Abstract
Taste and odour causingchemicals in drinking water supplies can bedetected and identified using a variety ofanalytical techniques and sensory methods.Currently limitations exist in applying thesetechniques and methods to the continuousmonitoring of taste and odour episodes.Electronic sensory systems so called``electronic noses'''' using non-specific gassensors could offer a rapid and relative simpletechnique for continuous monitoring of waterquality. Laboratory and field-based continuouswater monitoring showed that introducedpollutants such as 2-chlorophenol and geosmincould be detected by a sensor array, howeverthe detection limits were significant higherthan the odour threshold concentrations (OTC)for the respective compounds. The conditioningof the monitoring system in a temperaturecontrolled environment for on-line headspacegeneration and transfer reduced the impact ofenvironmental fluctuations on the sensorresponse profiles. At present, a sensor arraybased monitoring system could be applied to theintake protection of taste and odour causingcompounds in water supplies with a minimum OTCof 10 ppm.