Multifunctional liquid metal polymer composites

Download files
Access & Terms of Use
open access
Copyright: Merhebi, Salma
Altmetric
Abstract
Liquid metals are fast becoming a new class of materials and additives for composites synthesis. In particular, gallium (Ga) and Ga-based liquid metal and alloys exhibit fluidity and frictionless behaviours along with metallic conductivity properties. Liquid metals based on Ga also present low-toxicity and can be readily formed into micro and nanodroplets or utilised in the bulk as conductive liquid substrates. The resulting Ga-based composites present novel physio-chemical behaviours and multifunctional properties that remain to be explored for a range of applications. In this PhD thesis, the author investigates three liquid metal/polymer composite systems synthesised with low toxicity input materials for remote magnetic actuation, ionic sensing and separation, and cell electrostimulation capabilities. In the first project, the author aims to develop conductive and magnetic liquid metal polymeric gels. Electrically and magnetic conductive nanodroplets of Ga-based alloys are in-situ synthesised in a polyvinyl alcohol (PVA) solution using mild mechanical agitation methods. The resulting conductive and magnetic gels show additional self-healing properties and demonstrate great potential for the design of soft electronic systems and robotics. For the second project, Ga-based composites are investigated for the sensing and separation of alkali metal ions. Nanodroplets of Ga-based alloys embedded into a crosslinked PVA flat-sheet composite provide selectivity and sensing capability and stability in mixed ionic alkali metal solutions. The Ga-based flat-sheet composite has implications for the efficient and low-energy recovery of lithium ions from brines. In the third project, conductive liquid metal polymer composites are prepared for cell culture and electrostimulation. The composite substrates are composed of bulk Ga coated with polydopamine (PDA) to enhance cell adhesion capability. The Ga/PDA composites surfaces show high biocompatibility for cell culture. With added electrical stimulation protocols, the proliferation of mouse embryonic fibroblast cells is promoted. The conductive and biocompatible substrates lead to the use of liquid metals in regenerative medicine and tissue engineering. Collectively, the findings presented in this thesis provide deep insights and scientific findings for future research directions in the field of liquid metal-based composites for multifunctional materials in soft electronics, separation and sensing, and biomaterials.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2023
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download public version.pdf 5.59 MB Adobe Portable Document Format
Related dataset(s)