A dynamic network model for imbibition and film flow

Download files
Access & Terms of Use
open access
Copyright: Nguyen, Viet Hoai
Altmetric
Abstract
This thesis describes a new dynamic network model for imbibition which is based on a physically realistic description of the complex dynamics of corner film flow, swelling and snap-off. The model shows that film flow is a capillary driven non-linear diffusive process and that the competition between snapoff and frontal displacements is rate dependent and results in rate dependent relative permeabilities and residual saturations. In contrast to previously published models in which length scales for snap-off are either specified a priori or calculated assuming steady-state film flow and constant film conductivities, in the present model, snap-off arises as a natural consequence of the fully transient nature of film flow and swelling. The network model is used to analyse the complex interaction between displacement rate, contact angle, aspect ratio and pore and throat shape on relative permeability and residual saturation. Computed relative permeabilities and residual saturations are compared with laboratory measurements reported in the literature. It is concluded that the magnitude of the rate effect on imbibition relative permeabilities and residual saturations for a particular rock microstructure and wettability condition depends largely on the pore-throat aspect ratio. Higher aspect ratios result in stronger rate effects than do smaller aspect ratios.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Nguyen, Viet Hoai
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2006
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download whole.pdf 9.37 MB Adobe Portable Document Format
Related dataset(s)