Automated and Improved Search Query Effectiveness Design for Systematic Literature Reviews

Download files
Access & Terms of Use
open access
Copyright: Badami, Maisie
This research explores and investigates strategies towards automation of the systematic literature review (SLR) process. SLR is a valuable research method that follows a comprehensive, transparent, and reproducible research methodology. SLRs are at the heart of evidence-based research in various research domains, from healthcare to software engineering. They allow researchers to systematically collect and integrate empirical evidence in response to a focused research question, setting the foundation for future research. SLRs are also beneficial to researchers in learning about the state of the art of research and enriching their knowledge of a topic of research. Given their demonstrated value, SLRs are becoming an increasingly popular type of publication in different disciplines. Despite the valuable contributions of SLRs to science, performing timely, reliable, comprehensive, and unbiased SLRs is a challenging endeavour. With the rapid growth in primary research published every year, SLRs might fail to provide complete coverage of existing evidence and even end up being outdated by the time of publication. These challenges have sparked motivation and discussion in research communities to explore automation techniques to support the SLR process. In investigating automatic methods for supporting the systematic review process, this thesis develops three main areas. First, by conducting a systematic literature review, we found the state of the art of automation techniques that are employed to facilitate the systematic review process. Then, in the second study, we identified the real challenges researchers face when conducting SLRs, through an empirical study. Moreover, we distinguished solutions that help researchers to overcome these challenges. We also identified the researchers' concerns regarding adopting automation techniques in SLR practice. Finally, in the third study, we leveraged the findings of our previous studies to investigate a solution to facilitate the SLR search process. We evaluated our proposed method by running some experiments.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
Resource Type
Degree Type
PhD Doctorate
UNSW Faculty
download public version.pdf 3.18 MB Adobe Portable Document Format
Related dataset(s)