Numerical and Experimental Techniques for Quantifying Energy Deposition Effects on Representative Hypersonic Vehicle Structures

Download files
Access & Terms of Use
open access
Copyright: Moran, Jeremy
Altmetric
Abstract
There has been a global increase in the research and development of military hypersonic technology. Thermal directed-energy systems have been identified as a capability to defend against hypersonic threats. A numerical and experimental methodology for studying the effects of thermal energy deposition on representative hypersonic panels is presented. This thesis contains four sections, (i) theory and implementation of a first-order, fast, transient thermal-structural code: "Rapid Engineering Determination of Heating over a Trajectory'' (REDHOT), (ii) thermal-structural results from two case studies using REDHOT with energy deposition, (iii) development of an experimental technique to create and measure adverse thermal-structural failure caused by energy deposition, (iv) experimental validation of the technique. The first-order thermal structural code uses the reference-enthalpy method and two-dimensional conduction to calculate the thermal state of a representative hypersonic panel. Thermal stresses are calculated analytically with linear plate theory and non-linear finite element analysis simulation. Numerical results using the HyperX and HEXAFLY-INT trajectory as case studies are presented. REDHOT calculated nominal temperatures without energy deposition are within 1-10% of reported results in literature, acceptable for the first-order analysis in this thesis. Energy deposition is observed to have a greater effect on the skin panel when it is already thermally and aerodynamically loaded. The panel is more structurally compromised for energy pulses of long duration, of higher magnitude and/or applied at times of strong aerodynamic loading. The experimental technique builds on existing electro-resistive heating techniques used for wind tunnel testing. Parametric studies were conducted to understand the design space and determine optimal panel thicknesses and direct-current application to maximise thermal-structural effects. A method to measure the induced thermal strain using digital image correlation was developed. To validate the experimental technique, a model with a 120mm by 80mm graphite panel with varying thicknesses was designed and tested on the bench. For the thinnest available plate, and a direct-current power supply of 350A material failure was not observed. Finite element modelling of the experimental conditions was conducted. Recorded temperatures were approximately within 9% of simulated results. Measured thermal strain was within 0.05% of simulated material.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2022
Resource Type
Thesis
Degree Type
Masters Thesis
UNSW Faculty
Files
download public version.pdf 28.41 MB Adobe Portable Document Format
Related dataset(s)