Synthesis of novel heterocyclic analogues of isoflavones

Download files
Access & Terms of Use
open access
Copyright: Rajput, Santosh
Altmetric
Abstract
The primary aim of the project was to investigate various methodologies for the synthesis of aza-analogues of isoflavones, or 4-quinolones, and their reduced analogues with an oxygenated pattern that is present in naturally occurring flavonoids. A series of 3-aryl-5,7-dimethoxyquinolin-4-ones was synthesized by the reaction of 3,5-dimethoxyaniline with α-aryl-β-ketoesters, giving enamino esters which were then converted to the corresponding 4-quinolones by thermal cyclization. The reduced 2,3-dihydroquinolin-4-one analogues were synthesized by the reaction of 3,5-dimethoxyaniline with α-aryl-β-ketoesters in the presence of sodium cyanoborohydride, followed by amino group protection and ester hydrolysis. The resulting acids were then cyclized and deprotected to give the desired 2,3-dihydroquinolin-4-ones. The previously unreported 4-arylazaisoflavans were synthesized via two approaches. In the first approach, a Grignard reaction was performed on the carbonyl group of the 2,3-dihydroquinolin-4-ones, and the resulting alcohol was dehydrated and hydrogenated to give the fully reduced ring system, with a cis arrangement of substituents. In the other approach, the carbonyl group of 2,3-dihydroquinoline was reduced to an alcohol, which was then reacted with various nucleophiles. This approach gave the corresponding 4-aryl and 4-heteroarylazaisoflavan ring systems with a trans arrangement of substituents. The pyrrolo[3,2,1-ij]quinolin-6-one ring system was synthesized from 4-quinolones. The reaction of α-bromo-acetophenones with 4-quinolones gave the corresponding quinolinoketones which on acid catalyzed cyclization gave the desired pyrroloquinolin-6-one. Reduction of pyrroloquinolin-6-ones with lithium aluminium hydride yielded the corresponding dihydroquinolin-6-ones. Selective demethylation of the C5-methoxy group in the synthesized 4-quinolones, 2,3-dihydroquinolin-4-ones and pyrroloquinolones was performed using cerium chloride and sodium iodide. Similar reactions with borontribromide gave dihydroxy analogues of 2,3-dihydroquinolin-4-one but was found to only selectively demethylate 4-arylazaisoflavans at C5. Dimethoxyquinolones also underwent Mannich reaction at C8 with primary amines and amino acid esters to give quinazolones.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Rajput, Santosh
Supervisor(s)
Black, David
Kumar, Naresh
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2012
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download whole.pdf 5.95 MB Adobe Portable Document Format
Related dataset(s)