Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson’s disease

Access & Terms of Use
metadata only access
Altmetric
Abstract
Heterozygous mutations in GBA1, the gene encoding lysosomal glucocerebrosidase, are the most frequent known genetic risk factor for Parkinson’s disease. Reduced glucocerebrosidase and α-synuclein accumulation are directly related in cell models of Parkinson’s disease. We investigated relationships between Parkinson’s disease-specific glucocerebrosidase deficits, glucocerebrosidase-related pathways, and α-synuclein levels in brain tissue from subjects with sporadic Parkinson’s disease without GBA1 mutations. Brain regions with and without a Parkinson’s disease-related increase in α-synuclein levels were assessed in autopsy samples from subjects with sporadic Parkinson’s disease (n = 19) and age- and postmortem delay-matched controls (n = 10). Levels of glucocerebrosidase, α-synuclein and related lysosomal and autophagic proteins were assessed by Western blotting. glucocerebrosidase enzyme activity was measured using a fluorimetric assay, and glucocerebrosidase and α-synuclein mRNA expression determined by quantitative PCR. Related sphingolipids were analyzed by mass spectrometry. Multivariate statistical analyses were performed to identify differences between disease groups and regions, with non-parametric correlations used to identify relationships between variables. glucocerebrosidase protein levels and enzyme activity were selectively reduced in the early stages of Parkinson’s disease in regions with increased α-synuclein levels although limited inclusion formation, while GBA1 mRNA expression was non-selectively reduced in Parkinson’s disease. The selective loss of lysosomal glucocerebrosidase was directly related to reduced lysosomal chaperone-mediated autophagy, increased α-synuclein and decreased ceramide. glucocerebrosidase deficits in sporadic Parkinson’s disease are related to the abnormal accumulation of α-synuclein and are associated with substantial alterations in lysosomal chaperone-mediated autophagy pathways and lipid metabolism. Our data suggest that the early selective Parkinson’s disease changes are likely due to the redistribution of cellular membrane proteins leading to a chronic reduction in lysosome function in brain regions vulnerable to Parkinson’s disease pathology.
Persistent link to this record
DOI
Link to Open Access Version
Additional Link
Author(s)
Murphy, Karen E
;
Gysbers, Amanda M
;
Abbott, Sarah K
;
Tayebi, Nahid
;
Kim, Woojin S
;
Sidransky, Ellen
;
Cooper, Antony
;
Garner, Brett
;
Halliday, Glenda
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2014
Resource Type
Journal Article
Degree Type
UNSW Faculty