Oxidation and carburisation of model chromia-forming alloys in carbon dioxide

Download files
Access & Terms of Use
open access
Copyright: Gheno, Thomas
Altmetric
Abstract
Materials to convey hot CO2-rich gases are needed in carbon capture technologies currently being developed. This work is aimed at investigating the factors controlling the oxidation of chromia-forming alloys in these atmospheres. To do so, model Fe-Cr and Fe-Cr-Ni alloys were exposed to Ar-CO2-H2O gas mixtures at 650 and 800 °C, and the reaction products examined using conventional metallography techniques. Carbide precipitation beneath oxide scales reflects a carbon supersaturation at the metal/oxide interface relative to the external atmosphere: as a gradient of oxygen potential is established across the growing scale, an elevated carbon activity results at the interface if the scale transmits carbon. On the basis of a local equilibrium model, measured carburisation rates and precipitate volume fractions were used to evaluate the influence of oxide composition and of the presence of H2O in the gas on carbon uptake/transport in the scales. Limited carburisation beneath Cr2O3 scales was shown by means of an analysis of subscale chromium depletion not to alter the oxide stability. The morphological evolution of Fe-rich oxide nodules formed as a result of localised Cr2O3 failure was studied in relation to the alloy ability to supply chromium to the metal/oxide interface. Application of nucleation-growth models to the kinetics of nodule development allowed the resistance of Cr2O3 scales to be evaluated in terms of nodule nucleation rates determined from experimental nodule surface coverages and specimen weight gains. The relative importance of nodule nucleation and growth in determining the overall alloy performance as a function of reaction temperature is discussed.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Gheno, Thomas
Supervisor(s)
Young, David J.
Monceau, Daniel
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2012
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download whole.pdf 2.8 MB Adobe Portable Document Format
Related dataset(s)