Contact and conformal maps in parabolic geometry. I Cowling, Michael en_US De Mari, F en_US Koranyi, A en_US Reimann, Hans en_US 2021-11-25T14:28:22Z 2021-11-25T14:28:22Z 2005 en_US
dc.description.abstract When n >= 3, the action of the conformal group O( 1, n+1) on R(n)boolean OR{infinity} may be characterized in simple differential geometric terms, even locally: a theorem of Liouville states that a C-4 map between domains U and V in R-n whose differential is a ( variable) multiple of a ( variable) isometry at each point of U is the restriction to U of a transformation x -> g center dot x, for some g in O( 1, n+1). In this paper, we consider the problem of characterizing the action of a more general semisimple Lie group G on the space G/P, where P is a minimal parabolic subgroup. en_US
dc.identifier.issn 0046-5755 en_US
dc.language English
dc.language.iso EN en_US
dc.rights CC BY-NC-ND 3.0 en_US
dc.rights.uri en_US
dc.source Legacy MARC en_US
dc.subject.other semisimple Lie group en_US
dc.subject.other contact map en_US
dc.subject.other conformal map en_US
dc.title Contact and conformal maps in parabolic geometry. I en_US
dc.type Journal Article en
dcterms.accessRights metadata only access
dspace.entity.type Publication en_US
unsw.relation.faculty Science
unsw.relation.ispartofissue 1 en_US
unsw.relation.ispartofjournal Geometriae Dedicata en_US
unsw.relation.ispartofpagefrompageto 65-86 en_US
unsw.relation.ispartofvolume 111 en_US
unsw.relation.originalPublicationAffiliation Cowling, Michael, Mathematics & Statistics, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation De Mari, F en_US
unsw.relation.originalPublicationAffiliation Koranyi, A en_US
unsw.relation.originalPublicationAffiliation Reimann, Hans en_US School of Mathematics & Statistics *
Resource type