Numerical performance of block thresholded wavelet estimators

Access & Terms of Use
metadata only access
Altmetric
Abstract
Usually, methods for thresholding wavelet estimators are implemented term by term, with empirical coefficients included or excluded depending on whether their absolute values exceed a level that reflects plausible moderate deviations of the noise. We argue that performance may be improved by pooling coefficients into groups and thresholding them together. This procedure exploits the information that coefficients convey about the sizes of their neighbours. In the present paper we show that in the context of moderate to low signal-to-noise ratios, this lsquoblock thresholdingrsquo approach does indeed improve performance, by allowing greater adaptivity and reducing mean squared error. Block thresholded estimators are less biased than term-by-term thresholded ones, and so react more rapidly to sudden changes in the frequency of the underlying signal. They also suffer less from spurious aberrations of Gibbs type, produced by excessive bias. On the other hand, they are more susceptible to spurious features produced by noise, and are more sensitive to selection of the truncation parameter.
Persistent link to this record
DOI
Link to Open Access Version
Additional Link
Author(s)
Picard, Dominique
Hall, Peter
Penev, Spiridon
Kerkyacharian, Gerard
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
1997
Resource Type
Journal Article
Degree Type
UNSW Faculty