Functional unit chaining: a runtime adaptive architecture for reducing bypass delays

Download files
Access & Terms of Use
open access
Abstract
Bypass delays are expected to grow beyond 1ns as technology scales. These delays necessitate pipelining of bypass paths at processor frequencies above 1GHz and thus affect the performance of sequential code sequences. We propose dealing with these delays through a dynamic functional unit chaining approach. We study the performance benefits of a superscalar, out-of-order processor augmented with a two-by-two array of ALUs interconnected by a fast, partial bypass network. An online profiler guides the automatic configuration of the network to accelerate specific patterns of dependent instructions. A detailed study of benchmark simulations demonstrates these first steps towards mapping binaries to a small coarse-grained array at runtime can improve instruction throughput by over 18% and 25% when the microarchitecure includes bypass delays of one cycle and two cycles, respectively.
Persistent link to this record
DOI
Link to Publisher Version
Additional Link
Author(s)
Koh, Lih
Diessel, Oliver
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2006
Resource Type
Conference Paper
Degree Type
UNSW Faculty
Files
download acsac06koh_0200602066.pdf 247.74 KB Adobe Portable Document Format
Related dataset(s)