Publication:
Electrically detected magnetic resonance using radio-frequency reflectometry
Electrically detected magnetic resonance using radio-frequency reflectometry
dc.contributor.author | Huebl, H. | en_US |
dc.contributor.author | Starrett, R. P. | en_US |
dc.contributor.author | McCamey, D. R. | en_US |
dc.contributor.author | Ferguson, A. J. | en_US |
dc.contributor.author | Willems van Beveren, Laurens Henry | en_US |
dc.date.accessioned | 2021-11-25T14:45:30Z | |
dc.date.available | 2021-11-25T14:45:30Z | |
dc.date.issued | 2009 | en_US |
dc.description.abstract | The authors demonstrate readout of electrically detected magnetic resonance at radio frequencies by means of a LCR tank circuit. Applied to a silicon field-effect transistor at millikelvin temperatures, this method shows a 25-fold increased signal-to-noise ratio of the conduction band electron spin resonance and a higher operational bandwidth of >300 kHz compared to the kilohertz bandwidth of conventional readout techniques. This increase in temporal resolution provides a method for future direct observations of spin dynamics in the electrical device characteristics.. | en_US |
dc.identifier.issn | 0034-6748 | en_US |
dc.identifier.uri | http://hdl.handle.net/1959.4/44473 | |
dc.language | English | |
dc.language.iso | EN | en_US |
dc.rights | CC BY-NC-ND 3.0 | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/au/ | en_US |
dc.source | Legacy MARC | en_US |
dc.subject.other | radio frequency | en_US |
dc.subject.other | EDMR | en_US |
dc.subject.other | silicon | en_US |
dc.subject.other | LCR circuit | en_US |
dc.subject.other | phosphorus | en_US |
dc.subject.other | stripline | en_US |
dc.title | Electrically detected magnetic resonance using radio-frequency reflectometry | en_US |
dc.type | Journal Article | en |
dcterms.accessRights | open access | |
dspace.entity.type | Publication | en_US |
unsw.accessRights.uri | https://purl.org/coar/access_right/c_abf2 | |
unsw.description.notePublic | The following article appeared in Rev. Sci. Instrum. 80, 114705 (2009) and may be found at: http://link.aip.org/link/?RSINAK/80/114705/1 | en_US |
unsw.description.publisherStatement | Copyright 2009 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. | en_US |
unsw.identifier.doiPublisher | http://dx.doi.org/10.1063/1.3258206 | en_US |
unsw.relation.faculty | Science | |
unsw.relation.ispartofissue | 11 | en_US |
unsw.relation.ispartofjournal | Review of Scientific Instruments | en_US |
unsw.relation.ispartofpagefrompageto | 114705-1-114705-4 | en_US |
unsw.relation.ispartofvolume | 80 | en_US |
unsw.relation.originalPublicationAffiliation | Huebl, H. | en_US |
unsw.relation.originalPublicationAffiliation | Starrett, R. P. | en_US |
unsw.relation.originalPublicationAffiliation | McCamey, D. R. | en_US |
unsw.relation.originalPublicationAffiliation | Ferguson, A. J. | en_US |
unsw.relation.originalPublicationAffiliation | Willems van Beveren, Laurens Henry, Physics, Faculty of Science, UNSW | en_US |
unsw.relation.school | School of Physics | * |
Files
Original bundle
1 - 1 of 1