Publication:
Mechanisms of thermal adaptation revealed from the genomes of the antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii

dc.contributor.author Saunders, NF en_US
dc.contributor.author Thomas, Torsten en_US
dc.contributor.author Curmi, PM en_US
dc.contributor.author Mattick, JS en_US
dc.contributor.author Kuczek, E en_US
dc.contributor.author Slade, R en_US
dc.contributor.author Davis, J en_US
dc.contributor.author Franzmann, PD en_US
dc.contributor.author Boone, D en_US
dc.contributor.author Rusterholtz, K en_US
dc.contributor.author Feldman, R en_US
dc.contributor.author Gates, C en_US
dc.contributor.author Bench, S en_US
dc.contributor.author Sowers, K en_US
dc.contributor.author Kadner, K en_US
dc.contributor.author Aerts, A en_US
dc.contributor.author Dehal, P en_US
dc.contributor.author Detter, C en_US
dc.contributor.author Glavina, T en_US
dc.contributor.author Lucas, S en_US
dc.contributor.author Richardson, P en_US
dc.contributor.author Larimer, F en_US
dc.contributor.author Hauser, L en_US
dc.contributor.author Land, en_US
dc.date.accessioned 2021-11-25T13:24:46Z
dc.date.available 2021-11-25T13:24:46Z
dc.date.issued 2003 en_US
dc.description.abstract We generated draft genome sequences for two cold-adapted Archaea, Methanogenium frigidum and Methanococcoides burtonii, to identify genotypic characteristics that distinguish them from Archaea with a higher optimal growth temperature (OGT). Comparative genomics revealed trends in amino acid and tRNA composition, and structural features of proteins. Proteins from the cold-adapted Archaea are characterized by a higher content of noncharged polar amino acids, particularly Gln and Thr and a lower content of hydrophobic amino acids, particularly Leu. Sequence data from nine methanogen genomes (OGT 15°–98°C) were used to generate 1111 modeled protein structures. Analysis of the models from the cold-adapted Archaea showed a strong tendency in the solvent-accessible area for more Gln, Thr, and hydrophobic residues and fewer charged residues. A cold shock domain (CSD) protein (CspA homolog) was identified in M. frigidum, two hypothetical proteins with CSD-folds in M. burtonii, and a unique winged helix DNA-binding domain protein in M. burtonii. This suggests that these types of nucleic acid binding proteins have a critical role in cold-adapted Archaea. Structural analysis of tRNA sequences from the Archaea indicated that GC content is the major factor influencing tRNA stability in hyperthermophiles, but not in the psychrophiles, mesophiles or moderate thermophiles. Below an OGT of 60°C, the GC content in tRNA was largely unchanged, indicating that any requirement for flexibility of tRNA in psychrophiles is mediated by other means. This is the first time that comparisons have been performed with genome data from Archaea spanning the growth temperature extremes from psychrophiles to hyperthermophiles. en_US
dc.identifier.uri http://hdl.handle.net/1959.4/39577
dc.language English
dc.language.iso EN en_US
dc.rights CC BY-NC-ND 3.0 en_US
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/au/ en_US
dc.source Legacy MARC en_US
dc.title Mechanisms of thermal adaptation revealed from the genomes of the antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii en_US
dc.type Journal Article en
dcterms.accessRights metadata only access
dspace.entity.type Publication en_US
unsw.accessRights.uri http://purl.org/coar/access_right/c_14cb
unsw.identifier.doiPublisher http://dx.doi.org/10.1101/gr.1180903 en_US
unsw.relation.faculty Science
unsw.relation.ispartofissue 7 en_US
unsw.relation.ispartofjournal Genome Research en_US
unsw.relation.ispartofpagefrompageto 1580-1588 en_US
unsw.relation.ispartofvolume 13 en_US
unsw.relation.originalPublicationAffiliation Saunders, NF en_US
unsw.relation.originalPublicationAffiliation Thomas, Torsten, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation Curmi, PM en_US
unsw.relation.originalPublicationAffiliation Mattick, JS en_US
unsw.relation.originalPublicationAffiliation Kuczek, E en_US
unsw.relation.originalPublicationAffiliation Slade, R en_US
unsw.relation.originalPublicationAffiliation Davis, J en_US
unsw.relation.originalPublicationAffiliation Franzmann, PD en_US
unsw.relation.originalPublicationAffiliation Boone, D en_US
unsw.relation.originalPublicationAffiliation Rusterholtz, K en_US
unsw.relation.originalPublicationAffiliation Feldman, R en_US
unsw.relation.originalPublicationAffiliation Gates, C en_US
unsw.relation.originalPublicationAffiliation Bench, S en_US
unsw.relation.originalPublicationAffiliation Sowers, K en_US
unsw.relation.originalPublicationAffiliation Kadner, K en_US
unsw.relation.originalPublicationAffiliation Aerts, A en_US
unsw.relation.originalPublicationAffiliation Dehal, P en_US
unsw.relation.originalPublicationAffiliation Detter, C en_US
unsw.relation.originalPublicationAffiliation Glavina, T en_US
unsw.relation.originalPublicationAffiliation Lucas, S en_US
unsw.relation.originalPublicationAffiliation Richardson, P en_US
unsw.relation.originalPublicationAffiliation Larimer, F en_US
unsw.relation.originalPublicationAffiliation Hauser, L en_US
unsw.relation.originalPublicationAffiliation Land, en_US
unsw.relation.school School of Biotechnology & Biomolecular Sciences *
Files
Resource type