Glucocerebrosidase deficits in sporadic Parkinson disease

Download files
Access & Terms of Use
open access
Abstract
Parkinson disease (PD) is a progressive neurodegenerative movement disorder characterized pathologically by abnormal SNCA/α-synuclein protein inclusions in neurons. Impaired lysosomal autophagic degradation of cellular proteins is implicated in PD pathogenesis and progression. Heterozygous GBA mutations, encoding lysosomal GBA/glucocerebrosidase (glucosidase, beta, acid), are the greatest genetic risk factor for PD, and reduced GBA and SNCA accumulation are related in PD models. Here we review our recent human brain tissue study demonstrating that GBA deficits in sporadic PD are related to the early accumulation of SNCA, and dysregulation of chaperone-mediated autophagy (CMA) pathways and lipid metabolism.
Persistent link to this record
DOI
Link to Publisher Version
Additional Link
Author(s)
Murphy, Karen E
Halliday, Glenda
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2014
Resource Type
Journal Article
Degree Type
UNSW Faculty
Files
download Final draft post-referrering.pdf 97.07 KB Adobe Portable Document Format
Related dataset(s)