetric
Abstract
Steam reforming is the most economical and widely-used route for the conversion of light hydrocarbon (such as natural gas) to various valued-added products. This process is commonly carried out over a low-cost alumina-supported nickel catalyst, which often suffers from carbon deposition resulting in loss of active sites, flow and thermal maldistribution, as well as excessive pressure drop. A bimetallic catalyst with improved anti-coking properties was formulated by incorporating the nickel-based system (15% loading) with cobalt metal (5% loading). Two-level factorial design was employed to investigate the effect of major preparation variables, namely impregnation pH value (2-8), calcination temperature (873-973 K), heating rate (5-20 K min-1) and time (1-5 h). The catalysts prepared were subjected to various characterisation techniques to determine key physicochemical properties (i.e. BET area, H2-chemisorption and NH3- TPD acidity). X-ray diffraction revealed that NiO, Co3O4, NiCo2O4 and a proportion of Ni(Co)Al2O4 aluminates were transformed during H2-reduction to active Co and Ni crystallites. TEM images showed an egg yolk profile in the low-pH catalyst suggesting that main deposition site was located in the particle centre, while metal deposition occurred primarily around the particle exterior for the high-pH catalyst. Temperature programmed experiments were carried out to examine the extent of conversion, type of surface species and solid-state kinetics (using the Avrami-Erofeev model) involved during various stages in catalyst life-cycle (calcination, reduction, oxidation and regeneration). Steam reforming analysis suggested that enhanced catalyst activity may be due to synergism in the Co-Ni catalyst. Specifically, the low-pH catalyst exhibited better resistance towards carbon-induced deactivation than the high-pH formulation. The study also provided the first attempt to develop a quantitative relation between catalyst preparation conditions and its performance (activity, product selectivity and deactivation) for steam reforming reaction. Deactivation and reforming kinetic coefficients were simultaneously evaluated from propane reforming conversion-time data under steam-to-carbon ratios of 0.8-1.6 and reaction temperatures between 773-873 K. The time-dependent optimum operational policy derived based on these rate parameters gave better conversion stability despite the heavy carbon deposit. Thermal runs further showed that the catalysts regenerated via two-stage reductive-oxidative coke burn-off exhibited superior surface properties compared to those rejuvenated by a single-step oxidation.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Hardiman, Kelfin Martino
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2007
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download whole.pdf 3.75 MB Adobe Portable Document Format
Related dataset(s)