Publication:
Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm-doped BiFeO3 thin films

dc.contributor.author Cheng, C en_US
dc.contributor.author Kan, D en_US
dc.contributor.author Lim, S en_US
dc.contributor.author Munroe, Paul en_US
dc.contributor.author Salamanca-Riba, L en_US
dc.contributor.author Withers, R en_US
dc.contributor.author Takeuchi, I en_US
dc.contributor.author Nagarajan, V en_US
dc.contributor.author McKenzie, Warren en_US
dc.date.accessioned 2021-11-25T15:31:24Z
dc.date.available 2021-11-25T15:31:24Z
dc.date.issued 2009 en_US
dc.description.abstract We have investigated structural phase transitions across a ferroelectric-to-antiferroelectric phase boundary in epitaxial (001) oriented Bi(1−x)Sm(x)FeO3 thin films. For the Sm3+ concentration of 0.1<x<0.14, we observe short-range antiparallel cation displacements, verified by the appearance of localized 1/4 {011} weak reflections in the selected area electron diffraction patterns. At the critical composition of x=0.14, the system adopts a complex nanoscale domain mixture with appearance of 1/4 {011},1/2 {011}, 1/2 {010}, and 1/2 {111} reflections and an incommensurate phase bridging the rhombohedral and orthorhombic phases. For compositions 0.14<x<0.2, orientational twin domains coupled with antiphase oxygen octahedral tilts, identified by 1/2 {hkl} weak superstructure are observed. The above systematic changes in the microstructure as a function of Sm3+ doping are linked to the macroscopic functional properties. en_US
dc.identifier.uri http://hdl.handle.net/1959.4/44673
dc.language English
dc.language.iso EN en_US
dc.rights CC BY-NC-ND 3.0 en_US
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/au/ en_US
dc.source Legacy MARC en_US
dc.subject.other TEM en_US
dc.subject.other ferroelectric en_US
dc.subject.other anti-ferroelectric en_US
dc.subject.other diffraction en_US
dc.title Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm-doped BiFeO3 thin films en_US
dc.type Journal Article en
dcterms.accessRights open access
dspace.entity.type Publication en_US
unsw.accessRights.uri https://purl.org/coar/access_right/c_abf2
unsw.description.notePublic Published version available from http://prb.aps.org/abstract/PRB/v80/i1/e014109 en_US
unsw.identifier.doiPublisher http://dx.doi.org/10.1103/PhysRevB.80.014109 en_US
unsw.relation.faculty Science
unsw.relation.ispartofissue 1 en_US
unsw.relation.ispartofjournal Physical Review B Condensed Matter and Materials Physics en_US
unsw.relation.ispartofvolume 80 en_US
unsw.relation.originalPublicationAffiliation Cheng, C, Materials Science & Engineering, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation Kan, D, University of Maryland, USA en_US
unsw.relation.originalPublicationAffiliation Lim, S, University of Maryland, USA en_US
unsw.relation.originalPublicationAffiliation Munroe, Paul, Electron Microscope Unit, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation Salamanca-Riba, L, University of Maryland, USA en_US
unsw.relation.originalPublicationAffiliation Withers, R, Australian National University, Australia en_US
unsw.relation.originalPublicationAffiliation Takeuchi, I, University of Maryland, USA en_US
unsw.relation.originalPublicationAffiliation Nagarajan, V, Materials Science & Engineering, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation McKenzie, Warren, Materials Science & Engineering, Faculty of Science, UNSW en_US
unsw.relation.school School of Materials Science & Engineering *
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
Phys Rev B paper.pdf
Size:
1.29 MB
Format:
application/pdf
Description:
Resource type