Analysing the critical design parameters for reuse

Download files
Access & Terms of Use
open access
Copyright: Ibbotson, Scott
Altmetric
Abstract
Reuse of components as opposed to material recovery, recycling or disposal has been identified as one of the most efficient EOL strategies for products. The concept behind reuse is that some components and subassemblies have a design life that exceeds the life of the product itself. In order for reuse to be successfully implemented as an EOL strategy, a designer needs to incorporate into a product a philosophy of Design for Reuse (DfRe) at the early design stage. Reliable methods to assess the remaining life of used components based on a products usage life are also required. Furthermore, current industry practices and literature advocate that there is no methodology to decide which parameters need to be redesigned so as to change the life of a selected component to a desired level. The objective of this research is to develop a methodology to assess the reuse potential of product groups based on component failure mechanisms and their associated critical lifetime prediction design parameters. Utilising these clustered groups mathematical models were then developed to establish the useful life of the components for each clustered group. Finally, a means of equating useful life to design life was established and the relationship between, the failure mechanisms, critical lifetime prediction design parameters and design life were represented in graphical format. In order to achieve the proposed objective, Cluster analysis, in particular Group Technology (GT) and Hierarchical clustering were employed to group components with similar failure mechanisms. Following this, multiple linear regression was used to establish mathematical models based on condition monitoring data for each of the clustered groups and their related critical lifetime prediction design parameters. A sensitivity analysis was conducted using the mathematical models, in order to produce graphical relations between the useful life and design parameters of a product. The validity of the suggested methodology was tested on electric motors and a gearbox as both these components have demonstrated great reuse potential. The results demonstrate that the methodology can assist designers in estimating the design life and associated design parameters with great accuracy, and subsequently aiding in a stratagem for reuse.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Ibbotson, Scott
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2006
Resource Type
Thesis
Degree Type
Masters Thesis
UNSW Faculty
Files
download whole.pdf 3 MB Adobe Portable Document Format
Related dataset(s)