Complex structures on stratified Lie algebras

Download files
Access & Terms of Use
open access
Copyright: Zhang, Jun Ze
Altmetric
Abstract
This thesis investigates some properties of complex structures on Lie algebras. In particular, we focus on nilpotent complex structures that are characterized by a suitable J-invariant ascending or descending central series dj and dj respectively. In this thesis, we introduce a new descending series pj and use it to give proof of a new characterization of nilpotent complex structures. We examine also whether nilpotent complex structures on stratified Lie algebras preserve the strata. We find that there exists a J-invariant stratification on a step 2 nilpotent Lie algebra with a complex structure.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2022
Resource Type
Thesis
Degree Type
Masters Thesis
UNSW Faculty
Files
download public version.pdf 1 MB Adobe Portable Document Format
Related dataset(s)