Stimuli-responsive Nanoparticles for Drug Delivery and Novel Acetylcholinesterase Inhibitors and their Use as Protease Sensors

Access & Terms of Use
embargoed access
Embargoed until 2025-10-12
Copyright: Kaltbeitzel, Jonas
Proteins and enzymes are highly versatile materials that are involved in essentially every biological process, making them valuable tools and targets in the field of medicine. This thesis explores two distinct aspects of their applications: Part I focuses on the formation of responsive nanoparticles for drug delivery, while Part II delves into the development of small molecular inhibitors and their use in a novel protease assay. Each part will start with a separate literature review, to give the reader a brief background about the topic. Their biocompatibility, non-toxicity, and ability to specifically interact with cellular receptors make proteins and enzymes promising materials in the design of nanoparticles for drug-delivery applications. In many cases, a covalent modification of the protein is required to drive the formation of nanoparticles which can inadvertently change the properties of the underlying protein. One possibility to overcome this problem is to make the covalent modification reversible by the introduction of responsive linker molecules, which additionally allows targeting. Therefore, Part I of this thesis will explore nanoparticles that degrade in response to specific environmental cues, such as reducing agents, UV-light, or hypoxia. The first chapter is a comprehensive review of the literature on different protein-nanoparticle and the use of responsive linker systems in drug delivery applications. Chapter 2 of the thesis will present the synthesis of PEGylated enzyme nanoparticles designed for delivering catalytically active enzymes into cells. The results obtained will demonstrate the triggered disassembly of the nanoparticles and the subsequent release of catalytically active enzymes, leading to cellular toxicity. Moving on to Chapters 3 and 4, reductive-responsive nanoparticles composed of bovine serum albumin (BSA) and a hypoxia-responsive polymer will be featured as an intracellular drug delivery vehicle for nucleic acids. In Part II of the thesis, the focus is shifted to the design of small molecule inhibitors for acetylcholinesterase (AChE) and their use in the development of a novel protease assay. AChE has important implications in the treatment of Alzheimer's and other diseases. After a short literature review in Chapter 5 discussing the enzyme and past development of its inhibitors, Chapter 6 shows the journey in the design of potent, primary amine-containing inhibitors of AChE based on several known scaffolds. The increased polarity of the molecules hinders their ability to cross the blood-brain barrier, suggesting a potential application in the treatment of functional dyspepsia. Lastly, Chapter 7 deals with the development of a new proteases assay based on the inhibitors synthesized in the previous chapter. Proteases play a crucial role in many biological processes and are thus important medical markers for various diseases. The effect of the potency of the inhibitors after covalent modification with short peptides was evaluated and a mathematical model developed to predict the sensitivity of the assay.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
Resource Type
Degree Type
PhD Doctorate
UNSW Faculty