Development of a three-dimensional numerical model of grain boundaries in highly doped polycrystalline silicon and applications to solar cells

Access & Terms of Use
metadata only access
Altmetric
Abstract
We have developed a three-dimensional numerical model of grain boundaries to simulate the electrical properties of polycrystalline silicon with doping densities larger than approximately 5×1017 cm–3. We show that three-dimensional effects play an important role in quantifying the minority-carrier properties of polycrystalline silicon. Our simulations reproduce the open-circuit voltage of a wide range of published experiments on thin-film silicon p-n junction solar cells, choosing a velocity parameter for recombination at the grain boundaries, S, in the order of 105–106 cm/s. The simulations indicate that, although S has been reduced by one order of magnitude over the last two decades, improvements in the open-circuit voltage have mainly been achieved by increasing the grain size. A few options are proposed to further reduce S.
Persistent link to this record
DOI
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Altermatt, Pietro
;
Heiser, Gernot
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2002
Resource Type
Journal Article
Degree Type
UNSW Faculty