Design of antibody-polymer conjugates for immunotherapy: the influence of polymer structure on the antibody's activity.

Download files
Access & Terms of Use
open access
Copyright: Melodia, Daniele
Altmetric
Abstract
Antibodies are increasingly useful therapeutics, and examples include the checkpoint inhibitors pembrolizumab1 and ipilimumab2 in cancer immunotherapy, and anti tau therapies in Alzheimer’s disease and dementia.3,4 However, specific applications requiring cytosolic delivery of the antibody, or transport across the blood-brain barrier pose challenges to antibody therapeutics. These issues may reduce the effectiveness of immunotherapy and restrict it to extracellular targets. Conjugating polymers to proteins and enzymes has been very effective at improving their stability and pharmacokinetics,5–8 and similar approaches have been studied for antibody conjugation.9–12 Finding an effective polymeric delivery system for antibodies can greatly improve immunotherapy. In this work three strategies were explored for the encapsulation and bioconjugation to antibodies. The first approach is the encapsulation via electrostatic interactions between the antibody and a charged block copolymer to form polyion complex (PIC) micelles. Polyphosphonium block copolymers were studied for the first time to encapsulate antibodies, and were compared to their ammonium counterpart. While this approach has the advantage of being reversible, the polymer-antibody electrostatic interactions were too weak for biological applications, and delivery by this means would require a crosslinking strategy. The second approach involves covalent attachment of polymers on the antibody’s surface via a grafting from polymerisation. An oxygen tolerant technique was employed for the screening of a large number of samples in low volumes (<100 μL). Successful grafting was demonstrated by AF4 and gel electrophoresis. Enzyme-linked immunosorbent assay (ELISA) showed retention of up to 40% binding activity relative to the native antibody with a marked improvement in stability. The third strategy introduces a novel acid sensitive linker for the reversible covalent attachment of polymers to the antibody’s surface. This was achieved by using Diels-Alder chemistry to create an activated PEG that forms an amide with a conformational lock similar to citraconic anhydride upon conjugation to the amines on the antibody. The ability of the linker to cleave at pH 5.5 is demonstrated, resulting in almost complete recovery of the original binding activity of the antibody. Overall, the reversible covalent attachment investigated here seems the most promising, and combining the high throughput method with the cleavable linker approach holds great potential for advancing in immunotherapy. References (1) Reck, M. Pembrolizumab as First-Line Therapy for Metastatic Non-Small-Cell Lung Cancer. Futur. Med. 2018, 10, 93–105. (2) Gao, J.; Ward, J. F.; Pettaway, C. A.; Shi, L. Z.; Subudhi, S. K.; Vence, L. M.; Zhao, H.; Chen, J.; Chen, H.; Efstathiou, E.; Troncoso, P.; Allison, J. P.; Logothetis, C. J.; Wistuba, I. I.; Sepulveda, M. A.; Sun, J.; Wargo, J.; Blando, J. VISTA Is an Inhibitory Immune Checkpoint That Is Increased after Ipilimumab Therapy in Patients with Prostate Cancer. Nat. Med. 2017, 23 (5), 551–555.. (3) Pedersen, J. T.; Sigurdsson, E. M. Tau Immunotherapy for Alzheimer’s Disease. Trends Mol. Med. 2015, 21 (6), 394–402. (4) Castillo-Carranza, D. L.; Sengupta, U.; Guerrero-Munoz, M. J.; Lasagna-Reeves, C. A.; Gerson, J. E.; Singh, G.; Estes, D. M.; Barrett, A. D. T.; Dineley, K. T.; Jackson, G. R.; Kayed, R. Passive Immunization with Tau Oligomer Monoclonal Antibody Reverses Tauopathy Phenotypes without Affecting Hyperphosphorylated Neurofibrillary Tangles. J. Neurosci. 2014, 34 (12), 4260–4272. (5) Abolmaali, S. S.; Tamaddon, A. M.; Salmanpour, M.; Mohammadi, S.; Dinarvand, R. Block Ionomer Micellar Nanoparticles from Double Hydrophilic Copolymers, Classifications and Promises for Delivery of Cancer Chemotherapeutics. Eur. J. Pharm. Sci. 2017, 104 (January), 393–405. (6) Kurakhmaeva, K. B.; Djindjikhashvili, I. A.; Petrov, V. E.; Balabanyan, V. U.; Voronina, T. A.; Trofimov, S. S.; Kreuter, J.; Gelperina, S.; Begley, D.; Alyautdin, R. N. Brain Targeting of Nerve Growth Factor Using Poly(Butyl Cyanoacrylate) Nanoparticles. J. Drug Target. 2009, 17 (8), 564–574. (7) Jiang, Y.; Fay, J. M.; Poon, C. D.; Vinod, N.; Zhao, Y.; Bullock, K.; Qin, S.; Manickam, D. S.; Yi, X.; Banks, W. A.; Kabanov, A. V. Nanoformulation of Brain-Derived Neurotrophic Factor with Target Receptor-Triggered-Release in the Central Nervous System. Adv. Funct. Mater. 2017, 1703982, 1–11. (8) Klyachko, N. L.; Manickam, D. S.; Brynskikh, A. M.; Uglanova, S. V.; Li, S.; Higginbotham, S. M.; Bronich, T. K.; Batrakova, E. V.; Kabanov, A. V. Cross-Linked Antioxidant Nanozymes for Improved Delivery to CNS. Nanomedicine Nanotechnology, Biol. Med. 2012, 8 (1), 119–129. (9) Bin Liu, Khushboo Singh , Shuai Gong , Mine Canakci, Barbara A. Osborne, and S. T. Protein Antibody Conjugates PACs A Plug‐and‐Play Strategy for Covalent Conjugation and Targeted Intracellular Delivery of Pristine Proteins. Angew. Chemie 2021, 133, 12923–12928. (10) Chan, L. J.; Bulitta, J. B.; Ascher, D. B.; Haynes, J. M.; Mcleod, V. M.; Porter, C. J. H.; Williams, C. C.; Kaminskas, L. M. PEGylation Does Not Signi Fi Cantly Change the Initial Intravenous or Subcutaneous Pharmacokinetics or Lymphatic Exposure of Trastuzumab in Rats but Increases Plasma Clearance after Subcutaneous Administration. Mol. Pharm. 2015, 12, 794–809. (11) Subasic, C. N.; Ardana, A.; Chan, L. J.; Huang, F.; Scoble, J. A.; Butcher, N. J.; Meagher, L.; Chiefari, J.; Kaminskas, L. M.; Williams, C. Poly ( HPMA- Co -NIPAM ) Copolymer as an Alternative to Polyethylene Glycol-Based Pharmacokinetic Modulation of Therapeutic Proteins. Int. J. Pharm. 2021, 608 (September), 121075. (12) Keita Hironaka,a,b Erika Yoshihara, Ahmed Nabil, James J. Lai, A. K. and M. E. Conjugation of Antibody with Temperature-Responsive Polymer via in Situ Click Reaction to Enable Biomarker Enrichment for Increased Diagnostic Sensitivity. Biomater. Sci. 2021, 9, 4870–4879.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2022
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download public version.pdf 13.55 MB Adobe Portable Document Format
Related dataset(s)