Developing methods to evaluate odour control products

Access & Terms of Use
metadata only access
Altmetric
Abstract
An economical and practical alternative to the standard end-of-pipe odour control methods is the application of liquid odour control products. Currently, there are no established product-testing methods. The data that are available are often of questionable quality and may have limited relevance to waste management. Waste facilities receive differing streams of waste at varying loading volumes. Whilst in operation this exposes control products to a wide variety of environmental conditions, further increasing the difficulty of selecting an effective means of control. The current study initially identifies commercially available odour control products applicable for solid and liquid waste management operations. Bench-scale batch absorption tests have been carried out to investigate odorous gas abatement for a range of selected commercial products and water at a range of pH values. Hydrogen sulphide was the test odorous gas, as it is commonly associated with waste processes. Gas-phase volumetric mass-transfer coefficients (K(G)a) have been calculated to determine mass-transfer performance. The development of a pilot-scale spray tower is then presented as the testing apparatus for future work. This is an attempt to construct a repeatable testing method for evaluating abatement performance of odour control products, and control the problems encountered when applying odour control products to open sites. K(G)a values and data collected from tests in this study will be considered in future work as design parameters for the rig.
Persistent link to this record
DOI
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Stuetz, Richard
Bouzalakos, S
Jefferson, S
Longhurst, P
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2004
Resource Type
Journal Article
Degree Type
UNSW Faculty