Fenton-mediated oxidation in the presence and absence of oxygen

Access & Terms of Use
metadata only access
Altmetric
Abstract
The increased use of Fenton systems for the treatment of contaminated waters and wastewaters necessitates the development of kinetic models capable of accurately simulating key species concentrations in order to optimize system performance and efficiency. In this work a reaction mechanism in which the hydroxyl radical is nominated to be the active oxidant in Fenton systems is used to describe the oxidation of formic acid (HCOOH) under a variety of experimental conditions. A kinetic model based on this reaction mechanism is shown to adequately describe results of experiments in which starting concentrations of H2O2 and HCOOH varied over I and 4 orders of magnitude, respectively, under both air-saturated and deaerated conditions. The intermediate generated during HCOOH oxidation was observed to increase oxidation efficiency, especially at high initial organic concentrations [relative to Fe(II)], by assisting in the redox cycling of iron. In the presence of oxygen, however, such improvement was attenuated through competition for the organic intermediates. While mechanistic analysis and associated kinetic modeling is invaluable in optimization of Fenton systems, a clear understanding of reaction byproducts and their reactivity toward other species in the system is critical for accurate simulations.
Persistent link to this record
DOI
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Duesterberg, Christopher
;
Cooper, W
;
Waite, David
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2005
Resource Type
Journal Article
Degree Type
UNSW Faculty