Voltammetric detection of cadmium ions at glutathione-modified gold electrodes

Access & Terms of Use
metadata only access
Altmetric
Abstract
An electrochemical sensor for the detection of cadmium ions is described using immobilized glutathione as a selective ligand. First, a self-assembled monolayer of 3-mercaptopropionic acid (MPA) was formed on a gold electrode. The carboxyl terminus then allowed attachment of glutathione (GSH) via carbodiimide coupling to give the MPA-GSH modified electrode. A cadmium ion forms a complex with glutathione via the free sulfhydryl group and also to the carboxyl groups. The complexed ion is reduced by linear and Osteryoung square wave voltammetry with a detection limit of 5 nM. The effect of the kinetics of accumulation of cadmium on the measured current was investigated and modeled. Increasing the temperature of accumulation and electrochemical analysis caused an increase in the voltammetric peak of approximately 4% per degrees C around room temperature. The modified electrode could be regenerated, being stable for more than 16 repeated uses and more than two weeks if used once a day. Some interference from Pb2+ and Cu2+ was observed but the effects of Zn2+, Ni2+, Cr3+ and Ba2+ were insignificant.
Persistent link to this record
DOI
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Chow, Edith
;
Hibbert, D. Brynn
;
Gooding, John
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2005
Resource Type
Journal Article
Degree Type
UNSW Faculty