Distributed discovery and management of alternate internet paths with enhanced quality of service

Download files
Access & Terms of Use
open access
Copyright: Rakotoarivelo, Thierry
Altmetric
Abstract
The convergence of recent technology advances opens the way to new ubiquitous environments, where network-enabled devices collectively form invisible pervasive computing and networking environments around the users. These users increasingly require extensive applications and capabilities from these devices. Recent approaches propose that cooperating service providers, at the edge of the network, offer these required capabilities (i.e services), instead of having them directly provided by the devices. Thus, the network evolves from a plain communication medium into an endless source of services. Such a service, namely an overlay application, is composed of multiple distributed application elements, which cooperate via a dynamic communication mesh, namely an overlay association. The Quality of Service (QoS) perceived by the users of an overlay application greatly depends on the QoS on the communication paths of the corresponding overlay association. This thesis asserts and shows that it is possible to provide QoS to an overlay application by using alternate Internet paths resulting from the compositions of independent consecutive paths. Moreover, this thesis also demonstrates that it is possible to discover, select and compose these independent paths in a distributed manner within an community comprising a limited large number of autonomous cooperating peers, such as the fore-mentioned service providers. Thus, the main contributions of this thesis are i) a comprehensive description and QoS characteristic analysis of these composite alternate paths, and ii) an original architecture, termed SPAD (Super-Peer based Alternate path Discovery), which allows the discovery and selection of these alternate paths in a distributed manner. SPAD is a fully distributed system with no single point of failure, which can be easily and incrementally deployed on the current Internet. It empowers the end-users at the edge of the network, allowing them to directly discover and utilize alternate paths.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Rakotoarivelo, Thierry
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2006
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download whole.pdf 2.88 MB Adobe Portable Document Format
Related dataset(s)