Publication:
Time evolution of superconducting properties of MgB2 exposed to water

dc.contributor.author Cheng, CH en_US
dc.contributor.author Zhao, Yong en_US
dc.contributor.author Machi, T en_US
dc.contributor.author Koshizuka, N en_US
dc.contributor.author Murakami, M en_US
dc.date.accessioned 2021-11-25T13:01:04Z
dc.date.available 2021-11-25T13:01:04Z
dc.date.issued 2003 en_US
dc.description.abstract The degradation of the superconducting properties, such as the diamagnetic magnetization (Mdia), the critical current density (Jc), and the irreversibility field (Hirr) for MgB2 exposed to water has been investigated. The time evolution of the degradation obeys an exponential law with a different decay-time constant for each of these properties. Mdia shows the most rapid decay with exposure time, whereas Hirr exhibits the slowest degradation. By doping with Ti, the degradation of these superconducting properties was significantly suppressed, although the decay time still obeyed an exponential law. The experimental results have been reasonably explained in terms of a grain-boundary-degradation model. Our study suggests that the degradation of Mdia is related to the degradation of the relatively-high-angle grain boundaries near the sample’s surface, whereas the degradation of Jc is associated with the degradation of the relatively lower-angle grain boundaries. The degradation of Hirr is probably due to the reduction of the surface pinning force. en_US
dc.identifier.issn 0921-4534 en_US
dc.identifier.uri http://hdl.handle.net/1959.4/38943
dc.language English
dc.language.iso EN en_US
dc.rights CC BY-NC-ND 3.0 en_US
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/au/ en_US
dc.source Legacy MARC en_US
dc.title Time evolution of superconducting properties of MgB2 exposed to water en_US
dc.type Journal Article en
dcterms.accessRights metadata only access
dspace.entity.type Publication en_US
unsw.accessRights.uri http://purl.org/coar/access_right/c_14cb
unsw.identifier.doiPublisher http://dx.doi.org/10.1016/S0921-4534(03)00623-3 en_US
unsw.relation.faculty Science
unsw.relation.ispartofjournal Physica C - Superconductivity en_US
unsw.relation.ispartofpagefrompageto 449-460 en_US
unsw.relation.ispartofvolume 385 en_US
unsw.relation.originalPublicationAffiliation Cheng, CH, Materials Science & Engineering, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation Zhao, Yong, Materials Science & Engineering, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation Machi, T en_US
unsw.relation.originalPublicationAffiliation Koshizuka, N en_US
unsw.relation.originalPublicationAffiliation Murakami, M en_US
unsw.relation.school School of Materials Science & Engineering *
Files
Resource type