MANAGING THE RISK OF LEGIONELLA IN DRINKING WATER AERATION PROCESSES

Download files
Access & Terms of Use
open access
Copyright: Yunana, Danladi
Altmetric
Abstract
Experimental and probabilistic methods were used to assess the risk of exposure to Legionella sp from aerators used in groundwater treatment plants. Factors considered include an assessment of conditions conducive to Legionella growth, detachment and inhalation by operators; the use of coupon studies to understand temporal changes and biofilm formation; and modelling the risk of Legionella using iterative Bayesian networks (BNs). A survey of 13 groundwater treatment plants (GWTPs) aerators, including tray, open and semi-enclosed systems were identified to feature design and operational risk factors favouring elevated levels of nutrients, water stagnation, challenging water quality, aerosolisation, and inconsistent operation and maintenance. Based on these observations, design considerations for the next generation of safer aerators that can overcome identified Legionella risks factors were outlined. Analysis of 300 sampling events from the aerators over five years indicated an average of 7% increase in colony counts between the inlet and outlet, indicating growth of Legionella within the aerators. In total, 28% of all samples collected from aerator surfaces testing positive for Legionella. However, there was no correlation between the type of aerator and Legionella positivity. Coupons were placed in aerators to assess temporal changes in fouling developed after 6 weeks of operation. The biological activity per unit area (ATP/cm2) was higher for samples collected on the sprayed (vertically placed) coupons (277 ng ATP/cm2) compared with the submerged (horizontally laid) (73 ng ATP/cm2) coupons. Concentrations of dissolved organic carbon (DOC) in the biofilm formed on the coupons were statistically similar for the two tested conditions. Comparing fouling characteristics from the lab and full-scale coupons confirmed the impact of surface orientation and influent characteristics on biofilm formation. In terms of cleaning of the fouled surface, NaOCl at (concentration greater than 6%) was found to achieve 99.9% efficiency in biofilm inactivation. Oxalic acid (concentration greater than 1%) significantly removed inorganic materials like iron and manganese. Combining biocides and antiscalants was therefore recommended to efficiently address fouling challenges in aerators. A BN which considered risk of exposure due to growth and transmission was developed using a fishbone diagram and bowtie analysis. The initial iterative output BN model was elicited deterministically through expert weighted scoring process and discretisation approach and defined relative contributions of risk variables. The BN model also efficiently categorised and differentiated Legionella risk thresholds. A revised BN model conceptually mapped and estimated the causes and consequences of Legionella aerosolisation separately. The Legionella growth sub-model showed weak prediction accuracy with a negative kappa coefficient, signifying inconsistency in predicted and observed Legionella occurrence. The effect of water quality was further explored with a data-driven learning approach using diverse historical water quality records. The optimised BN model utilised the greedy thick thinning approach, complemented with domain knowledge, and achieved superior performance accuracy exceeding 90%. The results indicated that water temperature, free chlorine, season, and heterotrophic plate count can be utilised to track Legionella occurrence in water systems.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2022
Resource Type
Thesis
Degree Type
PhD Doctorate
Files
download public version.pdf 44.92 MB Adobe Portable Document Format
Related dataset(s)