Role of superoxide in the photochemical reduction of iron in seawater

Access & Terms of Use
metadata only access
We have conducted a series of laboratory studies to investigate the generation of ferrous iron and reactive oxygen species when solutions of seawater containing natural organic matter (NOM) and ferric iron are exposed to simulated sunlight. Total ferrous iron and hydrogen peroxide were measured at nanomolar concentrations with high temporal resolution using chemiluminescence-based methods. In all cases, ferrous iron concentrations rapidly peaked at several nanomoles per litre after a few minutes, and then declined over time, while hydrogen peroxide concentrations increased in a non-linear manner. Although concentrations of both species depended on the concentration of NOM, hydrogen peroxide concentrations were only minimally affected by the presence of iron. Increasing the NOM concentration while the total iron concentration was maintained constant led to an increase in the maximum ferrous iron concentration, suggesting that superoxide-mediated reduction of iron may be a major pathway for ferrous iron formation. This was supported by measurements of superoxide production from irradiation of NOM in the absence of iron and kinetic calculations, as well as an experiment in which superoxide dismutase was added. Further analysis of the data suggested that dissolved oxygen and photo-produced hydrogen peroxide were the primary oxidants of the Fe(II) formed. Thus we propose that superoxide and ferrous iron may be intricately coupled in the system, and that their generation is determined by the supply of NOM available to harvest light and donate electrons. © 2006 Elsevier Inc. All rights reserved.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Rose, Andrew
Waite, T
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
Resource Type
Journal Article
Degree Type
UNSW Faculty