Flash lamp annealing and photoluminescence imaging of thin film silicon solar cells on glass

Download files
Access & Terms of Use
open access
Copyright: Teal, Anthony
Altmetric
Abstract
This thesis is divided into three main chapters, covering Flash Lamp Annealing (FLA) experiments in Chapter 1, FLA thermal and structural simulations in Chapter 2, and Photoluminescence (PL) Imaging in Chapter 3. The first and second chapters aim to gauge the feasibility of replacing the existing belt furnace Rapid Thermal Process (RTP) with FLA for Silicon (Si) films on a glass substrate that have been crystallised by Solid Phase Crystallisation (SPC). The experimental work gives us insight into the maximum stress that the film can handle during the FLA process, as well as giving us a baseline for parameters to investigate in any future experiments. It is found that FLA with 3ms pulses and 20ms pulses are not suitable replacements for the current RTP setup because significant damage to the film is observed at lower pulse energy densities than that required to achieve an adequate level of annealing. The modelling in chapter 2 predicts that the magnitude of the stress will increase with increasing pulse duration, making successful annealing at longer pulse durations unlikely. Equipment capable of producing pulse durations above 80 milliseconds, and capable of heating the Si film to temperatures between 1350°C to 1400°C does not currently exist. For this reason these pulse durations have not been investigated, but a basic design guide on how longer pulse durations could be produced is provided. The third chapter concentrates on PL Imaging of thin film Silicon Solar cells on glass. PL Imaging allows a noncontact method of characterising the quality of the Silicon film at various stages of the production process. Through PL Imaging, it was discovered that there is a large variation in material quality from sample to sample, as well as within the same sample. It is also found that the PL signal is wavelength dependent, and through modelling of cell parameters in PC1D, we can use this wavelength dependence to infer a minority carrier lifetime on low quality Si material.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Teal, Anthony
Supervisor(s)
Varlamov, Sergey
Kampwerth, Henner
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2013
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download whole.pdf 2.92 MB Adobe Portable Document Format
Related dataset(s)