Process optimization of fenton oxidation using kinetic modeling

Access & Terms of Use
metadata only access
Abstract
In the remediation, water, and wastewater industries, an appropriate understanding of the chemical reactions governing the Fenton system allows the development of kinetic models to help design and optimize the performance and efficiency of treatment processes. In this work a rigorous kinetic model describing substrate oxidation by Fenton`s reagent, following validation by comparison with experimental data, is extended and applied to provide insight and gain information regarding optimum initial conditions, solution environment, and operating regimes for the decomposition of a target contaminant. The effect of variables such as initial molar ratios of H2O2 to Fe(II), H2O2 dosing regimes, solution pH, and the presence or absence of oxygen on the rate and efficiency of contaminant degradation is presented and discussed in light of the reactions involved. Model simulations of the oxidation of various organic species demonstrate the significant role organic radicals and oxidation byproducts can have on treatment performance. An appropriate understanding of the oxidation pathway of the target organic and the reactions of degradation products is essential for the accurate application and use of the kinetic model for design and optimization purposes. © 2006 American Chemical Society.
Persistent link to this record
DOI
Link to Publisher Version
Additional Link
Author(s)
Duesterberg, Christopher
Waite, T
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2006
Resource Type
Journal Article
Degree Type
UNSW Faculty