Recurrent neural network modeling of nearshore sandbar behavior

Access & Terms of Use
metadata only access
Abstract
The temporal evolution of nearshore sandbars (alongshore ridges of sand fringing coasts in water depths less than 10 in and of paramount importance for coastal safety) is commonly predicted using process-based models. These models are autoregressive and require offshore wave characteristics as input, properties that find their neural network equivalent in the NARX (Nonlinear AutoRegressive model with eXogenous input) architecture. Earlier literature results suggest that the evolution of sandbars depends nonlinearly on the wave forcing and that the sandbar position at a specific moment contains `memory`, that is, time-series of sandbar positions show dependencies spanning several days. Using observations of an outer sandbar collected daily for over seven years at the double-barred Surfers Paradise, Gold Coast, Australia several data-driven models are compared. Nonlinear and linear models as well as recurrent and nonrecurrent parameter estimation methods are applied to investigate the claims about nonlinear and long-term dependencies. We find a small performance increase for long-term predictions (>40 days) with nonlinear models. indicating that nonlinear effects expose themselves for larger prediction horizons, and no significant difference between nonrecurrent and recurrent methods meaning that the effects of dependencies spanning several days are of no importance. (C) 2007 Elsevier Ltd. All rights reserved.
Persistent link to this record
DOI
Link to Publisher Version
Additional Link
Author(s)
Pape, L
Ruessink, B
Wiering, M
Turner, Ian
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2007
Resource Type
Journal Article
Degree Type
UNSW Faculty