Publication:
Structural Evolution of the Arabian Basin Based on 3D Seismic Interpretation

ac.person.orcid 0000-0002-0611-2703
ac.person.orcid 0000-0002-0495-670X
ac.person.position HDR Student
ac.person.position Staff
ac.person.position Staff
dc.contributor.advisor Van Kranendonk, Martin
dc.contributor.advisor Clark, Stuart
dc.contributor.author Alohali, Ruaa Tawfiq A
dc.date.accessioned 2021-12-07T21:54:07Z
dc.date.available 2021-12-07T21:54:07Z
dc.date.issued 2021
dc.description.abstract The Arabian basin was subject to several tectonic events, including Lower Cambrian Najd rifting, the Carboniferous Hercynian Orogeny, Triassic Zagros rifting, and the Early/Cretaceous and Late/Tertiary Alpine orogenic events. These events reactivated Precambrian basement structures and affected the structural configuration of the overlying Paleozoic cover succession. In addition to a 2D seismic array and several drill well logs, a newly acquired, processed 3D seismic image of the subsurface in part of the basin covering an area of approximately 1051 km2 has been provided to improve the understanding of the regional tectonic evolution associated with these deformation events. In this study, a manual interpretation is presented of six main horizons from the Late Ordovician to the Middle Triassic. Faults and folds were also mapped to further constrain the stratigraphic and structural framework. Collectively, this data is used to build a geological model of the region and develop a timeline of geological events. Results show that a lower Paleozoic sedimentary succession between the Late Silurian to the Early Permian was subject to localised tilting, uplift, and erosion during the Carboniferous Hercynian Orogeny, forming a regional unconformity. Subsequent deposition occurred from the Paleozoic to the Mesozoic, producing a relatively thick, conformable, upper succession. The juxtaposition of the Silurian rocks and Permian formations allows a direct fluid flow between the two intervals. Seismic analysis also indicated two major fault generations. A younger NNW-striking fault set with a component of reverse, east-side-up displacement affected the Lower Triassic succession and is most likely related to the Cretaceous and Tertiary Alpine Events that reactivated the Najd fault system. These fault structures allow vertical migration that could act as conduits to form structural traps. Manual mapping of fault structures in the study area required significant time and effort. To simplify and accelerate the manual faults interpretation in the study area, a fault segmentation method was developed using a Convolutional Neural Network. This method was implemented using the 3D seismic data acquired from the Arabian Basin. The network was trained, validated, and tested with samples that included a seismic cube and fault images that were labelled manually corresponding to the seismic cube. The model successfully identified faults with an accuracy of 96% and an error rate of 0.12 on the training dataset. To achieve a more robust model, the prediction results were further enhanced using postprocessing by linking discontinued segments of the same fault and thus, reducing the number of detected faults. This method improved the accuracy of the prediction results of the proposed model using the test dataset by 77.5%. Additionally, an efficient framework was introduced to correlate the predictions and the ground truth by measuring their average distance value. This technique was also applied to the F3 Netherlands survey, which showed promising results in another region with complex fault geometries. As a result of the automated technique developed here, fault detection and diagnosis were achieved efficiently with structures similar to the trained dataset and has a huge potential in improving exploration targets that are structurally controlled by faults.
dc.identifier.uri http://hdl.handle.net/1959.4/100006
dc.language English
dc.language.iso en
dc.publisher UNSW, Sydney
dc.rights CC BY 4.0
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject.other Arabian Basin
dc.subject.other Geological
dc.title Structural Evolution of the Arabian Basin Based on 3D Seismic Interpretation
dc.type Thesis
dcterms.accessRights open access
dcterms.rightsHolder Alohali, Ruaa Tawfiq A
dspace.entity.type Publication
unsw.accessRights.uri https://purl.org/coar/access_right/c_abf2
unsw.identifier.doi https://doi.org/10.26190/unsworks/1606
unsw.relation.faculty Science
unsw.relation.faculty Engineering
unsw.relation.school School of Biological, Earth & Environmental Sciences
unsw.relation.school School of Biological, Earth & Environmental Sciences
unsw.relation.school School of Minerals and Energy Resources Engineering
unsw.thesis.degreetype Masters Thesis
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
public version.pdf
Size:
3.59 MB
Format:
application/pdf
Description:
Resource type